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Overview 
Shallow-water coastal benthic habitats, which can comprise seagrasses, sandy soft 
bottoms, and coral reefs are essential ecosystems, supporting fisheries, providing 
coastal protection, and sequestering ‘blue’ carbon. Multispectral satellite imagery, 
particularly with blue and green spectral bands, can penetrate clear, shallow water, 
allowing us to identify what lies on the seafloor. In terrestrial habitats, atmospheric 
and topographic corrections are important, whereas in shallow waters, it is essential to 
correct the effects of the water column, as different depths can change the reflectance 
observed by the satellite sensor. Once you know the water depth, you can accurately 
assess benthic habitats such as seagrass, sand, and coral. In this chapter, we will 
describe how to estimate water depth from high-resolution Planet data and map 
benthic habitats.
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Learning Outcomes

• Separating land from water with a supervised classification.
• Removing surface sunglint and wave glint.
• Correcting for water depth to derive bottom surface reflectance through a 

regression approach.
• Identifying and classifying benthic habitats using machine learning.
• Developing regression models to estimate water depth using training data.
• Evaluating training data and model accuracy. 

Helps if you know how to

• Import images and image collections, filter, and visualize (Part 1).
• Perform basic image analysis: select bands, compute indices, create masks, 

classify images (Part 2).
• Use normalizedDifference to calculate vegetation indices (Chap. 5).
• Use drawing tools to create points, lines, and polygons (Chap. 6).
• Perform a supervised Random Forest image classification (Chap. 6).
• Obtain accuracy metrics from classifications (Chap. 7).
• Use reducers to implement linear regression between image bands (Chap. 8).
• Filter a FeatureCollection to obtain a subset (Chaps. 22 and 23).
• Convert between raster and vector data (Chap. 23). 

41.1 Introduction to Theory 

Coastal benthic habitats include several ecosystems across the globe. One com-
mon element is the seagrass meadow, a significant component of coastal marine 
ecosystems (UNEP/MAP 2009). Seagrass meadows are among the most produc-
tive habitats in the coastal zone, performing essential ecosystem functions and 
providing essential ecosystem services (Duarte et al. 2013), such as water oxy-
genation and nutrient provision, seafloor and beach stabilization (as sediment is 
controlled and trapped within the rhizomes of the meadows), carbon burial, and 
nursery areas and refuge for commercial and endemic species (Boudouresque et al. 
2012; Vassallo et al. 2013; Campagne et al. 2014). 

However, seagrass meadows are experiencing a global decline due to intensive 
human activities and climate change (Boudouresque et al. 2009). Threats from 
climate change include sea surface temperature increases and sea level rise, as 
well as more frequent and intensive storms (Pergent et al. 2014). These threats 
represent a pressing challenge for coastal management and are predicted to have 
deleterious effects on seagrasses. 

Several programs have focused on coastal seabed mapping, and a wide range 
of methods have been utilized for mapping seagrasses (Poursanidis et al. 2021; 
Borfecchia et al. 2013; Eugenio et al. 2015). Satellite remote sensing has been
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employed for the mapping of seagrass meadows and coral reefs in several areas 
(Goodman et al. 2011; Hedley et al. 2016; Knudby and Nordlund 2011; Koedsin 
et al. 2016; Lyons et al. 2012). 

In this chapter, we will show you how to map coastal habitats using high-
resolution Earth observation data from Planet with updated field data collected in 
the same period as the imagery acquisition. You will learn how to calculate coastal 
bathymetry using high-quality field data and machine learning regression methods. 
In the end, you will be able to adapt the code and use your own data to work in 
your own coastal area of interest, which can be tropical or temperate as long as 
there are clear waters up to 30 m deep. 

41.2 Practicum 

41.2.1 Section 1: Inputting Data 

The first step is to define the data that you will work on. By uploading raster 
and vector data via the Earth Engine asset inventory, you will be able to analyze 
and process them through the Earth Engine API. The majority of satellite data 
are stored with values scaled by 10,000 and truncated in order to occupy less 
memory. In this setting, it is crucial to scale them back to their physical values 
before processing them. 

// Section 1 
// Import and display satellite image. 
var planet = ee.Image('projects/gee-book/assets/A2-
2/20200505_N2000') 

.divide(10000); 

Map.centerObject(planet, 12); 
var visParams = { 

bands: ['b3', 'b2', 'b1'], 
min: 0.17, 
max: 0.68, 
gamma: 0.8 

}; 
Map.addLayer({ 

eeObject: planet, 
visParams: visParams, 
name: 'planet initial', 
shown: true 

});
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Code Checkpoint A22a. The book’s repository contains a script that shows what 
your code should look like at this point. 

41.2.2 Section 2: Preprocessing Functions 

Code Checkpoint A22b. The book’s repository contains a script to use to begin 
this section. You will need to start with that script and paste code below into it. 
When you run the script, you will see several assets being imported for water, 
land, sunglint, and sandy patches to correct for the water column. 

With the Planet imagery imported into Earth Engine, we now need to pre-
pare for the classification and bathymetry procedures that will follow. The aim 
of the preprocessing is to correct or minimize spectral alterations due to physical 
conditions like sunglint, waves, and the water column. The landmask function 
below will remove the land area from our image in order to focus on the marine 
area of interest. This prevents the land reflectance values, which are relatively 
high, from biasing the main process of classification over dark water with low 
reflectance. To implement this step, we will perform a supervised classification 
to obtain the land/water mask. To prepare for the classification, we drew water 
and land geometry imports and set them as a FeatureCollection with prop-
erty ‘class’ and values 1 and 0, respectively (Fig. 41.1). We will employ the 
Normalized Difference Water Index (NDWI) (Gao 1996) using a Random For-
est classifier (Breiman 2001). Due to the distinct spectral reflectances of terrain 
and water surfaces, there is no need to ensure a balanced dataset between the two 
classes. However, the size of the training dataset is still important and therefore, the 
more the better. For this task, we create ‘line’ geometries because we can get more 
training points than ‘point’ geometries with fewer clicks. For more information 
regarding generating training lines, points or polygons, please see Chap. 6.
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Fig. 41.1 Labeling of land and water regions using lines in preparation for the Random Forests 
classification 

// Section 2 
// Mask based to NDWI and RF. 
function landmask(img) { 

var ndwi = img.normalizedDifference(['b2', 'b4']); 
var training = ndwi.sampleRegions(land.merge(water), 

['class'], 
3); 

var trained = ee.Classifier.smileRandomForest(10) 
.train(training, 'class'); 

var classified = ndwi.classify(trained); 
var mask = classified.eq(1); 

return img.updateMask(mask); 
} 

var maskedImg = landmask(planet); 

Map.addLayer(maskedImg, visParams, 'maskedImg', false); 

Sunglint is a phenomenon that occurs when the sun angle and the sensor are 
positioned such that there is a mirror-like reflection at the water surface. In areas 
of glint, we cannot detect reflectance from the ocean floor. This will affect image
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Fig. 41.2 Identification of areas with sunglint. Raising the gamma parameter during the visual-
ization makes the phenomenon appear more intense, making it easier to draw the glint polygons

processing and needs to be corrected. The user adds polygons identifying areas of 
glint (Fig. 41.2), and these areas aid the linear model to remove sunglint areas in 
the whole image extend (Hedley et al. 2005). 

// Sun-glint correction. 
function sunglintRemoval(img) { 

var linearFit1 = img.select(['b4', 
'b1']).reduceRegion({ 

reducer: ee.Reducer.linearFit(), 
geometry: sunglint, 
scale: 3, 
maxPixels: 1e12, 
bestEffort: true, 

}); 
var linearFit2 = img.select(['b4', 

'b2']).reduceRegion({ 
reducer: ee.Reducer.linearFit(), 
geometry: sunglint, 
scale: 3, 
maxPixels: 1e12,
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bestEffort: true, 
}); 
var linearFit3 = img.select(['b4', 

'b3']).reduceRegion({ 
reducer: ee.Reducer.linearFit(), 
geometry: sunglint, 
scale: 3, 
maxPixels: 1e12, 
bestEffort: true, 

}); 

var slopeImage = ee.Dictionary({ 
'b1': linearFit1.get('scale'), 
'b2': linearFit2.get('scale'), 
'b3': linearFit3.get('scale') 

}).toImage(); 

var minNIR = img.select('b4').reduceRegion({ 
reducer: ee.Reducer.min(), 
geometry: sunglint, 
scale: 3, 
maxPixels: 1e12, 
bestEffort: true, 

}).toImage(['b4']); 

return img.select(['b1', 'b2', 'b3']) 

.subtract(slopeImage.multiply((img.select('b4')).subtract( 
minNIR))) 

.addBands(img.select('b4')); 
} 
var sgImg = sunglintRemoval(maskedImg); 
Map.addLayer(sgImg, visParams, 'sgImg', false);

Question 1. If you design more polygons for sunglint correction, can you see 
any improvement in the results visually and by examining values in pixels? Keep 
in mind that in already drawn rectangles (sunglint polygons), you cannot draw 
free-shaped polygons or lines. Try instead adding some more points or rectangles.
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You can design more polygons, or select areas with severe or moderate sunglint 
to see how the site selection influences the final results. 

The Depth Invariant Index (DIV) is a tool that creates a proxy image that helps 
minimize the bias of the spectral values due to the water column during classifi-
cation and bathymetry procedures. Spectral signatures tend to be affected by the 
depth of the water column due to suspended material and the absorption of light. 
A typical result is that shallow seagrasses and deeper sandy seafloors will have 
similar spectral signatures. The correction of that error is based on the correlation 
between depth and logged bands (Lyzenga 1981). 

In our example, the correction of water column alterations is based on the ratio 
of the green and blue bands, because of their higher penetrating properties com-
pared to the red and near-infrared (NIR) bands. As in the previous functions, 
a requirement for this procedure is to identify sandy patches in different depth 
ranges. If needed, you can use the satellite image layer to do so. 

Since we will use log values in the current step, it is crucial to transform all 
the negative values to positive before estimating DIV and since the majority of the 
values are in optically deep waters, the value 0.0001 will be assigned to values 
less than 0 in an attempt to avoid altering the pixels with positive values at the 
coastal zone. Moreover, a low-pass filter will be applied to normalize the observed 
noise that occurred during the previous steps (see Chap. 10). 

// DIV procedure. 
function kernel(img) { 

var boxcar = ee.Kernel.square({ 
radius: 2, 
units: 'pixels', 
normalize: true 

}); 
return img.convolve(boxcar); 

} 

function makePositive(img) { 
return img.where(img.lte(0), 0.0001); 

}
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maxPixels: 1e12, 
bestEffort: true, 

}); 

var covarMatrix = 
ee.Array(covariance.get('array')); 

var var1 = covarMatrix.get([0, 0]); 
var var2 = covarMatrix.get([1, 1]); 
var covar = covarMatrix.get([0, 1]);var covar = covarMatrix.get([0, 1]); 

var a = 
var1.subtract(var2).divide(covar.multiply(2)); 

var attenCoeffRatio = 
a.add(((a.pow(2)).add(1)).sqrt()); 

var depthInvariantIndex = img.expression( 
'image1 - (image2 * coeff)', { 

'image1': imageLog.select([x]), 
'image2': imageLog.select([y]), 
'coeff': attenCoeffRatio 

}); 

function div(img) { 
var band1 = ee.List(['b1', 'b2', 'b3', 'b1', 'b2']); 
var band2 = ee.List(['b3', 'b3', 'b2', 'b2', 'b1']); 
var nband = ee.List(['b1b3', 'b2b3', 'b3b2', 'b1b2', 

'b2b1']); 

for (var i = 0; i < 5; i += 1) { 
var x = band1.get(i); 
var y = band2.get(i); 
var z = nband.get(i); 

var imageLog = img.select([x, y]).log(); 

var covariance = imageLog.toArray().reduceRegion({ 
reducer: ee.Reducer.covariance(), 
geometry: DIVsand, 
scale: 3,
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Question 2. How can the selection of sandy patches influence the final result? 
Sandy patches can also include signals from sparse seagrass or other types 

of benthic cover. Select different areas of variable depths and therefore different 
spectral reflectance to explore the changes in the final DIV result. 

Code Checkpoint A22c. The book’s repository contains a script that shows what 
your code should look like at this point. 

41.2.3 Section 3: Supervised Classification 

To create accurate classifications, it is beneficial for the training data set to be cre-
ated from in situ data. This is especially important in marine remote sensing, due to 
dynamic, varying ecosystems. In our example, all the reference data were acquired 
during scientific dives. The reference data consist of three classes: SoftBottom 
for sandy patches, rockyBottom for rocky patches, and pO for posidonia-seagrass 
patches. Here, we provide a dataset that will be split using a 70–30% partitioning 
strategy into training and validation data (see Chap. 6) and is already pre-loaded 
in the assets of this book.
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// Section 3, classification 
// Import of reference data and split. 
var softBottom = ee.FeatureCollection( 

'projects/gee-book/assets/A2-2/SoftBottom'); 
var rockyBottom = ee.FeatureCollection( 

'projects/gee-book/assets/A2-2/RockyBottom'); 
var pO = ee.FeatureCollection('projects/gee-book/assets/A2-
2/PO'); 

var sand = ee.FeatureCollection.randomPoints(softBottom, 
150).map( 

function(s) { 
return s.set('class', 0); 

}).randomColumn(); 
var sandT = sand.filter(ee.Filter.lte('random', 
0.7)).aside(print, 

'sand training'); 
var sandV = sand.filter(ee.Filter.gt('random', 
0.7)).aside(print, 

'sand validation'); 
Map.addLayer(sandT, { 

color: 'yellow' 
}, 'Sand Training', false); 
Map.addLayer(sandV, { 

color: 'yellow' 
}, 'Sand Validation', false); 

var hard = ee.FeatureCollection.randomPoints(rockyBottom, 
79).map( 

function(s) { 
return s.set('class', 1); 

}).randomColumn(); 
var hardT = hard.filter(ee.Filter.lte('random', 
0.7)).aside(print, 

'hard training'); 
var hardV = hard.filter(ee.Filter.gt('random', 
0.7)).aside(print, 

'hard validation');
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For this procedure, we chose the ee.Classifier.libsvm classifier 
because of its established performance in aquatic environments (Poursanidis et al. 
2018; da Silveira et al. 2021). The function below does the classification and also 
estimates overall user’s and producer’s accuracy (see Chap. 7): 

// Classification procedure. 
function classify(img) { 

var mergedT = ee.FeatureCollection([sandT, hardT, 
posiT]) 

.flatten(); 
var training = img.sampleRegions(mergedT, ['class'], 

3); 
var trained = ee.Classifier.libsvm({ 

kernelType: 'RBF', 
gamma: 1, 
cost: 500 

}).train(training, 'class'); 
var classified = img.classify(trained); 

var mergedV = ee.FeatureCollection([sandV, hardV, 
posiV]) 

.flatten(); 
var accuracyCol = classified.unmask().reduceRegions({ 

collection: mergedV, 
reducer: ee.Reducer.first(), 
scale: 10 

});
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var classificationErrorMatrix = 
accuracyCol.errorMatrix({ 

actual: 'class', 
predicted: 'first', 
order: [0, 1, 2] 

}); 
var classNames = ['soft_bot', 'hard_bot', 'seagrass']; 
var accuracyOA = classificationErrorMatrix.accuracy(); 
var accuraccyCons = ee.Dictionary.fromLists({ 

keys: classNames, 
values: 

classificationErrorMatrix.consumersAccuracy() 
.toList() 
.flatten() 

}); 
var accuracyProd = ee.Dictionary.fromLists({ 

keys: classNames, 
values: 

classificationErrorMatrix.producersAccuracy() 
.toList() 
.flatten() 

}); 

var classificationErrormatrixArray = 
classificationErrorMatrix 

.array(); 

var arrayToDatatable = function(array) { 
var classesNames = ee.List(classNames); 

function toTableColumns(s) { 
return { 

id: s, 
label: s, 
type: 'number' 

}; 
} 
var columns = classesNames.map(toTableColumns); 

function featureToTableRow(f) { 
return { 

c: ee.List(f).map(function(c) {
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return { 
v: c 

}; 
}) 

}; 
} 
var rows = array.toList().map(featureToTableRow); 
return ee.Dictionary({ 

cols: columns, 
rows: rows 

}); 
}; 

var dataTable = 
arrayToDatatable(classificationErrormatrixArray) 

.evaluate(function(dataTable) { 
print('------------- Error matrix -------------

', 
ui.Chart(dataTable, 'Table') 
.setOptions({ 

pageSize: 15 
}), 
'rows: reference, cols: mapped'); 

}); 
print('Overall Accuracy', accuracyOA); 
print('Users accuracy', accuraccyCons); 
print('Producers accuracy', accuracyProd); 
return classified; 

} 

var svmClassification = classify(divImg); 
var svmVis = { 

min: 0, 
max: 2, 
palette: ['ffffbf', 'fc8d59', '91cf60'] 

}; 
Map.addLayer(svmClassification, svmVis, 'classification'); 

Code Checkpoint A22d. The book’s repository contains a script that shows what 
your code should look like at this point.
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41.2.4 Section 4: Bathymetry by Random Forests Regression 

For the bathymetry procedure, we will exploit the setOutputMode 
(‘REGRESSION’) option of ee.Classifier.smile RandomForest. 
For this example, reference data came from a sonar that was mounted on a boat. 
In contrast to the classification accuracy assessment, the accuracy assessment of 
bathymetry is based on R2 and the root-mean-square error (RMSE). 

With regard to visualization of the resulting bathymetry, we have to consider 
the selection of colors and their physical meanings. In the classification, which is 
a categorical image, we use a diverging palette, while in bathymetry, which shows 
a continuous value, we should use a sequential palette. Tip: ‘cold’ colors better 
convey depth. For the satellite-derived bathymetry, we use pre-loaded assets with 
the in situ depth measurement. The quality of these measurements is crucial to the 
success of the classifier. 

// Section 4, Bathymetry 
// Import and split training and validation data for the 
bathymetry. 
var depth = ee.FeatureCollection( 

'projects/gee-book/assets/A2-
2/DepthDataTill09072020_v2'); 
depth = depth.randomColumn(); 
var depthT = depth.filter(ee.Filter.lte('random', 0.7)); 
var depthV = depth.filter(ee.Filter.gt('random', 0.7)); 
Map.addLayer(depthT, { 

color: 'black' 
}, 'Depth Training', false); 
Map.addLayer(depthV, { 

color: 'gray' 
}, 'Depth Validation', false); 

So that every pixel contains at most one measurement, the vector depth assets 
are rasterized prior to using them for the regression.
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function vector2image(vector) { 
var rasterisedVectorData = vector 

.filter(ee.Filter.neq('Depth', 
null)) // Filter out NA depth values. 

.reduceToImage({ 
properties: ['Depth'], 
reducer: ee.Reducer.mean() 

}); 
return (rasterisedVectorData); 

} 

var depthTImage = vector2image(depthT) 
.aside(Map.addLayer, { 

color: 'white' 
}, 'Depth Training2', false); 

var depthVImage = vector2image(depthV) 
.aside(Map.addLayer, { 

color: 'white' 
}, 'Depth Validation2', false); 

Finally, we need to enter down and execute the function to calculate the satellite 
derived bathymetry function, based on the Random Forest classifier. 

function rfbathymetry(img) { 
var training = img.sampleRegions({ 

collection: depthT, 
scale: 3 

}); 

var regclass = ee.Classifier.smileRandomForest(15) 
.train(training, 'Depth'); 

var bathyClass = img 

.classify(regclass.setOutputMode('REGRESSION')).rename( 
'Depth'); 

var sdbEstimate = bathyClass.clip(depthV); 

// Prepare data by putting SDB estimated data and in 
situ data 

// in one image to compare them afterwards. 
var imageI = ee.Image.cat([sdbEstimate, depthVImage]); 
// Calculate covariance.
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// Print together, so that they appear in the same 
output. 

print('R²', rSqr, 'RMSE', rmse); 
return bathyClass; 

} 

var rfBathymetry = rfbathymetry(divImg); 
var bathyVis = { 

min: -50, 
max: 0, 
palette: ['084594', '2171b5', '4292c6', '6baed6', 

'9ecae1', 'c6dbef', 'deebf7', 'f7fbff' 
] 

}; 
Map.addLayer(rfBathymetry, bathyVis, 'bathymetry'); 

var covariance = imageI.toArray().reduceRegion({ 
reducer: ee.Reducer.covariance(), 
geometry: depthV, 
scale: 3, 
bestEffort: true, 
maxPixels: 1e9 

}); 
var covarMatrix = ee.Array(covariance.get('array')); 
var rSqr = covarMatrix.get([0, 1]).pow(2) 

.divide(covarMatrix.get([0, 0]) 
.multiply(covarMatrix.get([1, 1]))); 

var deviation = depthVImage.select('mean') 
.subtract(sdbEstimate.select('Depth')).pow(2); 

var rmse = ee.Number(deviation.reduceRegion({ 
reducer: ee.Reducer.mean(), 
geometry: depthV, 
scale: 3, 
bestEffort: true, 
maxPixels: 1e12 

}).get('mean')) 
.sqrt();.sqrt(); 

Question 3. Does the selection of different color ramps lead to misinterpretations? 
By choosing different color ramps for the same data set, you can see how visual 

interpretation can be changed based on color. Trying different color ramps will 
reveal how some can better visualize the final results for further use in maritime 
spatial planning activities, while others, including commonly seen rainbow ramps, 
can lead to erroneous decisions.
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Code Checkpoint A22e. The book’s repository contains a script that shows what 
your code should look like at this point. 

41.3 Synthesis 

With what you learned in this chapter, you can analyze Earth observation data— 
here, specifically from the Planet Cubesat constellation—to create your own map 
of coastal benthic habitats and coastal bathymetry for a specific case study. Feel 
free to test out the approach in another part of the world using your own data or 
open-access data, or use your own training data for a more refined classification 
model. 

You can add your own point data to the map, collected via a fieldwork campaign 
or by visually interpreting the imagery, and merge with the training data to improve 
a classification, or clean areas that need to be removed by drawing polygons and 
masking them in the classification. 

For the bathymetry, you can select different calibration/validation ratio 
approaches and test the optimum ratio of splitting to see how it influences the 
final bathymetry map. You can also add a smoothing filter to create a visually 
smoother image of coastal bathymetry. 

41.4 Conclusion 

Many coastal habitats, especially seagrass meadows, are dynamic ecosystems that 
change over time and can be lost through natural and anthropogenic causes. 

The power of Earth Engine lies in its cloud-based, lightning-fast, automated 
approach to workflows, especially its processing power. This process would take 
days when performed offline in traditional remote sensing software, especially over 
large areas. And the Earth Engine approach is not only fast but also consistent: 
The same method can be applied to images from different dates to assess habitat 
changes over time, both gain and loss. 

The availability of Planet imagery allows us to use a high-resolution prod-
uct. Natively, Earth Engine hosts the archives of Sentinel-2 and Landsat data. 
The Landsat archive spans from 1984 to the present, while Sentinel-2, a higher-
resolution product, is available from 2017 to today. All of this imagery can be used 
in the same workflow in order to map benthic habitats and monitor their changes 
over time, allowing us to understand the past of the coastal seascape and envision 
its future.
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