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• We introduce a high quality synthetic multimodal dataset (SMARS) for urban object classification and 3D change
detection, which to the best of our knowledge is the very first data set for the assessment of deep learning based
3D building change detection approaches.

• A novel workflow for synthetic 2D/3D multimodal multi-temporal datasets preparation in four steps: 3D virtual
city design, airborne stereo imagery simulation, DSM generation, and orthophoto/reference data preparation.

• A systematic evaluation of the feasibility of the SMARS dataset for building extraction, multi-class semantic
classification, and change detection. Besides single domain tests, we evaluate the performance of the datasets
on cross-domain tests. To the best of our knowledge, this represents the first attempt at performing building
extraction on synthetic and real cross-domain multi-model data.
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A B S T R A C T
Advances in remote sensing image processing techniques have further increased the demand
for annotated datasets. However, preparing annotated multi-temporal 2D/3D multimodal data
is especially challenging, both for the increased costs of the annotation step and the lack of
multimodal acquisitions available on the same area. We introduce the Simulated Multimodal
Aerial Remote Sensing (SMARS) dataset, a synthetic dataset aimed at the tasks of urban
semantic segmentation, change detection, and building extraction, along with a description of the
pipeline to generate them and the parameters required to set our rendering. Samples in the form
of orthorectified photos, digital surface models and ground truth for all the tasks are provided.
Unlike existing datasets, orthorectified images and digital surface models are derived from
synthetic images using photogrammetry, yielding more realistic simulations of the data. The
increased size of SMARS, compared to available datasets of this kind, facilitates both traditional
and deep learning algorithms. Reported experiments from state-of-the-art algorithms on SMARS
scenes yield satisfactory results, in line with our expectations. Both benefits of the SMARS
datasets and constraints imposed by its use are discussed. Specifically, building detection on
the SMARS-real Potsdam cross-domain test demonstrates the quality and the advantages of
proposed synthetic data generation workflow. SMARS will be published as an ISPRS benchmark
dataset by ISPRS Commission I (working groups 1, 3 and 8).

1. Introduction
Recent years have seen dramatic progress in the development of image processing algorithms. Deep neural

networks have outperformed traditional image processing approaches on most of the classical image understanding
and interpretation problems (Minaee et al., 2021; Xie et al., 2020) .

At the early stages of computer vision, high quality manually labeled data series were published as benchmark
datasets for computer vision tasks including classification and recognition, such as PASCAL Visual Object Classes
(VOC) 150 (Everingham et al., 2010), KITTI (Geiger et al., 2013), Microsoft Common Objects in Context (MS COCO)
(Lin et al., 2014), and Cityscapes (Cordts et al., 2016). These large-scale benchmark datasets have been then used to
develop and validate deep learning algorithms. The performance of these networks highly depends on the amount and
the quality of the available training data, which are expensive and sometimes difficult to acquire. The vast majority
of newly published papers are dealing with the “Training” phase, as the collection of training data represents often
the bottleneck for these applications (Zhou, 2018; Pourpanah et al., 2022). The performance of artificial intelligence
(AI) algorithms is severely limited whenever insufficient data with low number of samples, unbalanced classes, or
inaccurate annotations are available (Li et al., 2020; Xie et al., 2023).

Today, advanced neural network architectures are adopted in many other fields such as medical image analysis
and remote sensing. Many excellent approaches originally proposed in the computer vision community have been
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successfully applied and further developed for earth observation tasks, including building/road extraction, semantic
classification, and change detection (Zhu et al., 2017; Xie et al., 2020). Additional hindrances are added to the ones
listed above regarding the availability of training datasets for specific problems in remote sensing.

The nature of remote sensing data is often multimodal, as the different sensors usually provide complementary
information on a target on the ground, by measuring the backscattered radiation in different frequency ranges (including
visible, infrared, thermal emissions, and microwaves), and estimating ground and canopy height parameters yielding
3D information. Additionally, this information is seldom acquired in a single acquisition from the same observation
platform, therefore introducing variations in viewing angle, sensing geometry, acquisition time, atmospheric condi-
tions, and position of the source of radiation. The availability of different sources of information on the same area
is often beneficial for remote sensing applications: for example, the fusion of 2D/3D data is advantageous for image
classification (Ghamisi et al., 2016), building extraction (Hosseinpour et al., 2022), and change detection (Tian et al.,
2013; Qin et al., 2016). In addition to the limited availability of the corresponding 2D/3D training data, sufficient
variability in the data must be present in order to train a valid deep learning (DL) neural network. Furthermore,
annotating changes in a large scale remote sensing images is time-consuming and error-prone. To our knowledge,
there is no 2D/3D multimodal building change detection benchmark dataset available until now, which in part limits
the implementation of effective AI techniques for 3D change detection.

To this end, synthetic data have been proposed in order to fill this gap in a less expensive way. Currently, several
available studies highlight the advantages of using synthetic data for solving real-world problems, especially in the
fields of medicine and healthcare, for which real physical experiments are often linked to expensive retrieval costs
(Chen et al., 2021). Besides avoiding data acquisition problems, using synthetic data has an increased flexibility
when coping with data balancing, in particular for the studying of rare diseases (Chen et al., 2021). Several other
studies experience similar problems, such as the ones conducted in the field of physics research, where the process of
observing real data may be particularly long and expensive (Stoecklein et al., 2017; Li et al., 2021). Existing literature
in remote sensing use synthetic data in order to evaluate their algorithms or fuse them with real data, yielding an
efficient training for augmentation tasks. However, in addition to evaluating AI models, the synthetic data should be
suitable for integration with real data in order to solve application oriented problems (Nikolenko, 2021). Thus, the
domain gap between synthetic and real data should be limited.

Directly rendering of digital surface models (DSM) from a 3D environment retrieves highly accurate products as
presented in Fig. 1 (a), exhibiting sharp boundaries around the buildings without any occlusions or gaps. Such precise
DSM can be hardly achieved using real data with the currently available optical acquisition and stereo matching
techniques, as results obtained from photogrammetry pipeline are characterized by blurred boundaries and contain
outliers (Fig. 1 (b)). In order to reduce the gaps between rendered and real data, we aim at defining a novel approach
generating synthetic DSMs with the same limitations of real ones, as for the DSM reported in Fig. 1 (c), which more
closely resembles the level of detail in Fig. 1 (b) with respect to the generation using directly rendered samples.

Considering all the points above, we propose a novel synthetic photogrammetric data generation procedure with
special focus on the application of 2D/3D multimodal classification (or segmentation), building detection and 3D
change detection. We use this dataset as source and real remote sensing imagery as target for domain adaptation
experiments. The main contributions of our paper are the following:

• A workflow to produce synthetic data with higher level of realism.
• A 2D/3D multimodal remote sensing dataset, which we name the Simulated Multimodal Aerial Remote Sensing

(SMARS).
• A systematic evaluation of the performance of SMARS on building extraction, multi-class semantic classification

and change detection.
This paper is organised as follows. Section 2 presents an overview of the state of the art of synthetic data used in

remote sensing and the related studies in virtual city synthetic data generation. In section 3, the proposed synthetic
data generation, which include the multi-temporal stereo imagery simulation as well as the data process procedure is
introduced in detail. Section 4 illustrates the proposed method in details. In section 4, we further describe the details
of the generated SMARS dataset and the tasks to be addressed, including building extraction (section 5), multi-class
semantic segmentation (section 6) and building change detection (section 7). Moreover, extensive discussions are
presented in Section 8. Section 9 provides the conclusions.
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(a) Directly rendered samples (b) Real dataset samples-Potsdam (c) Synthetic samples with proposed approach

Figure 1: Quality differences between synthetic and real data. Elevation scale for the DSM is in meters.

2. State of the art
2.1. Existing real 2D/3D multimodal benchmark datasets

Due to the aforementioned reasons, the number of available 2D/3D multimodal benchmark datasets is limited. The
ISPRS Potsdam dataset1 is at the moment of writing the most popular public benchmark for 2D/3D semantic labeling,
and it is also widely used to test and validate building extraction methods (Xie et al., 2023). This dataset provides
airborne orthoimages and corresponding DSMs generated via dense image matching. The ground sampling distance of
both images and DSMs is 5 cm. The original training data have 24 pairs of tiles, each having a size of 6000×6000 pixels
(300 m×300 m). The ISPRS Vaihingen2 is another airborne benchmark dataset containing both 2D images and DSMs.
However, its limitation of having only near-infrared, red, and green bands restricts its applicability in mainstream
applications requiring RGB images, as the blue band is not available. DroneDeploy3 is a 2D/3D multimodal dataset
containing aerial scenes captured from drones. Its main limitation is that it provides only original irregular mosaics,
furthermore, it lacks a clear separation between training, validation, and test sets. Hence, it is not widely used in the
community.

On the subject of change detection, there are a number of several single modal benchmark datasets available (Caye
Daudt et al., 2018; Gupta et al., 2019; Caye Daudt et al., 2019; Shao et al., 2021). To the best of our knowledge, 3DCD
is currently the only benchmark that provides 2D/3D multimodal data suitable for evaluating deep learning algorithms
in remote sensing change detection (Coletta et al., 2022; Marsocci et al., 2023). Nonetheless, in this dataset, DSMs
are obtained by LiDAR sensors, whose acquisition dates as well as the Ground Sample Distance (GSD) differ from
the corresponding optical images. This may potentially affect their paired use in multimodal algorithms. Apart from
the voids in the DSM, the changes are not exclusively defined for buildings but also for other land cover changes. In
addition, the dataset only covers the urban centre of the city of Valladolid in Spain, and therefore is not suitable for
domain adaptation experiments.
2.2. Synthetic data in remote sensing

Curating real 2D/3D multimodal datasets requires valid data acquisition and processing, which is then compounded
by the time consuming and costly step of manual annotation. Therefore, the generation of synthetic data for remote
sensing applications is preferred whenever real-world data are not available or difficult to collect. Authors in Börner
et al. (2001) propose SENSOR (Software Environment for the Simulation of Optical Remote Sensing Systems) to
simulate hyperspectral images. Artificial orbit and attitude data are used in Schwind et al. (2012) to analyse the co-
registration errors between visible and near-infrared (VNIR) and short-wavelength infrared (SWIR) imagery for the
design of the EnMAP (Environmental Mapping and Analysis Program) satellite. Simulated SAR images are generated
in Tao et al. (2013) for change detection. Synthetic data have been explored in vegetation studies. Li and Strahler (1985)
proposed a geometric-optical forest canopy model to explain the variance of a pixel in low resolution images of forest
stands. The model represents conifers with Lambertian surfaces shaped as cones, which cast shadows on the ground.

Moreover, multi-temporal datasets are more costly to prepare and the annotation is more challenging with respect
to single images: the number of public change detection benchmarks is therefore rather limited, furthermore, most of
them are single modal data and some are characterized either by small size or a low ground sampling distance (Shi
et al., 2020). The described difficulties in curating the described multi-temporal datasets can be mitigated by relying

1https://www.isprs.org/education/benchmarks/UrbanSemLab/2d-sem-label-potsdam.aspx
2https://www.isprs.org/education/benchmarks/UrbanSemLab/2d-sem-label-vaihingen.aspx
3https://github.com/dronedeploy/dd-ml-segmentation-benchmark
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on synthetic data. For instance, Townshend et al. (1992) simulate a set of different mis-registrations degrees to find
out their impact on vegetation change detection. Simulated change detection datasets have been used in Almutairi and
Warner (2010) to compare state-of-the-art algorithms. The simulated data therein are rather simple with few shape
patterns and additional artificial noise. A real LiDAR point cloud is used in de Gélis et al. (2021) to generate one
Level of Detail 2 (LoD2) model as a pre-event dataset. By manually adding or removing buildings in the model, the
construction or demolition of buildings can thus be simulated. This results in a time-consuming process, and with
buildings as the only objects present in the 3D model, the results have a large domain gap with real urban 3D models.

In order to close the domain gap between simulated and real data, Hoeser and Kuenzer (2022) propose an artificial
data generation procedure by including expert knowledge in a highly structured manner to control the automatic image
and label generation, by employing an ontology in the process. However, with more complex background information,
urban change detection is more difficult to simulate and control.

Radiative transfer models have been explored to simulate remote sensing data. Recently, in order to analyse
vegetation behaviours, several synthetic data generation tools have been introduced based on the radiative transfer
model (Qi et al., 2019; Disney et al., 2006). As one of the most representative software for radiative transfer modeling,
the Discrete Anisotropic Radiative Transfer (DART) can accurately simulate 3D radiative budget and chlorophyll
fluorescence of vegetation (Gastellu-Etchegorry et al., 2015), as well as passive remote sensing and LiDAR signals of
natural and urban scenarios. It is capable of precisely simulating the vegetation reflectance in several wavelengths and
also works for dense forests with complex canopy structures (Janoutová et al., 2019). However, rendering more realistic
urban scenes using DART is quite challenging for inexperienced users due to its complex parameters requiring expert
knowledge in the relevant fields. In contrast, 3D rendering engines such as Blender or Unity are considerably easier to
use, offer more sophisticated rendering features, and support several formats of 3D models and materials (Richter et al.,
2016; Shah et al., 2018; Fabbri et al., 2021). Moreover, in order to construct a large urban scene, many detailed and
realistic 3D models for vegetation and buildings are needed. 3D rendering engines not only have more large-scale 3D
city models but can also edit those models while DART does not support editing, which poses difficulty in simulating
urban changes. In comparison, the 3D rendering engine is more advantageous in creating multi-temporal urban scenes
of large regions.
2.3. Virtual city synthetic data

Generating data from a virtual model is currently becoming more popular in computer vision due to the capabilities
of modeling software. However, the application of synthetic data is rather limited if the domain gap with the real data
is too large. A virtual model can contain anything from a small object to a city. For example, building models can
be used to create indoor based point clouds (Ma et al., 2020) or depth and semantics, as in Hypersim (Roberts et al.,
2021). Studies related to autonomous driving have also benefited from the developments of synthetic data creation.
A widely known example is the SYNTHIA dataset (Ros et al., 2016) that provides synthetic images of urban scenes
labeled for semantic segmentation. Such scenes are rendered from a virtual New York City 3D model with the Unity
game engine. The dataset includes segmentation annotations for 13 classes including pedestrians, cyclists, buildings,
and roads. Another approach is used by CARLA (Dosovitskiy et al., 2017), an open source simulator that supports the
training, prototyping, and validating of autonomous driving models. CARLA facilitates the data acquisition from street
view for the generation of segmentation and depth maps. Similarly, the ParallelEye dataset (Li et al., 2019) generates
images from the CityEngine software with depth and optical flow as part of the ground truth.

A similar setting can be considered for the simulation of aerial or satellite imagery. The Synthinel-1 dataset (Kong
et al., 2020), also based on CityEngine, targets the building/no-building classification from an airplane perspective. The
article also addresses the advantages of synthetic imagery by ablation studies. The VALID dataset (Chen et al., 2020),
on the other hand, focuses on panoptic segmentation and depth estimation over urban infrastructure. Furthermore,
the SyntCities dataset (Fuentes Reyes et al., 2022) provides semantics and disparity maps, making the data suitable
for stereo reconstruction. The STPLS3D dataset (Chen et al., 2022) provides point clouds, and semantic and instance
maps based on open geospatial data sources. Authors in Xiao et al. (2022) simulate LiDAR acquisition for an urban
environment and deliver the dataset as point clouds.

However, further applications of synthetic data are limited by the large differences in characteristics between real
and synthetic data. A remarkable example is the much higher quality of the DSM obtained from the virtual 3D models
in comparison with the one generated from photogrammetric matching. Edges are usually sharper in the simulated data,
and the occlusions are absent in the generated ground truth. In addition, images from real scenarios show imperfect
textures, light reflection, seasonal changes, the presence of temporary objects (cars, pedestrians, street advertisements,
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Figure 2: Basic description of the pipeline used to generate the dataset.

etc.), atmospheric effects, and other elements that cannot be easily modeled in software. Hence, the simulation is
mostly restricted to the geometry of the scene, textures, and camera properties. Still, the rendered images can visually
resemble real cases and help to compensate for the limits of real sensors (such as sparsity) and reduce the costs to
generate ground truth.

3. Methodology on synthetic data generation
To close the gap between synthetic data collection and remote sensing applications we combine two techniques,

airborne data collection from virtual city and photogrammetric stereo data preparation. In this section, we propose a
novel workflow to generate a 2D-3D multimodal dataset. A diagram to summarize it is shown in Fig. 2. It consists of
three parts: 3D virtual city design, imagery simulation, and data processing.
3.1. 3D virtual city design

In order to produce a realistic change scenario we used a 3D virtual city as a starting point to simulate the scene
growth process, instead of directly generating artificial images. We built the 3D scenes based on the CityEngine
software4, a suite facilitating the modelling of urban environments based on the computer-generated Architecture
(CGA) shape grammar language. The software was also used to develop the above-mentioned ParallelEye and
Synthinel-1 datasets (Li et al., 2019). CityEngine supports building a city model from land cover maps, such as Open
Street Map, or a manually designed base map. However, designing a virtual world with carefully customized features
would require relevant expert knowledge and would be time-consuming. Therefore, we selected two predefined city
models from ESRI and further refined them accordingly.

In this paper, we chose two typical European cities: Paris and Venice. Henceforth we refer to them as SParis and
SVenice, respectively. The selected city models have a variety of textures and architectures resembling the original
cities, as well as a large surface that allows the inclusion of a large number of buildings in the subsequent rendered
images. The buildings are defined in terms of roof type, roof angle (if any), height, number of floors, floor height,
and size of the parcel. In order to have a lifelike view, we further edited the 3D model of the cities by modifying the
streets in order to have a more realistic topography, as the original version has streets with the shape of letters. The
trees were replaced with textured ellipsoids instead of the original ones represented with a uniform color. Additionally,
some areas were manually corrected in order to ensure that any parcel in the area included urban content.

A large pool of textures has been used in the provided models, namely 219 for buildings (rooftops and facades) and
87 for vegetation. For the latter ones, we edited the default textures of the ellipsoids by creating a dense representation
of leaves in order to resemble canopies. While still limited with respect to the full variety of the real world, these
refinements helped produce a scene with sufficient variability.

As the dataset is mainly intended for change detection applications in urban areas, each city model was generated
with two versions simulating the city’s growth:

• A case where approximately 50% of the parcels are covered by buildings. This is considered the model before
changes happen and we refer to it as pre-model in the remainder of the paper.

4https://www.esri.com/en-us/arcgis/products/esri-cityengine/overview
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(a) Pre-model (b) Post-model (c) Change ground truth

Figure 3: Samples from the pre- and post-models after rendering with associated ground truth for change detection. The
pre-model has a lower building density and different illumination conditions. Black regions in the ground truth exhibit no
change, while gray indicates new buildings and white replaced ones, respectively.

• A case with approximately 70% of the parcels covered by buildings. Some areas defined previously as gardens
are replaced by constructions, while some buildings have been removed and substituted with green areas. This
model contains the changes to be detected, and is therefore named post-model.

In Fig. 3, we show samples for both the pre- and post-model, respectively 3(a) and 3(b). The central image exhibits
a higher number of buildings and less vegetation cover. Also, some of the original buildings have been replaced with
lawns or vegetation.

According to the requirements described above, we adapted a total of four city models (two cities, two epochs) and
exported all cases in the Wavefront (with extension .obj) format for further editing. The manipulation of the scenes in
CityEngine demands about 17GB of RAM memory.

Subsequently, we loaded the Wavefront files in Blender, an open source tool for modeling, simulation, and
rendering. We applied the BlenderProc pipeline (Denninger et al., 2020) to render the images. Our approach for the
rendering is based on the one described in SyntCities (Fuentes Reyes et al., 2022) and we generated for this case the
colored images (we refer henceforth to them as “optical”) and the semantic maps.

Within Blender we split the geometry of the scenes according to their textures, separating all the surfaces into
the required semantic labels. The available categories include: vegetation, streets, rooftops (mansard, gambrel, gable,
hip and flat styles), facades, grass, landmarks, cars, and background. We combined them into five typical land cover
classes used for urban mapping, including buildings (all rooftops, facades and landmarks), streets, high vegetation
(trees), grass (lawns) and others (cars, water, bare soil or background).

We simulate different illumination conditions by setting an artificial Sun in two specific positions for the pre-/after-
event models, reproducing two different times for data acquisition. The selected angles were 70° for elevation, and 217°
(pre-model) and 160° (post-model) for azimuth. The same conditions were applied to both cities. Finally, we added a
homogeneous plane under the ground level of each scene to avoid undefined regions (no value pixels) in the rendering
process, which is assigned to the “other” category. Without it, distance would be considered to be infinite if there is an
empty region in the objects. This plane guarantees a color and depth value for each rendered pixel.
3.2. Airborne stereo imagery simulation

SMARS is designed to resemble aerial imagery and the simulated camera is constrained by a stereo rig, which helps
to later generate a digital surface model (DSM). In this part, we provide more details on the simulated data acquisition
and camera parameters.

Firstly, the simulated camera is located 2km above the origin of the scenes. Since we used synthetic models that
are not georeferenced, the origin of the coordinate system assigned by City Engine is used by default. An arbitrary
point located at the center of the model and on the terrain level is taken as a reference for the rendering process.

In Fig. 4(a), we show the configuration of the stereo rig. In order to simulate the stereo imagery acquisition
procedure, two cameras are located at the same distance from the rig center with a baseline of 200m in all cases.
Both cameras follow the pinhole model and have the same focal length. As image resolution plays an essential role in
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Figure 4: Simulated stereo configuration. (a) Stereo rig, where the converge distance and baseline of the cameras have
been adapted to cover the same area on the ground. (b) The trajectory of the simulated camera above the scene. (c)
Overlapping between adjacent samples is 50% for both horizontal and vertical directions.

transfer learning, we aim to provide this image dataset in two GSDs, namely 30cm and 50cm. Following Eq. 1, we set
the focal length of the cameras to 234.37mm and 140.62mm, respectively.

𝑓 =
ℎ𝑒𝑖𝑔ℎ𝑡 ⋅ 𝑠𝑒𝑛𝑠𝑜𝑟_𝑤𝑖𝑑𝑡ℎ

𝑐𝑜𝑣𝑒𝑟𝑒𝑑_𝑎𝑟𝑒𝑎 (1)
where 𝑓 is the focal length, ℎ𝑒𝑖𝑔ℎ𝑡 = 2000m as described above, 𝑠𝑒𝑛𝑠𝑜𝑟_𝑤𝑖𝑑𝑡ℎ = 36mm for the simulated camera

and 𝑐𝑜𝑣𝑒𝑟𝑒𝑑_𝑎𝑟𝑒𝑎 = 1024 ∗ GSD, being 1024 the size in pixels of the output image. The converge distance is set to
2km (same as the simulated height) with an off-axis camera, which allows us to cover the same area on the ground from
two different points of view. This configuration is also modeled with the offset of the principal point in the intrinsic
matrix of the camera.

In Fig. 4(b) we illustrate the trajectory of the simulated camera above the scene. We rendered images at 100 positions
within a regular square grid, with strides set as 153.6m and 256m for 30cm and 50cm GSD, respectively. The center
of the grid is set to be close to one of the scenes, so most of the content is included. In order to simulate a real-world
airborne data acquisition campaign, the pair of stereo-cameras are moved from the lower-left to the upper-right corner
with a constant stride. The points belonging to the grid represent the location of the center of the stereo rig (see the
arrow with blue extremes). This means that the cameras are located symmetrically to the left and right side of each
point.

Overlapping between adjacent samples is set to 50% in both the horizontal and vertical directions of the grid. A
visual representation of the overlapping is given in Fig. 4(c), where the camera pairs along the simulated flight direction
are also included. The images are rendered with a size of 1024 × 1024 pixels.

After rendering, a semantic segmentation map to be used as ground truth (GT) is delivered with the categories
described previously (buildings, streets, vegetation, lawns and others). For the building extraction GT map, we combine
all categories except building to no-building, enabling binary semantic segmentation. With the pre-/post-event building
extraction GT maps, we calculate the building change detection map by taking only the building class for comparison.
Three change classes are included:

• No change: buildings or no-buildings have the same semantic label pre/post-event images.
• Construction: pixels labelled as building in the post event images are no-building in the pre-event images.
• Demolition: pixels labelled as building in the pre-event images are replaced by the no-building label.

The change detection ground truth is directly rendered from the 3D model with an orthographic view. Labels for the
semantic categories are also directly rendered from Blender, as BlenderProc generates a category for each object in
the scene. We assigned all geometric elements to the desired categories. The building masks are a simplified version
of the category maps considering a binary building/non-building case. For the change detection mask, building masks
are compared and labelled according to their difference. In this case, all generated ground truth is generated in the
rendering step, and therefore perfectly matches the original images. Due to the orthorectification process described
in subsection 3.4, the alignment will not be perfect as this simulates the quality obtained from a photogrammetric
pipeline. Results show that the alignment differences do not have a significant impact on the three evaluated tasks.
Fuentes Reyes et al.: Preprint submitted to Elsevier Page 7 of 34



ISPRS Journal of Photogrammetry and Remote Sensing

3.3. Stereo matching and DSM generation
Although very precise 3D point clouds and DSMs can be directly delivered with the rendering software, the quality

of these data for all cases will be higher than the real-world 3D point clouds generated by stereo matching techniques,
where many mismatching errors and occlusions occur. Thus, in this work we only take the synthetic stereo image pairs
and generate the orthophotos and 3D point clouds with a traditional approach. First, we assign a fake UTM projection
to all synthetic airborne stereo images, in order to enable the photogrammetric processing. Concretely, we assign the
tiles to the UTM zone 31N coordinate system (EPSG:32631), even though the simulated model does not match any
region on a real map, this area would match the city of Paris. Additionally, for the photogrammetric pipeline we enter
the camera extrinsic and intrinsic matrices, including focal length, principal points, and camera rotation and translation
parameters. The extrinsic and intrinsic parameters of the synthetic data are precise and there was no artificial noise
added. We assume that the deviation of the positional accuracy is negligible, as the relative accuracy of real-world
aerial images used for stereo matching is better than 0.2 pixels.

A DSM is generated from all tiles by using the CATENA pipeline (Krauß, 2014), which is used for multiple tasks
related to the processing of satellite imagery. The disparity estimation, which is the first step, is computed via Semi-
Global Matching (SGM) (Hirschmuller, 2008), an algorithm widely used for stereo matching due to its good balance
between accuracy and computational costs. SGM takes a rectified stereo image pair as input and estimates a disparity
map. We apply the implementation of SGM described in (d’Angelo and Reinartz, 2011), which takes satellite data as
input, and set the penalty parameters 𝑃1 = 400, 𝑃2 = 800 and the window size for the Census transform (Zabih and
Woodfill, 1994) to 7 × 9.

After the matching and the use of the camera parameters to determine the 3D location of each pixel, we retrieve a
georeferenced DSM for each stereo pair. We subsequently merge all the stereo pair DSMs by using the median of all
values belonging to the same location, resulting in one final DSM for each virtual city.

As a real DSM generation procedure, gaps are present due to matching failures or occlusions. We apply an inverse
distance weighted interpolation in order to fill the remaining holes (Bartier and Keller, 1996).
3.4. Orthophoto and reference data

The orthorectification process for the rendered optical tiles is implemented in a GPU as described in (Kurz et al.,
2012), considering as input the generated DSM, and the intrinsic and extrinsic parameters of the optical images. The
outputs are take into account occlusions by buildings and vegetation. Bilinear interpolation is used to resample the
orthorectified images to a given ground sampling distance.

We merge all the tiles into a single large image with the warp utility from the GDAL library (GDAL/OGR
contributors, 2022), having as a result a complete orthorectified optical image, corresponding to the DSMs at pixel
level.

4. Experimental design
In this section we describe some additional details of the generated SMARS dataset and the delimitation of the

regions used for training and testing in the deep learning algorithms for both cities. Additionally, we explain the tasks
to be addressed with our generated data to show the advantages and constraints of SMARS.
4.1. SParis and SVenice multimodal data structure

The pre- and post-event DSMs and orthophotos are generated using the workflow described in Section 3. All the
datasets are projected to the UTM zone 31N coordinate system and cropped in order to cover the same regions. Fig.
5 reports examples of the generated DSMs. Buildings appear well delimited and easy to identify in most cases, while
other elements such as streets or vegetation appear incomplete or blurred. There is a clear difference between the
models obtained using 30cm and 50cm GSD respectively, as the former exhibits sharper edges with individual trees
easy to identify, while the latter exhibits some blobs merging different objects. Despite some artifacts or the presence
of outliers, the DSMs still have a high quality in all cases due to their synthetic nature.

The final dataset splittings are summarized in the diagram below. We list all possible subsets but report the names
for only three of them for each city in order to simplify the diagram, with the remaining cases following the same
nomenclature. For each subset, we have available optical images, DSMs, semantic maps, and building masks for both
pre- and post-event scenarios. Additionally, we have building change detection masks for the difference between pre-
and post-images. All these cases are shown in Fig. 6.
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(a) DSM SParis 30cm (b) DSM SParis 50cm

(c) DSM SVenice 30cm (d) DSM SVenice 50cm

Figure 5: Example regions of the DSMs generated for SMARS besides the paired orthorectified images. All samples are
taken from the pre-event models. Elevation scale for the DSM is in meters.
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Figs. 7 and 8 illustrate the pre-event training, validation and test areas for SParis and SVenice, respectively. For
post-event data, the splitting in training, validation and test data follows the same process. The size of both SParis and
SVenice rasters with 30cm GSD is 5600 × 5600 pixels. For SParis (Fig. 7) 30% of the coverage is used for training
(marked in yellow as P1), 30% for validation (P2), and 40% for testing (P3). Training, validation and testing data are
marked in yellow as P1, P2, and P3, respectively. For SVenice (Fig. 8), 50% of the coverage is set as training as it
contains a large area of water, belonging to the class "others" (V1, marked in blue), while 15% is used for validation
(V2) and 35% (V3) for testing. The footprints of the images with a GSD of 50cm are larger with respect to the ones of
30cm, namely 4500 × 3560 pixels (SParis) and 5600 × 5600 pixels (SVenice). The splitting boundaries of the 50cm
datasets are the same as the ones in the 30cm datasets. In Fig. 7 and 8, P4/V4, P5/V5 and P6/V6 represent respectively
training, validation and testing areas for the 50cm datasets.

The released version of SMARS includes the above-mentioned rasters all in GeoTIFF format. Optical images are
stored in three Band (RGB) uint8 format, DSMs with float precision and ground truth maps/masks with discrete values.
The released version includes 9.0 GB of GeoTIFF data, covering the original rasters and split training, validation,
and test tiles. According to our splitting approach, each city_GSD data group consists of 27 tiles (6 pre-/post-event
optical image tiles, 6 pre-/post-event DSMs, 6 pre-/post-event building masks, 6 pre-/post-event semantic maps, and
3 pre-/post-event building change detection masks). With four city_GSD combinations, there are 108 tiles in total. To
make it easier for users to start with this data, a Python tool for patch cropping is included in the release version. The
default training patches in our work have a size of 512 × 512 pixels with 50% overlapping, but users can customize
Fuentes Reyes et al.: Preprint submitted to Elsevier Page 9 of 34
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Figure 6: Available information for each tile in pre and post-events scenarios. For each case, an optical image, a DSM and
semantic and building masks are included. For the change detection, the difference between the two events is used for the
ground truth mask. Scales are given as a reference for displayed information. The elevation scale for the DSM is in meters.

training and validation patches as required. In addition, the DSM rasters can be converted to point cloud formats with
another released Python tool, so users can use SMARS data with point cloud building extraction/semantic segmentation
networks directly.

We employ the pre-event version with a GSD of 30 cm in the building extraction and 5-class semantic segmentation
test design. In order to better visualize the testing results in this paper, the test region of each dataset is split into two
regions, I and II (Fig. 9).
4.2. Data quality evaluation design

The proposed SMARS dataset focuses on building extraction, semantic segmentation, and 3D change detection.
The building types and distributions of SParis and Venice are distinct and resemble those of the corresponding real
cities. In addition, the building blocks of Venice are often separated by water channels instead of roads. The distinct
features between the SParis and SVenice data result in large domain gaps for learning tasks, making SMARS a feasible
data source for domain adaptation tests.

We experiment with state-of-the-art deep learning neural networks on the SMARS dataset for three tasks: 1)
building extraction, 2) multi-class semantic segmentation, and 3) building change detection.

As buildings are dense in the scenes and resemble the architecture of real cities, the SMARS samples are an
adequate input for building extraction and multi-class semantic segmentation tasks. Several effective deep learning
approaches are available for these tasks. For the first two tasks, we work on two situations. The first is the single
domain test with the provided train/Val/Test data from each synthetic city separately. In addition, we perform synthetic
data cross-domain experiments by using SParis and SVenice separately for training, and test on the other model. Finally,
we evaluate the predictions of samples from real sensors in the building segmentation task, which represents the most
interesting experiment. In this case, we take samples from the Potsdam dataset for testing. We use as input either the
images or the point clouds, which are addressed by 2D and 3D approaches respectively. Aspects to be studied include
the correct detection and completeness of the buildings, as well as the transferability to previously unseen data.

Considering that the data are rendered with different semantic classes (buildings, streets, trees, lawns and others),
we assess the performance of different neural networks using both 2D and 3D data, relying respectively on the images
and their associated DSMs. Samples from both models have been generated with the same classes, enabling both
single and cross-domain strategies to be tested. As the scenes are based on two different architectures, we expect
some difficulties in the cross-domain case. Unfortunately, these experiments cannot be applied to real data due to the
incompatibility of the available classes. Apart from the usual metrics such as Jaccard score (intersection over union
(IoU)) and accuracy, we investigate the effect of the different nature of the data in relation to the obtained results.
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Figure 7: Layout of the SParis images. Yellow dotted lines represent the splitting of the 30cm resolution dataset (1.68 km
by 1.68 km). Blue solid lines represent the splitting of the 50cm resolution images (2.25 km by 1.78 km).

The third task, change detection, is a key aspect to evaluate as the virtual scenes are constructed in order to simulate
changes caused by city growth. The objective of this task is to localise the regions where the landscape has a significant
change, whether because of new constructions or demolitions of buildings. The quality of the processed DSM plays a
relevant role in the performance of this task, therefore we expect a difference in performance for the two cities, where
the heights and space between buildings are significantly different. A comprehensive analysis based on the results
highlights which approaches performed better on SMARS, and the approaches yielding a superior performance. As
there are no unanimously accepted deep-learning based 3D change detection approaches available, we apply machine
learning based approaches and are not able in this case to evaluate the transferability as in the previous tasks.

The following sections describe how the applied algorithms have been adapted for our experiments, the metrics to
assess the performance on the different tasks, and a discussion of the capabilities and constraints of our dataset.

5. Building extraction
To examine the similarities between the SParis and SVenice datasets, and the domain gaps between the subsets

of SMARS data and the real multimodal data in a deep learning context, we conduct building extraction experiments
using different combinations of training and testing data, as detailed below:

• SMARS-to-SMARS single domain test
– SParis→SParis: SParis used for training, SParis for testing
– SVenice→SVenice: SVenice used for training, SVenice for testing

• SMARS-to-SMARS cross domain test
– SParis→SVenice: SParis used for training, SVenice for testing
– SVenice→SParis: SVenice used for training, SParis for testing

• SMARS-to-real cross domain test
– SParis→Potsdam: SParis used for training, ISPRS Potsdam for testing
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Figure 8: Layout of the SVenice images. Yellow dotted lines represent the splitting of the 30cm resolution dataset (1.68 km
by 1.68 km). Blue solid lines represent the splitting of the 50cm resolution images (2.8 km by 2.8 km).

– Svenice→Potsdam: SVenice used for training, ISPRS Potsdam for testing
– Potsdam→Potsdam: ISPRS Potsdam used for training, ISPRS Potsdam for testing (reference)

In order to assess the building extraction task from optical images, we report results obtained by applying the state-
of-the-art Swin Transformer(Liu et al., 2021). We also employ the widely-used point cloud network SparseConvNet
(Graham et al., 2018) to investigate the domain gaps between DSMs. Point cloud networks are proven to have a
reasonable performance in urban scenes (Xie et al., 2020), even in the semantic segmentation task of photogrammetric
point clouds (Bachhofner et al., 2020) or DSMs (Xie et al., 2023). We downsample the resolution of both optical
imagery and DSM-derived point clouds from the Potsdam dataset from 30 cm from 5 cm in order to reduce the impact
of differences in spatial resolution on the results.
5.1. Single domain test: 2D data

In order to verify whether deep learning methods can be applied to the SMARS data for remote sensing tasks such
as building extraction from earth observation data, we train the Swin Transformer with the optical images of SParis
and SVenice separately, using the data split described in chapter 4.2, and test the models with the corresponding test
sets. Results are listed in Table 1, rows 1 and 3. The segmentation results are reported in Figs. 10 and 11 (a) and (b).
Within the same dataset, the building extraction IoUs of SParis and SVenice are above 95% and 92% respectively,
indicating very satisfactory results. We can conclude that the synthetic data can be used for remote sensing tasks with
deep learning approaches, yielding results similar to the ones obtained using real data.
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(a) Test regions, Pre-SParis-30cm,
0.67 km by 1.68 km

(b) Test regions, Pre-SVenice-30cm,
0.84 km by 1.18 km

Figure 9: The test regions of the 30 cm datasets.

5.2. Cross domain test: SMARS-SMARS 2D data
In order to investigate domain shifts between the two synthetic datasets, and how these affect in turn the downstream

task of building extraction, we test the Swin Transformer trained with one of the two sets on the other one, according
to the data split described in chapter 4.2. Results are presented in Table 1, rows 2 and 4. The segmentation results are
reported in Figs. 10 and 11 (c) and (d). With respect to the results presented in Section 5.1, the building IoU scores are
significantly degraded, from 95% and 92% to 57.37% and 44.59%, respectively. The decrease in performance can be
attributed to large domain shifts, as evidenced by the distinct architectural styles, street appearance and ground features
of the two scenes. The decrease in performance when training and testing data have distinct distributions can also be
observed in real remote sensing data.

Table 1
SMARS optical imagery building extraction results

Train Test Precision [%] Recall [%] F1 Score [%] IoU [%]
SParis SParis 97.27 98.38 97.82 95.73
SParis SVenice 65.62 81.89 72.86 57.30
SVenice SVenice 95.92 95.84 95.88 92.09
SVenice SParis 47.28 88.69 61.68 44.59

5.3. Cross domain test: SMARS-real 2D data
In order verify the suitability of employing a synthetic dataset to assess algorithms to be applied to real data,

we test our network trained with SMARS with the ISPRS Potsdam data (for brevity named Potsdam thereafter). In
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(a) SParis 2D→SParis 2D (I) (b) SParis 2D→SParis 2D (II)
Training set: SParis 2D

(c) SVenice 2D→SParis 2D (I) (d) SVenice 2D→SParis 2D (II)
Training set: SVenice 2D

Figure 10: The image building extraction results of SVenice: (a) and (b) Swin Transformer trained on SParis; (c) and (d)
Swin Transformer trained on SVenice. Legend: ■■■■■■■■■■■■■■■■■True Positive ■■■■■■■■■■■■■■■■■False Positive ■■■■■■■■■■■■■■■■■False Negative. True Negative is not
displayed.

addition, we apply the CIELAB color space transformation (He et al., 2021) to the SMARS 2D data in order to reduce
the domain gaps between the synthetic and real datasets. Adopting similar workflow and settings as in our previous
work (Li et al., 2022), we select 10 images from the Potsdam data to be used as reference, and transform the SParis
and SVenice data to the Potsdam data in the LAB color space (LAB), and then convert SParis and SVenice back to
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(a) SVenice 2D→SVenice 2D (I) (b) SVenice 2D→SVenice 2D (II)
Training set: SVenice 2D

(c) SParis 2D→SVenice 2D (I) (d) SParis 2D→SVenice 2D (II)
Training set: SParis 2D

Figure 11: The image building extraction results of SVenice: (a) and (b) Swin Transformer trained on SVenice; (c) and
(d) Swin Transformer trained on SParis. Legend: ■■■■■■■■■■■■■■■■■True Positive ■■■■■■■■■■■■■■■■■False Positive ■■■■■■■■■■■■■■■■■False Negative. True Negative is
not displayed.

RGB colorspace. Quantitative results are listed in Table 2. The result of Potsdam→Potsdam is listed in the last row for
reference. Surprisingly, the test results on Potsdam data yield better performance than the SParis/SVenice cross domain
experiments. This can be explained by the fact that the buildings in Potsdam are more similar to SParis than SVenice in
terms of their structure and appearance. The CIELAB transformation does not lead to consistent performance changes.
For the SParis trained model, the IoU score of building extraction in Potsdam dataset increases 4%, while for SVenice
trained model decreases over 3%. Another performance discrepancy is observed in the relationship between precision
and recall. For model trained on SParis, precision is significantly lower than recall, while the opposite is observed for
model trained on SVenice. Results of building extraction in Potsdam is shown in Fig. 12. In spite of being far from
perfect for the Potsdam dataset, the majority of buildings is correctly extracted, suggesting that simulated optical data
can be suited to train a neural network for building extraction and other tasks employing real earth observation data. To
further validate the suitability of the SMARS as training data for building extraction, we include the cross-domain test
results of Potsdam reported by Peng et al. (2022), which address the difficulties in cross-domain building extraction.
The results are shown in Table 2. Two real datasets, namely WHU (Ji et al., 2019) and MASS (Mnih, 2013) are used as
source domain data for training. Without any domain adaptation strategy (denoted w/o DA), the models trained with
SMARS significantly outperform those trained with WHU and MASS datasets notwithstanding that they are real data.
In the same work by Peng et al. (2022), a unsupervised domain adaptation method named FDANet was proposed, which
consist Wallis filter, adversarial learning and consistency regularization to tackle domain shift. Nevertheless, our model
trained with CIELAB-transformed-SParis data outperforms FDANet trained with MASS data, further demonstrating
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the potential of SMARS as training data. In addition, the result of intra-domain experiment that used Potsdam as
training data is listed in the last row of Table 2.

Table 2
2D cross-domain study, row 1-4: SMARS and ISPRS Potsdam as training and testing sets, respectively; row
5-8: WHU and MASS as training data, and Potsdam as testing data from Peng et al. (2022), where ’w/o DA’
denotes without domain adaptation and FDANet is described in chapter 5.3; the last row: Potsdam as training
and testing.

Train Test Precision [%] Recall [%] F1 Score [%] IoU [%]
SParis Potsdam 69.47 84.57 76.28 61.65
SParis (CIELAB) Potsdam 73.18 86.70 79.37 65.79
SVenice Potsdam 81.68 73.37 77.30 63.00
SVenice (CIELAB) Potsdam 78.28 71.44 74.68 59.59
WHU (w/o DA) Potsdam - - 68.83 52.47
WHU (FDANet) Potsdam - - 88.87 79.96
MASS (w/o DA) Potsdam - - 39.05 24.26
MASS (FDANet) Potsdam - - 78.63 64.78
Potsdam Potsdam 94.45 95.30 94.88 90.25

(a) SParis 2D→Potsdam 2D (b) CIELAB-SParis 2D→Potsdam 2D (c) Potsdam 2D→Potsdam 2D

(d) SVenice 2D→Potsdam 2D (e) CIELAB-SVenice 2D→Potsdam 2D (f) Zoom in view of the Potsdam test area
Figure 12: SMARS 2D→Potsdam results, trained respectively with SParis(a), SParis-CIELAB(b), SVenice(d), and SVenice-
CIELAB(e).Legend: ■■■■■■■■■■■■■■■■■True Positive ■■■■■■■■■■■■■■■■■False Positive ■■■■■■■■■■■■■■■■■False Negative. True Negative is not displayed. A detailed view
of the area misclassifed as buildings by all models is shown in (f). The area is highlighted in (a)-(e) with a white rectangle.
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5.4. Single domain test: 3D data
As mentioned above, we also employ the point cloud network SparseConvNet (Graham et al., 2018) as a reference

in order to examine the quality of the DSMs. The quantitative results of single-domain building extraction from DSM-
based point clouds are listed in Table 3, rows 1 and 3. The classification results are presented in Fig. 13 (a) and (b), and
Fig. 14 (a) and (b). The IoU scores of SParis→SParis and SVenice→SVenice are 95.16% and 91.03%, respectively,
which are slightly inferior to the results obtained by the Swin Transformer with the simulated optical imagery but still
satisfactory. Based on the evaluation metrics and visual quality, the synthetic data can be considered a valid substitute
or integration for the training of deep networks for the considered tasks, whenever sufficient annotated real earth
observation data are not available.
5.5. Cross domain test: SMARS-SMARS 3D data

Using a similar workflow as described in Section 5.2, we carry out experiments SParis→SVenice and SVenice→SParis
by integrating the DSM-based point clouds, in order to investigate domain shifts between the two synthetic DSMs.
Rows 2 and 4 of Table 3 list the quantitative results. Compared to the single-domain case, the score of each metric
decreases. In the experiment of SVenice→SParis, precision, F1, and IoU decrease 2.55%, 1.1%, and 2.07% compared
with the results of SParis→SParis, respectively. Such decreases in performance appear to be acceptable. According to
the qualitative results shown in Fig. 13 (c) and (d), the SparseConvNet model trained on the SVenice data correctly
covers all building objects. Compared with the building masks generated by the model of SParis→SParis, it contains
more false negative pixels on several building instances. For the SParis→SVenice case, precision, recall, F1, and IoU
decrease 11.61%, 12.28%, 11.95%, and 20.38% compared with the results of SVenice→SVenice, respectively. The
predicted building masks exhibit non-negligible noise (Fig. 14 (c) and (d)). Several pixels belonging to other classes
which are adjacent to buildings are here misclassified as buildings, with the same happening for some pixels belonging
to the water semantic class. This phenomenon can be explained by two factors. Firstly, the majority of buildings in
the SVenice dataset are smaller with respect to the ones contained in SParis. Consequently, the SparseConvNet model
trained on SParis fails at recognizing them. Secondly, the water class is not present in SParis. As a result, several flat
water areas in SVenice’s DSMs are more easily misidentified as rooftops by the point cloud building extraction network
trained on SParis data.

Table 3
SMARS building extraction using DSM-derived point clouds as the input.

Train Test Precision [%] Recall [%] F1 Score [%] IoU [%]
SParis SParis 97.74 97.29 97.52 95.16
SParis SVenice 86.13 85.01 85.57 74.78
SVenice SVenice 95.91 94.70 95.30 91.03
SVenice SParis 95.19 97.68 96.42 93.09

5.6. Cross domain test: SMARS-real 3D data
As illustrated by the qualitative results in Fig. 15, models trained with synthetic data achieve reasonable

performance on the ISPRS Potsdam dataset when inspected visually. Nevertheless, partial building structures, which
are seldom found in synthetic data, are often not detected, such as four quadrilateral building clusters in Fig. 15 (b). In
Fig. 15 (c), such errors appear considerably reduced. Table 4 shows that the IoU and F1 scores for SVenice→Potsdam
are 9.98% and 7.11% higher than those for SParis→Potsdam, respectively. This indicates that the SparseConvNet
trained on SVenice has better generalization capabilities on real data with respect to the model trained on SParis.
However, when compared to the reference results of Potsdam→Potsdam, both models trained on synthetic data still
yield a decreased performance. Results further show a good capability for transfer learning, especially for SVenice. This
could also be used as a step for pre-training neural networks, and supplementing it with a few additional samples for
fine-tuning might alleviate the domain gap. Additionally, including a larger variety of building models in the training
data might help to correctly identify some missing shapes.
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(a) SParis 3D→SParis 3D (I) (b) SParis 3D→SParis 3D (II)
Training set: SParis 3D

(c) SVenice 3D→SParis 3D (I) (d) SVenice 3D→SParis 3D (II)
Training set: SVenice 3D

Figure 13: Building extraction results of SParis test data using DSM-derived point clouds as the input: (a) and (b)
SparseConvNet trained on SParis; (c) and (d) SparseConvNet trained on SVenice. Legend: ■■■■■■■■■■■■■■■■■True Positive ■■■■■■■■■■■■■■■■■False
Positive ■■■■■■■■■■■■■■■■■False Negative. True Negative is not displayed.

6. Multi-class semantic segmentation
In order to assess the performance in semantic classes different from buildings, we carry out multi-class semantic

segmentation on the 2D optical and point cloud data, with both single- and cross-domain tests.
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(a) SVenice 3D→SVenice 3D (I) (b) SVenice 3D→SVenice 3D(II)
Training set: SVenice 3D

(c) SParis 3D→SVenice 3D (I) (d) SParis 3D→SVenice 3D (II)
Training set: SParis 3D

Figure 14: Building extraction results of SVenice test data using point clouds as the input: (a) and (b) SparseConvNet
trained with SVenice data. (c) and (d) SparseConvNet trained with SParis data. Legend: ■■■■■■■■■■■■■■■■■True Positive ■■■■■■■■■■■■■■■■■False Positive
■■■■■■■■■■■■■■■■■False Negative. True Negative is not displayed.

Table 4
3D cross-domain study, with SMARS and ISPRS Potsdam datasets as training and testing set, respectively.

Train Test Precision [%] Recall [%] F1 Score [%] IoU [%]
SParis Potsdam 67.60 89.50 77.02 62.63
SVenice Potsdam 80.58 88.00 84.13 72.61
Potsdam Potsdam 93.75 92.54 93.14 87.17

6.1. 2D multi-class semantic segmentation
The SwinTransformer is here trained on SParis and SVenice using all 5 semantic classes. Quantitative results are

listed in Table 5, while segmentation maps are reported in Fig. 16. For the model trained on SParis, all classes except
trees achieve IoU over 90% on the SParis test set; however, when tested with the SVenice test set, the performance
significantly decreases, with the exception of the trees class. This indicates a large domain gap between the two datasets,
especially regarding buildings, streets, lawns, and others. On the contrary, trees in both datasets have relatively uniform
appearance, thing which can explain the comparatively smaller performance degradation in the cross-domain setting. In
the SVenice→SVenice results, the lowest accuracy and IoU scores are associated to the class streets: probably, this can
be due to the small number of instances of the classstreets in SVenice, as well as to their different structure. Interestingly,
the lawns class appears to be the least affected in the SVenice→SParis experiment, while the exact opposite happens
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(a) Potsdam 3D→Potsdam 3D (b) SParis 3D→Potsdam 3D (c) SVenice 3D→Potsdam 3D
Figure 15: Building extraction results of ISPRS Potsdam data using DSM-derived point clouds as the input. (a)
SparseConvNet trained on ISPRS Potsdam. (b) SparseConvNet trained on SParis. (c) SparseConvNet trained on SVenice.
Legend: ■■■■■■■■■■■■■■■■■True Positive ■■■■■■■■■■■■■■■■■False Positive ■■■■■■■■■■■■■■■■■False Negative. True Negative is not displayed.

Table 5
Transferability study of SMARS optical images, 5 classes

Train Test Building Street Tree Lawns Other Mean

SParis SParis IoU[%] 96.07 96.80 85.49 92.97 92.70 92.81
Acc[%] 97.90 98.54 93.06 96.11 95.88 96.30

SParis SVenice IoU[%] 45.37 0.37 83.45 0.01 13.58 28.56
Acc[%] 72.80 0.66 92.62 0.02 29.84 39.19

SVenice SVenice IoU[%] 86.55 56.68 78.95 87.19 87.85 79.45
Acc[%] 94.87 64.92 86.97 94.84 93.43 87.01

SVenice SParis IoU[%] 15.67 10.16 54.06 66.73 17.41 32.81
Acc[%] 20.02 10.23 66.22 87.92 54.51 47.78

Table 6
Transferability study of SMARS DSM-derived point clouds, 5 class

Train Test Building Street Tree Lawns Other Mean

SParis SParis IoU[%] 94.85 90.00 78.66 46.39 47.48 71.48
Acc[%] 96.99 96.98 83.26 58.59 69.66 81.10

SParis SVenice IoU[%] 72.81 9.26 37.55 33.78 2.33 31.15
Acc[%] 83.85 48.23 54.55 44.23 2.77 46.73

SVenice SVenice IoU[%] 90.04 25.71 80.20 62.89 69.09 65.59
Acc[%] 97.54 38.64 87.45 83.26 76.15 76.61

SVenice SParis IoU[%] 93.19 4.54 75.30 39.45 4.07 43.31
Acc[%] 96.48 4.75 86.06 84.54 8.43 56.05

for the SVenice→SParis results. Fig. 17 (e) and (f) show the river (belonging to the others class) as being mostly
misclassified as street, due to the absence of water in the SParis dataset; meanwhile, the majority of streets and lawns
are misclassified as others, as their structure is different in the SParis dataset.
6.2. 3D multi-class semantic segmentation

In these experiments we train the model including SParis and SVenice DSMs with the described 5 semantic classes
using SparseConvNet. Table 6 reports a quantitative assessment of the results for SParis→SParis, SParis→SVenice,
SVenice→SVenice, and SVenice→SParis models. In the two experiments having the same source for training and
test data, namely SParis→SParis and SVenice→SVenice, SparseConvNet achieves a satisfactory performance for the
classes buildings and trees. SParis→SParis exhibits clearly superior results with respect to SVenice→SVenice for the
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(a) SParis ground truth (I) (b) SParis 2D→SParis 2D (I) (c) SVenice 2D→SParis 2D (I)

(d) SParis ground truth (II) (e) SParis 2D→SParis 2D (II) (f) SVenice 2D→SParis 2D (II)
Figure 16: Results of image semantic segmentation for SParis (5 classes). Legend: ■■■■■■■■■■■■■■■■■Buildings ■■■■■■■■■■■■■■■■■ Street ■■■■■■■■■■■■■■■■■Trees ■■■■■■■■■■■■■■■■■ Lawns
■■■■■■■■■■■■■■■■■Other

class streets. As mentioned, this is due to the limited number of samples for this class available for training in SVenice.
In the cross-domain experiment SParis→SVenice, the performance of each class decreases severely. Among the results
of SVenice→SParis, the IoU and accuracy scores for the class buildings are excellent, and comparable to the scores
achieved in SParis→SParis. This is in line with the results presented for SVenice→SParis building extraction in section
5.5, as SVenice features a wide variety of building sizes covering most of their variability for the respective class in
SParis data. The generalization capability of recognizing buildings is preserved in the 5-class semantic segmentation
point cloud model. The visual assessment of the results presented in Fig. 18 suggests that the model trained with
SVenice is not optimal to recognize streets in the DSMs of SParis. In Fig. 19, most of the areas covered by water are
classified as streets in SParis→SVenice. This is because SParis lacks training data for this class, as discussed in section
5.5.

7. Building change detection
In order to assess the feasibility of SMARS for 3D change detection applications, in this section change indicators

from both 2D and 3D data are extracted and evaluated. In addition, we present several state of the art change detection
approaches for comparison (Tian and Dezert, 2019).
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(a) SVenice ground truth (I) (b) SVenice ground truth (II)

(c) SVenice 2D→SVenice 2D (I) (d) SVenice 2D→Venice 2D (II)

(e) SParis 2D→SVenice 2D (I) (f) SParis 2D→SVenice 2D (II)
Figure 17: Results of image semantic segmentation for SVenice (5 classes). Legend: ■■■■■■■■■■■■■■■■■Buildings ■■■■■■■■■■■■■■■■■ Street ■■■■■■■■■■■■■■■■■Trees
■■■■■■■■■■■■■■■■■ Lawns ■■■■■■■■■■■■■■■■■Other

7.1. Robust height differences
As detailed in our previous work (Tian et al., 2013), the quality of the pre- and post-event DSMs can exhibit

relevant differences according to GSD, sensors characteristics, illumination conditions, stereo viewing angles and
other parameters of the multi-view images from which the DSMs are generated. Hence, methods based on pixel-
based subtraction do not in all cases deliver ideal results (Tian et al., 2013; Qin et al., 2016). Thus, robust distance
measurements yielding a refined height change indicator have been proposed. The main motivation of the experiments
reported in this section is assessing the differences between DSMs generated from synthetic and real data, along with
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(a) SParis ground truth (I) (b) SParis 3D→SParis 3D (I) (c) SVenice 3D→SParis 3D (I)

(d) SParis ground truth (II) (e) SParis 3D→SParis 3D (II) (f) SVenice 3D→SParis 3D (II)
Figure 18: 5-class semantic segmentation results of SParis test data using DSM-derived point clouds as the input. (a) and
(d) Ground truth. (b) and (c) SparseConvNet trained with SParis data. (e) and (f) SparseConvNet trained with SVenice
data. Legend: ■■■■■■■■■■■■■■■■■Buildings ■■■■■■■■■■■■■■■■■ Street ■■■■■■■■■■■■■■■■■Trees ■■■■■■■■■■■■■■■■■ Lawns ■■■■■■■■■■■■■■■■■Other

their impact on practical applications. We compare the robust height differences proposed in (Tian et al., 2013) (window
size set to 𝑤 = 5) to the use of direct height difference (considering only positive height changes). In addition, the pre-
and post-event images are “acquired” with similar settings by the virtual camera, such as GSD and different illumination
conditions, lowering the impact of the sources of errors when using methods based on direct subtraction of the DSMs.
Nevertheless, in Fig. 20, results obtained by applying robust height differences appear superior, as they exhibit reduced
noise in the building boundary regions.
7.2. Building change mask generation

In order to further assess the quality of the proposed data for 2D and 3D change detection applications, extended
experiments with different change detection approaches are summarized in this section. In this paper, we test direct
height differences with threshold values manually and automatically selected to generate positive building change
masks for the test regions. In addition, 2D change detection results are extracted and evaluated using the state of
art Interactively Reweighted Multivariate Alteration Detection (IR-MAD) (Nielsen, 2007). For the case of fusion-
based change detection approaches, we follow the method proposed in (Tian and Dezert, 2019), which employs the
decision fusion model to combine the 2D and 3D change indicators. Three decision criteria are considered, including
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(a) SVenice ground truth (I) (b) SVenice ground truth (II)

(c) SVenice 3D→SVenice 3D (I) (d) SVenice 3D→SVenice 3D (II)

(e) SParis 3D→SVenice 3D (I) (f) SParis 3D→SVenice 3D (II)
Figure 19: 5-class semantic segmentation results of SParis test data using DSM-derived point clouds as the input. (a) and
(d) Ground truth. (b) and (e) SparseConvNet trained with SVenice data. (c) and (f) SparseConvNet trained with SParis
data. Legend: ■■■■■■■■■■■■■■■■■Buildings ■■■■■■■■■■■■■■■■■ Street ■■■■■■■■■■■■■■■■■Trees ■■■■■■■■■■■■■■■■■ Lawns ■■■■■■■■■■■■■■■■■Other

Maximum of Belief (MaxBel), Maximum of Plausibility (MaxPl) and Maximum of Betting Probability (MaxBetP). In
order to calculate the Basis Belief Assignments (BBAs) of the concordance and discordance indices, two thresholds
are required. In our previous work (Tian and Dezert, 2019), we adopt an extension of Otsu thresholding to project
the change indicators to a sigmoid distribution. As here the training data are provided by SMARS, we use them to
automatically calculate the two thresholds for each change indicator, namely the mean value of the change indicators
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Figure 20: Positive height differences: (a) direct subtraction; (b) Robust height differences with (𝑤 = 5)

.

for each class (change (𝑇0), no-change(𝑇1)). We refer to this approach as automatic threshold values selection (AUTO),
and set 𝑇 = 𝑚𝑒𝑎𝑛(𝑇0, 𝑇1) for the height differences and IR-MAD, separately.

The performance of the difference change detection approaches is evaluated based on overall accuracy (OA), kappa
accuracy (KA) and IoU (Table. 7). Each synthetic image has two test regions, which are marked as AOI (I) and AOI
(II) in Table. 7, respectively. SParis appears to be an easier test region, featuring mainly high-rise and well-separated
buildings. In addition, the buildings are considerably higher than most of the trees, introducing a relevant increase in
height in the transitions from trees to buildings. Therefore, the direct height differences with automatic thresholding
approach (Hdiff (AUTO)) achieve the best accuracy according to the figures of merit listed in Table 7. However, a visual
assessment of Fig. 21 reveals that the decision fusion results present a reduced amount of false positives, especially
around building boundary regions. Further details are reported in Fig. 22. The best results are achieved by directly
comparing the two building masks derived from Section 5.5: we refer to this case as “Post-classification” in Table. 7.

(a) Height difference (b) DS fusion
Figure 21: 3D change detection results of SParis (I) generated by direct height difference (a) and decision fusion (b).
Legend: ■■■■■■■■■■■■■■■■■True Positive ■■■■■■■■■■■■■■■■■False Positive ■■■■■■■■■■■■■■■■■False Negative. True Negative is not displayed.

SVenice is a challenging test region for 3D change detection compared to SParis, as it features small-sized buildings
and narrow streets. In addition, the trees are sometimes taller than nearby residential buildings, resulting in negative
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Test Regions Methods AOI(I) AOI(II)
OA[%] KA[%] IoU[%] OA[%] KA[%] IoU[%]

SParis

HDiff>5m 97.83 90.85 85.36 97.91 90.12 84.00
Robust HDiff(AUTO) 98.41 92.84 88.24 98.49 92.34 87.25
Hdiff(AUTO) 98.45 93.22 88.87 98.49 92.55 87.63
IR-MAD (AUTO) 85.87 43.84 35.10 86.42 40.05 31.29
Decision Fusion-MaxBel 98.08 91.07 85.47 98.13 90.07 83.67
Decision Fusion-MaxPl 98.04 90.89 85.18 98.10 89.94 83.48
Decision Fusion-MaxBetP 98.09 91.10 85.51 98.14 90.16 83.82
Region- DS-MaxBel 91.46 67.15 56.29 91.54 62.50 50.66
Post-classification 98.86 94.99 91.64 98.78 93.95 89.83

SVenice

HDiff>5m 93.30 77.26 68.54 94.30 76.47 66.37
Robust HDiff(AUTO) 93.54 77.07 68.02 94.40 75.68 65.15
Hdiff(AUTO) 93.19 77.02 68.13 94.24 76.39 66.31
IR-MAD (AUTO) 85.90 36.26 27.27 87.36 32.74 24.19
Decision Fusion-MaxBel 93.38 75.84 66.36 94.39 75.01 64.21
Decision Fusion-MaxPl 93.39 75.84 66.36 94.36 74.81 63.98
Decision Fusion-MaxBetP 93.37 75.80 66.32 94.37 74.89 64.07
Region- DS-MaxBel 90.70 69.01 59.60 91.45 66.12 55.17
Post-classification 96.94 89.53 84.14 97.57 90.03 84.24

Table 7
Results of different change detection approaches on SParis and SVenice.

Figure 22: Comparison of results obtained for single buildings: (a) direct height differences (b) DS fusion. Legend: ■■■■■■■■■■■■■■■■■True
Positive ■■■■■■■■■■■■■■■■■False Positive ■■■■■■■■■■■■■■■■■False Negative. True Negative is not displayed.

.

height changes for newly constructed buildings. This rarely occurs in the SParis dataset (see in Fig. 22). Moreover,
the water class occupying around 5 % of each test region is not defined for this dataset. Differences between water
and other semantic classes are particularly evident in the synthesized optical images, which were simulated relying on
low-resolution satellite data. The 2D change detection results have an associated IoU of 27.27 % and 24.17% in the
two test regions, respectively, confirming the impact of differences in illumination conditions between the pre- and
post-event images on the final results. When applied on the SVenice data, robust height differences achieve slightly
higher accuracy with respect to fusion-based approaches. Nevertheless, Fig. 23 shows that both height differences and
DS fusion detect regions as false negatives, if a tall tree is replaced by a building in the post-image. Additionally, a
relevant number of new trees is detected as newly constructed buildings (highlighted in red in Fig. 23 ), as these match
both conditions of having an increased height and exhibiting changes in the spectrum of the optical data. In a similar way
to the experiments carried out on SParis, the differences in performance between the three decision approaches are not
obvious. Relying on the accurate 2D/3D multimodal building detection result of section 5.5, post-classification clearly
outperforms other approaches, achieving an IoU equal to 84.14 % and 84.24 % in the two test regions, respectively.
The second test region of SVenice is presented in Fig. 24 (b), in which most of the newly constructed buildings are
correctly identified.
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(a) Height difference (b) DS fusion
Figure 23: 3D change detection result for SVenice (I) generated by direct height difference (a) and decision fusion. Legend:
■■■■■■■■■■■■■■■■■True Positive ■■■■■■■■■■■■■■■■■False Positive ■■■■■■■■■■■■■■■■■False Negative. True Negative is not displayed.

In order to reduce false negatives for newly constructed buildings, we test region-based 3D change detection by
fusing the post-event building mask with the fusion-based change detection results. As all three DS fusion methods
yield similar results, we only report results obtained with Decision Fusion-MaxBel for the following region-based
change detection experiment. Buildings belonging to the post-event building mask are considered as newly constructed
if more than 30 % of their pixels belongs to the “building change” category in the pixel-based change detection results.
The performance of the region-based change detection approach is rather poor for both SParis and SVenice, as shown
in Table. 7. This can be explained by examining Fig. 24, where a relevant number of newly constructed buildings are
connected to the unchanged buildings in the virtually simulated environment. Therefore, a relevant number of both
false positives and negatives are introduced when averaging the change decisions in these regions.

(a) Region-based DS-MaxBel (b) Post-classification
Figure 24: 3D change detection result of SVenice-AOI2 relying on region-based approaches (a) and post-classification
results (b). Legend: ■■■■■■■■■■■■■■■■■ True Positive, ■■■■■■■■■■■■■■■■■ False Positive and ■■■■■■■■■■■■■■■■■ False Negative. True Negative is not displayed.

8. Discussion
This paper proposes a novel workflow for synthetic data generation filling the gaps in the available 2D/3D

multimodal data for building extraction, multi-class semantic segmentation and 3D change detection. Our data analysis
goes in two directions: 1) the feasibility of using SMARS to evaluate the efficiency of existing approaches for building
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extraction, multi-class semantic segmentation and building change detection and 2) the effects of the domain gap when
the models trained on our synthetic data are tested on real data.
8.1. Quality of the synthetic dataset

This subsection discusses the main advantages and disadvantages of the rendered images described in section 3. The
proposed SMARS dataset meets our expectations in most of the reported experiments. Nevertheless, it also presents
some limitations. Both will be discussed below for each of the available semantic categories in SMARS.
8.1.1. Buildings

The buildings generated by CityEngine exhibit good quality in terms of geometry, architectural appearance, and
textures. They can be favorably compared to models with LoD2 and LoD3, as some rooftops have additional features
such as chimneys. Moreover, the buildings resemble the expected distribution of a city in terms of size and arrangement
and contribute to creating realistic scenarios. Taking into account the options to manipulate the building properties, it
is easy to simulate the city growth as required for the change detection task. Furthermore, as buildings achieve a very
good reconstruction in the DSMs, they can be easily detected by the algorithms considered in this article.

Nonetheless, the pool of textures to generate the buildings is limited and might lead to overfitting in the learning
process. Besides, no construction sites are part of the dataset, as would be the case for real images; these regions
represent a challenge for change detection depending on the progress of the constructions. Another constraint is given
by the generation of mostly residential buildings, as facilities such as commercial buildings, parks, sports centers, or
transport stations are not included in our dataset.

In the experiments, we notice that the discrepancy in height between the two city models leads to errors for
prediction in the learning models, as the DSMs values have different ranges. With traditional approaches, the similarity
in height between trees and buildings can also increase the challenges of classification, especially when they are close
to each other. In the SMARS dataset, the building roofs are generally well visible and do not suffer from occlusion
problems as in real data, making the task of building extraction easier.
8.1.2. Street

A major difference between the two models is the street category. In SParis the streets match the common design
with sidewalks, concrete material, and broken and solid lines. Besides, streets in this model are wide and have a height
profile different from all other elements, with the exception of lawns.

SVenice is more difficult in this category. In the same way as the real city, the streets are designed for pedestrians,
and are therefore narrow, causing sidewalks to be absent and are not marked either by broken or solid lines. Additionally,
the width of the streets is comparable to the one of the multiple canals crossing the city. This problem is aggravated
by the similarities in terms of height between the “others” (where canals and sea are included) and street categories.
Because of that, we can notice in the semantic segmentation task that cross-domain experiments drop significantly in
performance for this category. For learning models trained with SParis, the canals of SVenice are considered streets
and the lawns are predicted as “others”. Likewise, for learning models trained with SVenice, the streets of SParis are
many times wrongly labeled as “others” and only a few streets are actually detected.

As width and height are within the expected ranges for streets, a suitable solution would be to enhance the available
categories in order to incorporate canals, squares, roundabouts, alleys, and other elements that could be confused with
roads.
8.1.3. Vegetation and lawns

Representation of shapes and structures of trees and bushes in 3D is a critical issue. A detailed representation
requires a complicated geometric definition leading to high computational costs. A common simplified case with only
two intersected vertical planes greatly reduces the memory requirements but exhibits poor visual quality in the models.
Due to the trade-off between memory and appearance, we used textured ellipsoids. This allows the inclusion of a large
number of trees and bushes in the virtual scenes. We include many textures, but these are limited to a specific number
of plant species.

Yet, the vegetation regions largely suffer from the domain gaps between synthetic and real data. Real scenes have no
simplified geometry (with the exception of man-trimmed trees) and cannot be easily modeled. Using only ellipsoids
makes the learning biased towards this shape, and cannot adequately lead to correct predictions of other types of
vegetation. Also, seasonal effects (such as leave colors, snow covering, or fallen leaves) are not considered.
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On top of that, the lawns category has been simplified too. Actual grass has a non-negligible height (even if this is
relatively small in comparison to the other objects), no uniform texture, and can include small vegetation such as low
bushes. For the simulated cities, the lawns are simplified by a flat area with grass-like texture, which appears realistic
enough in the orthophotos. Without the texture, the lawns would be similar to the roads or bare soil category, as the
height information of lawns is set close to 0.

In DART, trees are defined by tree species, various attributes of trunk and crown, and are simulated using turbid
voxels or isosceles triangles (Gastellu-Etchegorry et al., 2015). Tree crown shapes can be chosen from ellipsoidal,
ellipsoid-composed, truncated cone, trapezoid, and cylinder with truncated cone. In addition, branches and twigs can
be added. However, the tree modeling requires many manual input and is still not realistic as desired. Nevertheless,
there is still potential to improve the quality of the trees class by using existing detailed 3D tree models. For example, the
RAdiation transfer Model Intercomparison (RAMI) experiments derived detailed and realistic 3D models of various
tree species by in situ measurements. The 3D models have been exported to DART, and can be edited in Blender as
well. But those tree models do not include enough typical urban tree species to represent the urban tree scenario. For
the reasons described above, we did not adopt these accurate 3D tree models.
8.1.4. Water

Water is not an annotated category in our SMARS dataset. However, it is an important land cover type in the
SVenice scene. In the provided Venice city model of CityEngine, the water bodies are actually covered by a real low-
resolution satellite image, exhibiting shadows that might not correspond to the simulated sun conditions. In addition,
elements present in the water (such as boats and bridges) do not have an above ground height, so the captured multi-view
images do not present a meaningful disparity in the epipolar image pairs. Therefore, in the generated DSMs the surface
of water bodies is rather flat and smooth. In reality, the elements present in the water would have a height value larger
than zero.

On the other hand, the SParis model has no water, so these are absent in the ground truth for either city, an aspect
which can lead to errors in the semantic segmentation task, especially for cross domain experiments. It is particularly
complex for the algorithms to separate water from streets in the SVenice model, where the canals have similar contextual
features as the streets in SParis. The collection of a larger number of samples with labeled water coverage might help
solve this issue.

Finally, since we use an aerial photo as the source for the water areas, these do not change between the pre- and
post-models and remain also constant within the simulated flight campaigns. In reality, the waves and tides produce
an irregular surface, causing the matching algorithms to yield poor results. Usually, the DSM pipeline would fail to
reconstruct such regions, while our DSM has a constant value. As discussed above, a physical simulation of water
would lead to enhanced realism in the scenarios. Since our work focuses mainly on buildings, this is currently left out
of our studies.
8.2. Single domain test

In single-domain building extraction experiments, both optical image and point cloud methods produce satisfactory
results. As training and testing data share common features, very precise results are therefore derived for the task of
building segmentation. The optical images have slightly better performance concerning 3D point clouds, as the images
exhibit denser features in comparison while the point clouds have sparse representations.

Buildings in SParis and SVenice exhibit large variability in roof texture and their details, or the size and shape of
the buildings. As a result, the evaluation metrics show that building extraction is less complex for SParis with respect
to SVenice. The situation is more complex for the multi-class segmentation experiments. In SParis→SParis, the use
of optical images achieves a mean IoU above 90%, while information from the 3D point cloud underperforms, with a
mean IoU of 71%. The most problematic classes appear to be lawns and background classes. This suggests that point
cloud features alone are not sufficient to represent some of the classes. For the case of SVenice→SVenice, both 2D
and 3D methods exhibit relatively poor performance for the class street, as these are predominantly narrow pedestrian
walks, which can be easily confused visually with the stone-paved square, belonging to the class background (Fig.
9(b)). Similarly, point cloud features of streets are not discriminative enough to allow separating this semantic class
from the others. Different results are obtained for the class buildings: here, the 3D method can achieve satisfactory
results not only for building extraction but also for multi-class semantic segmentation, indicating a good ability of point
clouds to characterize features relating to man-made regular objects. However, it is worth noting that optical image
analysis still outperforms the 3D method, achieving slightly higher IoU scores in all single-domain test scenarios, except
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for SVenice→SVenice multi-class semantic segmentation. These differences are observed in the building extraction
experiments of SParis→SParis and SVenice→SVenice, as well as the multi-class semantic segmentation experiment
of SParis→SParis, with differences of 0.57%, 1.06%, and 1.22%, respectively. This is due to the reason that building
objects in DSMs are easily confused with other classes having similar heights by geometric features. In Fig.13 (b), an
evident false positives area is noticeable at the right border of the image, where several trees are incorrectly recognized
as buildings. In Fig.10 (b), no such error is present. In addition, due to limitations of the matching algorithms, some
building boundaries in DSMs are incomplete and missing a few pixels (Tian et al., 2013; d’Angelo and Reinartz, 2011),
leading to more false negatives in a 3D single-domain test when compared with optical image analysis.

The difference in performance between the binary and the multi-class segmentation lies partly in the optimization.
It is intrinsically more difficult to optimize a multi-class problem with respect to a binary one, which results in a longer
convergence time and less definite decision boundary. In addition, as the optimizers take into account the loss values
of all classes, the gradient for weight update is different from the binary building extraction experiment.

In conclusion, from the single domain experiments performed we do not observe particular differences from the
use of real multimodal data. Therefore, we can conclude that the SMARS dataset could be suitable as a training dataset
for multimodal remote sensing tasks. Compared with SParis data, SVenice dataset is more challenging.
8.3. Cross domain test

In the remote sensing field, domain gap or shift is a common challenge for deep learning models. Preparing labeled
datasets is normally costly and time-consuming, therefore many weakly and semi-supervised learning approaches are
proposed by utilizing existing benchmark datasets (Li et al., 2022). However, target and source domain datasets may
be different in terms of city styles, ground object types, seasonal changes, or characteristics of the acquiring sensors,
leading to widespread attention of domain adaptation in recent years (Tuia et al., 2016). The lack of benchmark datasets
hinders in-depth research in this field, especially for domain adaptation of the joint use of 2D/3D multimodal datasets.
The experiments show that the two synthetic data generated using the proposed approach, namely SParis and SVenice,
have clear domain gaps, and the results of 5-class semantic segmentation still have significant room for improvements
in both 2D and 3D experiments. For example, for the SParis→SVenice and SVenice→SParis scenarios, it is common
for streets to be confused with other classes.

For building extraction tasks, the 2D version is suitable for testing domain adaptation methods, while the 3D
version of the SParis→SVenice case can be further refined based on baseline methods. The synthetic→real workflow
is a challenge presenting wide opportunities for its exploration. Training with synthetic data and testing on real data
can significantly reduce the cost of annotating training samples. Likewise, training with real data and testing on
synthetic data for evaluating models can greatly reduce the cost of annotating testing samples, which typically require
higher accuracy. Furthermore, the reference data associated to the generated synthetic data is ensured to be free from
annotation errors. Therefore, this benchmark provides a starting point for the remote sensing community to investigate
such topics.

When using different baseline methods, 3D data are more robust to domain shifts for buildings with respect to
optical 2D images, while the opposite happens for single-domain tests. Point cloud networks, which are based on
geometric features, have better generalization abilities in building extraction tasks for unseen domains, as they are
not influenced by possible confusion between spectral features. For instance, in Fig. 16, the image network wrongly
recognizes several roads as buildings, as their colors and 2D geometry are similar, while such errors do not occur in the
results derived from the point cloud network. The point cloud network SparseConvNet outperforms the image network
Swin Transformer for the building class in the synthetic→real building extraction and 5-class semantic segmentation
cases. As illustrated in Fig. 12(f), a non-building object is misclassified as a building due to the lack of geometric
information, while the prediction from the point cloud network is correct.

Cross-domain results are similar to what would be expected to achieve using real data, demonstrating the feasibility
of the SMARS datasets to be integrated into practical applications employing real images. In this paper, no new domain
adaptation approach is proposed: we encourage other researchers to test their approaches on this dataset, or prepare
their own synthetic data with the proposed approach for their test regions of interest.
8.4. 3D building change detection

Recent years witnessed an increase in demand for accessible and high quality 3D dataset (Tian et al., 2013; Tian
and Dezert, 2019; Xie et al., 2020) . Their multi-temporal availability represents a desired feature enabling applications
to 3D change detection, where the accuracy of the results is increased by the provided information on targets height,
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complementary to the spectral information conveyed by optical earth observation data (Qin et al., 2016). Nevertheless,
the lack of available benchmark datasets of this kind makes the development of 3D change detection approaches
difficult, especially the ones relying on deep learning, as demonstrated by their scarcity in literature. The production
of data for 3D change detection presents several problems. On the one hand, large cities in developed countries have
limited changes, not sufficient to train a deep network (Tian et al., 2013). On the other hand, in developing countries
building changes are often confused with different categories of changes, such as construction of highways and train
stations, hindering their correct annotation. In addition, 2D/3D multimodal multi-temporal datasets are generally
expensive to acquire, and several research institutes collect new data in the frame of specific projects: therefore, they
can not easily disclose them as publicly available benchmarks.

This paper presents a novel workflow to generate synthetic data suitable for training classification algorithms for
3D change detection. The illumination conditions of the simulated optical images present relevant differences, making
this task non-trivial for algorithms relying solely on spectral changes. Pre- and post- event data are almost perfectly
co-registered, allowing the user to remove this source of error propagation in their change detection workflow, which
must be dealt with when using real data.

The introduced SMARS dataset presents aspects which may be improved in the future. Regarding the intrinsic
quality and rendering of the data, results show that DSMs exhibit sharp boundaries and a reduced number of occluded
areas with respect to typical real digital elevation models. Regarding the content of the scenes, in SParis most of the
building blocks have been extended or partially removed in the transition from the simulated pre- to the post- images,
and the changes are evenly distributed throughout the entire virtual city. This usually does not correspond to the pace
and distribution of urban pattern changes in the real world.

The reported experiments suggest that traditional machine learning approaches are not optimal at detecting building
changes relying on optical images only, as no elevation data are available. The use of high quality DSMs increases
the accuracy of the results: however, when using only the generated synthetic DSMs, changes in buildings are often
confused with changes in trees, keeping this task highly challenging. In this paper, the best change detection results
are obtained by employing both simulated optical data and their associated DSM, by directly comparing the pre- and
post-event building masks generated by multimodal co-learning approaches.

9. Conclusion
In this paper we introduce SMARS, a synthetic large and accurately annotated 2D/3D multi-temporal earth

observation dataset, as an effort to meet the demand for multimodal benchmark data suitable for change detection
applications in urban areas. In addition to 3D change detection, we provide orthorectified images, DSMs and
ground truth for semantic segmentation, along with a pipeline to generate similar synthetic images resembling the
characteristics of real aerial acquisitions, including their limitations. By modifying the scenes within the pipeline, it is
easy to set and adjust the changes between two simulated acquisition times, which is a difficult task when using real
data. As a result, the pipeline has the potential to create larger samples with high variability. As the main goal of this
paper is the generation of synthetic 2D/3D multimodal data as similar as possible to real data, deep-learning based 3D
change detection approaches are not discussed here.

The ground truth associated to the dataset is free from wrongly annotated labels or confusion between classes, being
generated during the rendering process. This aspect propagates its advantages to the change detection applications,
where a large number of modifications can be handled and are ensured to be correct in the change mask to be used
as reference. The quality of the presented synthetic data has been investigated in several experiments, which yielded
results similar to what would be expected using real data. The quality of SMARS data is high in terms of coregistration,
orthorectification and ground truth quality.

In addition to testing segmentation and change detection approaches, the presented synthetic data can be adapted
to train a valid building extraction or semantic segmentation model that can be applied to real datasets. For instance,
building extraction shows a good performance on the ISPRS Potsdam dataset, even without a fine-tuning step.
Considering the 3D case, most of the buildings are properly classified with sharp boundaries. However, land cover
classes not present in the synthetic data were not properly handled by the networks and lead to wrong classification.
In terms of multi-class semantic segmentation, we observed a good performance within the same domain, but this
decreased when using cross-domain datasets. Besides, it is not a trivial task to evaluate the transferability since the
semantic classes present are different in the considered datasets. Further reducing the domain gaps between real and
synthetic data, as well as increasing the available number of classes could help to overcome these difficulties. On the
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other hand, for the building semantic segmentation experiments, we observe good results as most of the classes have
been properly predicted, with the exception of building edges and vegetation for some cases. In general, the synthetic
data represent a feasible option for training neural networks for building detection, semantic segmentation, and change
detection tasks, in spite of the described constraints due to domain gaps.
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