IMPACT OF MODEL SIMPLIFICATIONS ON THE ANNUAL YIELD OF CSP SYSTEMS

Matthias Loevenich, German Aerospace Center (DLR), Institute of Solar Research SolarPACES 2022, Albuquerque, New Mexico

Solar Power & Chemical Energy Systems

Matthias Loevenich, DLR Institute of Solar Research, 2022-09-29

What is the best Approach to optimize CSP Systems?

Matthias Loevenich, DLR Institute of Solar Research, 2022-09-29

2

Outline

$$\begin{split} \min_{\mathbf{x}} F_{I}(\mathbf{x}) + \sum_{s \in S} w_{s} F_{II,s}^{*}(\mathbf{x}) \\ \text{s.t. } g_{I}(\mathbf{x}) \leq 0 \\ h_{I}(\mathbf{x}) = 0 \\ F_{II,s}^{*}(\mathbf{x}) = \min_{\mathbf{y}_{S}(\cdot)} F_{II,s}(\mathbf{x}, \mathbf{y}_{s}(\cdot)) = \int_{\mathcal{T}_{S}} \dot{F}_{II}(\mathbf{x}, \mathbf{y}_{s}(t), \mathbf{p}_{s}(t)) \, dt \\ \text{s.t. } y_{s}^{d}(t = 0) = y_{s,0}^{d} \\ \dot{y}_{s}^{d}(t) = f(\mathbf{x}, \mathbf{y}_{s}(t), \mathbf{p}_{s}(t)) \\ g_{II}(\mathbf{x}, \mathbf{y}_{s}(t), \mathbf{p}_{s}(t)) \leq 0 \\ h_{II}(\mathbf{x}, \mathbf{y}_{s}(t), \mathbf{p}_{s}(t)) = 0 \\ y_{s}(t) = [y_{s}^{d}(t), \ldots] \\ \end{split} \\ \end{split} \\ \end{split} \\ \end{split}$$

OPTIMIZATION OF CSP SYSTEMS

~ 4

, \$151}

\$2, ...

Matthias Loevenich, DLR Institute of Solar Research, 2022-09-29

w

Optimization of CSP Systems: A Coupled Optimization Problem

Annual Yield Assessment of CSP Systems

- annual yield assessment
 - typical operational year
 - time steps of 15 60 min
 - quasi-dynamic modeling
 - mass flow based approach
 - equation based and data driven models
 - discrete and continuous variables
 - non linear dependencies

- complex Mixed Integer Nonlinear Problem (MINLP)
- simplifications are necessary to solve the optimization problem efficiently

SolarPACES Guideline for bankable STE Yield Assessmen

Todays Topic: Model Simplifications

 investigate the influence of model simplifications on the typical operational year to interpret and tune the results of the optimization

CASE STUDIES AND MODELS

2.4

Matthias Loevenich, DLR Institute of Solar Research, 2022-09-29

Case Study: CSP Trough Plant for 45 MW constant Load

Case Study: Investigated Sites

Site	Annual DNI [kWh/m ²]	Annual GHI [kWh/m ²]	T _{amb} [°C]	φ _{amb} [%]
Cordoba (Spain)	2077	1700	19	62
Riyadh (Saudi Arabia)	2275	2240	26	33
Phoenix (USA)	2704	2119	23	32

Reference Model

- state of the art quasidynamic model
- mass flow based modeling approach
- following <u>SolarPACES</u> <u>Guideline for bankable</u> <u>STE Yield Assessment</u>
- 15 min time steps with adaptive time stepping
- solar driven operation fulfilling a load curve
- simulations performed with YACOP by DLR

Solar Field

- equation based
- no spatial discretization
- instationary energy balance with correction factors for heat up and cool down

Thermal Energy Storage

- equation based
- heat exchanger model using LMTD-method

Fluid Pump

equation based

Power Block

- data driven
- steady state points from EBSLION
- $T_{in}, \dot{m}_{in}, p_{in}, T_{amb}, p_{amb}, \phi_{amb}$
- instationary energy balance with correction factors for heat up and cool down

Model Simplifications Time Step and Energy Based Models

Model Simplifications Power Block Model

https://paintingvalley.com/sketches/desktop-computer-sketch-10.png

Impact of Time Step Size

larger time steps lead to a slight overestimation of annual electrical yield

- increase in time of operation due to larger time steps
- neglection of short radiation dips
- similar trend with and without TES

Impact of Energy Based Modeling

energy based modeling leads to an overestimation of annual electrical yield for models with TES

- overestimation of PB efficiency due to loss of exergy information in the PB
- higher PB operation time due to loss of exergy information in the storage
- underestimation of parasitics due to loss of control variables

Impact of Power Block Simplifications

electrical yield increases with degree of PB simplification

- ambient conditions and linearization have little impact
- constant PB efficiency leads to a significant increase

Impact of Power Block Simplifications

TES smoothes out impact of PB simplifications on electrical yield

- more operation close to design point due to larger solar field
- PB not designed for Phoenix

Classification of the Results

deviations in annual electrical yield do not exceed 4 %

 moderate value for annual yield assessment

20

Conclusion

impact of model simplifications investigated on exemplary CSP trough plant

- time step size
- mass flow based vs. energy based modeling
- power block model simplifications

investigated simplifications have only a moderate influence on the annual electrical yield (< 4%)

time steps of 60 min lead to an overestimation of around 1 % compared to 15 min

energy based modeling leads to an overestimation of up to 2 % for models with indirect thermal energy storage

influence of heat input on the power block performance should be considered in annual yield assessment models

Outlook

23

essentially, all models are wrong, but some are useful

George E. P. Box

Matthias Loevenich DLR Institute of Solar Research matthias.loevenich@dlr.de

THANK YOU FOR YOUR ATTENTION!

Impressum

Topic: Impact of Model Simplifications on the Annual Yield of CSP Systems Date: 2022-09-29 Occasion: SolarPACES Conference 2022, Albuquerque, New Mexico Author: Matthias Loevenich, PhD Student at DLR Institute of Solar Research Supervisor: Robert Pitz-Paal, Jürgen Dersch Institute: DLR Institute of Solar Research SolarPACES Banner from https://www.solarpaces-conference.org/ Credits: Solar Energy System Images by DLR SF STS Plots and data by DLR SF STS Cartoon Cite G. E. P. Box from https://freshspectrum.com/simulation Two-Stage Optimization picture from Langiu et al., COMANDO: A Next-Generation Open-Source Framework for Energy Systems Optimization, Computers and Chemical Engineering 2021 Cartoon Tower-PC from https://paintingvalley.com/sketches/desktop-computersketch-10.png