
Journal of Non-Newtonian Fluid Mechanics 322 (2023) 105133

A
0

A
F
a

b

A

K
L
O
G
F

1

e
i
s

c
𝑥
c
l
t
r
t
r
m
s
a
s

l
s
w
e
p

(

h
R

Contents lists available at ScienceDirect

Journal of Non-Newtonian Fluid Mechanics

journal homepage: www.elsevier.com/locate/jnnfm

n eigenvalue-free implementation of the log-conformation formulation
lorian Becker a,∗, Katharina Rauthmann a, Lutz Pauli b, Philipp Knechtges a

German Aerospace Center (DLR), Institute for Software Technology, High-Performance Computing, Cologne, Germany
MAGMA Gießereitechnologie GmbH, Aachen, Germany

R T I C L E I N F O

eywords:
og-conformation
ldroyd-B model
iesekus model
inite Volume Method

A B S T R A C T

The log-conformation formulation, although highly successful, was from the beginning formulated as a partial
differential equation that contains an, for PDEs unusual, eigenvalue decomposition of the unknown field. To
this day, most numerical implementations have been based on this or a similar eigenvalue decomposition, with
Knechtges et al. (2014) being the only notable exception for two-dimensional flows.

In this paper, we present an eigenvalue-free algorithm to compute the constitutive equation of the log-
conformation formulation that works for two- and three-dimensional flows. Therefore, we first prove that the
challenging terms in the constitutive equations are representable as a matrix function of a slightly modified
matrix of the log-conformation field. We give a proof of equivalence of this term to the more common log-
conformation formulations. Based on this formulation, we develop an eigenvalue-free algorithm to evaluate
this matrix function. The resulting full formulation is first discretized using a finite volume method, and then
tested on the confined cylinder and sedimenting sphere benchmarks.
. Introduction

Since its inception [1], the log-conformation formulation undoubt-
dly has been a huge success. It had a considerable impact on attack-
ng the High Weissenberg Number Problem (HWNP) that had riddled
imulation results the decades before.

The general idea of the log-conformation formulation is simple: The
onformation tensor 𝐂(𝑥, 𝑡) ∈ R𝑑×𝑑 , which, for a given instant of space
∈ R𝑑 and time 𝑡, essentially encodes a macroscopically averaged

ovariance of the microscopic configuration, is replaced by its matrix
ogarithm Ψ such that the conformation tensor can be recovered by
he matrix exponential 𝐂 = expΨ. The initial motivation was to better
esolve exponential stress profiles. However, another important fact is
hat the matrix exponential function ensures that 𝐂 stays a symmet-
ic positive definite matrix; a property all non-degenerate covariance
atrices share. In fact, it was already known before [2] that a sub-

tantial class of macroscopic models respect this microscopic property
lso in the macroscopic equations, and the divergence of numerical
imulations quite often coincided with the loss of this property.

This introduction, so far, suggests that the log-conformation formu-
ation is a rather technical trick to enforce positivity, but in order to
hed more light on the failure mechanism of numerical simulations,
e want to also highlight the fact that Ψ naturally appears in the free
nergy density. E.g., in the Oldroyd-B model or Giesekus model with
olymeric viscosity 𝜇𝑃 and relaxation time 𝜆, it has been known for

∗ Corresponding author.
E-mail addresses: f.becker@dlr.de (F. Becker), katharina.rauthmann@dlr.de (K. Rauthmann), l.pauli@magmasoft.de (L. Pauli), philipp.knechtges@dlr.de

P. Knechtges).

quite some time [3–6], that the free energy density of the polymeric
part 𝑃 is given by 𝑃 = 𝜇𝑃 ∕(2𝜆) (tr(𝐂) − log det 𝐂 − 𝑑). Acknowledging
that log det 𝐂 = tr log𝐂 this can be rewritten in Ψ

𝑃 =
𝜇𝑃
2𝜆

tr
(

𝑒Ψ −Ψ − 𝟏
)

. (1)

The implications of this statement are quite remarkable, since the
second law of thermodynamics states that the free energy in total and
in absence of external forces has to be non-increasing, which thus puts
severe bounds on Ψ. At best, any reasonable numerical simulation
should respect this dissipative nature of the free energy, and in the light
of this insight it does not seem too unexpected that it is of course easier
to construct such a dissipative scheme in Ψ than in 𝐂.

However, even potentially violating this physical principle does not
directly explain the failure of numerical simulations. That the free en-
ergy relates to the stability of the numerical schemes is mostly an indi-
cation from the known mathematical existence results in the discretized
setting [7–10]. They all use the free energy to prove existence, and it
is thus not unreasonable to conclude that the free-energy-dissipative
nature of a numerical scheme and the existence of a numerical solution
essentially appear as two sides of the same medal. It is this insight that
brings us to the conclusion that the log-conformation formulation has,
as far as the fully nonlinear numerical schemes are concerned, solved
the HWNP.
vailable online 12 October 2023
377-0257/© 2023 The Author(s). Published by Elsevier B.V. This is an open access a

ttps://doi.org/10.1016/j.jnnfm.2023.105133
eceived 18 August 2023; Received in revised form 9 October 2023; Accepted 10 O
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

ctober 2023

https://www.elsevier.com/locate/jnnfm
http://www.elsevier.com/locate/jnnfm
mailto:f.becker@dlr.de
mailto:katharina.rauthmann@dlr.de
mailto:l.pauli@magmasoft.de
mailto:philipp.knechtges@dlr.de
https://doi.org/10.1016/j.jnnfm.2023.105133
https://doi.org/10.1016/j.jnnfm.2023.105133
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnnfm.2023.105133&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Journal of Non-Newtonian Fluid Mechanics 322 (2023) 105133F. Becker et al.

t

t
a
l
a
0

w

𝐀

𝑓

𝑓

Nonetheless, all these advantages have a drawback: the resulting
constitutive equation as formulated in Ψ becomes much more complex.
Beginning from the first log-conformation formulation, almost all new
constitutive equations in Ψ made use of an eigenvalue decomposition
of Ψ. The latter is highly unusual for a partial differential equation
in the sense that the new equation contains an eigenvalue decompo-
sition of the unknown degrees of freedom. Two notable exceptions
to this were [11], which introduced an eigenvalue-free formulation
in two-dimensions, and [12], which substituted the eigenvalue-based
terms by a Cauchy-type integral in the three-dimensional setting. How-
ever, [12] still relied on eigenvalues for the actual numerical com-
putation, since Cauchy integrals are known to be prone to numerical
cancellation issues. With this paper we will bridge the gap, and pro-
vide an eigenvalue-free implementation also for the three-dimensional
setting.

In order to derive this new algorithm, we will use a formulation of
the constitutive equation that was introduced in [10]. Since we do not
want to derive a constitutive equation from first principles, as it was
done in [10], and for the sake of brevity, we rather make the connection
to the more popular log-conformation formulations in Section 2. There
it will be shown that all these log-conformation formulations are equal
in perfect arithmetic.

Given this new formulation, we will, in Section 3, derive an al-
gorithm that allows for the eigenvalue-free numerical evaluation of
this term. This algorithm is in principle not bound to a particular
discretization scheme, and thus suitable for either finite element or
finite volume discretizations.

In Section 4, we then subsequently introduce shortly the finite
volume aspects of the numerical scheme we chose to conduct our exper-
iments in. Our implementation is based on the RheoTool software [13],
and since our reformulation is independent of the actual discretization
of differential operators, we keep the changes minimal. Therefore, we
will also not discuss matters of stable discretization of the incom-
pressible Navier–Stokes equations using the finite volume method, and
rather refer to [14]. Furthermore, we also want to point the interested
reader to the review paper [15] and the references therein for a broader
picture on the simulation of viscoelastic fluid flows.

In Section 5, we present two benchmarks: the confined cylinder and
the sedimenting sphere. Both benchmarks consider fluid flow around
an obstacle, a cylinder and a sphere, respectively. Furthermore, drag
coefficient values are computed and compared to results from selected
publications.

At last, we also want, for the sake of completeness, mention that
other schemes than the log-conformation formulation have been pro-
posed and successfully employed to enforce the positive-definiteness
of 𝐂. Most notably are the square-root-based approach in [16] or the
Cholesky-type decomposition in [17], as well as the more recently
introduced contravariant deformation tensor approach [18].

2. Theory of log-conformation formulations

Over the course of the years there have been many different log-
conformation formulations, which in perfect arithmetic all yield the
same result. Starting point is a constitutive equation of the symmetric
conformation tensor 𝐂

𝜕𝑡𝐂 + (𝐮 ⋅ ∇)𝐂 − ∇𝐮𝐂 − 𝐂∇𝐮𝑇 = −𝑃 (𝐂) . (2)

Here we have chosen the convention that [∇𝐮]𝑖𝑗 = 𝜕𝑖𝑢𝑗 is the Jacobian
of the velocity field 𝐮, such that the left-hand side of the equation
corresponds to the upper-convected derivative of the conformation
tensor. 𝑃 is in full generality a function of 𝐂 that maps 𝐂 to another
symmetric matrix that commutes with 𝐂, i.e., 𝑃 (𝐂)𝐂 = 𝐂𝑃 (𝐂). Com-
mon choices, that are relevant for later sections of this paper, are the
Oldroyd-B model 𝑃 (𝐂) = 1

𝜆 (𝐂 − 𝟏) with a relaxation time 𝜆, as well as
he Giesekus model 𝑃 (𝐂) = 1

𝜆 (𝟏 + 𝛼 (𝐂 − 𝟏)) (𝐂 − 𝟏) with an additional
mobility parameter 𝛼.
2

The log-conformation formulation now replaces 𝐂 by an auxiliary
symmetric tensor Ψ such that the two relate via the matrix exponential
function 𝐂 = exp(Ψ). As stated in the introduction, the replacement has
he advantage that 𝐂 stays positive definite. However, this necessitates
new constitutive equation for Ψ that replaces Eq. (2). In the formu-

ation that will be used throughout this paper, this equation is stated
s
= 𝜕𝑡Ψ + (𝐮 ⋅ ∇)Ψ +Ψ𝜔(𝐮) − 𝜔(𝐮)Ψ

−2 𝑓 (adΨ) 𝜖(𝐮) + 𝑃 (𝑒Ψ)𝑒−Ψ ,
(3)

here 𝜔(𝐮) ∶= (∇𝐮 − ∇𝐮𝑇)∕2 is the vorticity tensor and 𝜖(𝐮) ∶=
(∇𝐮+∇𝐮𝑇)∕2 is the strain tensor. The most important part, however, is
𝑓 (adΨ) 𝜖(𝐮), for which different formulations and numerical algorithms
exist. Note that this term distinguishes the different log-conformation
formulations, which in perfect arithmetic all yield the same numerical
results.

The formulation chosen here is in full generality proven to be
equal to the original conformation equation (2) in [10, Theorem A.42].
We will refrain here from an exposition that shows this equivalence
from first principles and in full generality. Instead, we explain our
formulation first by defining 𝑓 (adΨ) 𝜖(𝐮) properly, and then show
the equivalence of the different log-conformation formulation to this
formulation in a second step. Those already familiar with one of the
other log-conformation formulations should thus more easily grasp the
formulation in Eq. (3).

For the definition, we first introduce some terminology: Given two
square matrices 𝐀,𝐁 ∈ R𝑑×𝑑 , we define the commutator [𝐀,𝐁] =
𝐁 − 𝐁𝐀. Then, the adjoint operator ad𝐀 ∶ R𝑑×𝑑 → R𝑑×𝑑 is defined

as the linear operator that maps any matrix 𝐁 to [𝐀,𝐁], i.e.,

ad𝐀 (𝐁) ∶= [𝐀,𝐁] .

The important point to note here, which will become crucial for our
algorithm, is that ad𝐀 is a linear operator, i.e., a homomorphism from
a vector space R𝑑×𝑑 to the same vector space R𝑑×𝑑 . As such, it is in
linear algebra terms representable as a matrix: There exists a matrix 𝐌
in R𝑑2×𝑑2 such that

ad𝐀 (𝐁) = 𝐌𝐛̃ ,

where 𝐛̃ is just a reshaping of the matrix 𝐁 to a vector in R𝑑2 , and the
product between 𝐌 and 𝐛̃ is the usual matrix vector product. To make
this more explicit and less abstract, e.g., in the 𝑑 = 2 case we could
write 𝐃 = ad𝐀 (𝐁) = 𝐀𝐁 − 𝐁𝐀 as

⎛

⎜

⎜

⎜

⎜

⎝

𝐷11
𝐷12
𝐷21
𝐷22

⎞

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎝

0 −𝐴21 𝐴12 0
−𝐴12 𝐴11 − 𝐴22 0 𝐴12
𝐴21 0 𝐴22 − 𝐴11 −𝐴21
0 𝐴21 −𝐴12 0

⎞

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎝

𝐵11
𝐵12
𝐵21
𝐵22

⎞

⎟

⎟

⎟

⎟

⎠

.

For the sake of brevity, and since it will not be used for the actual
algorithm, we skip the related formula for 𝑑 = 3. For the rest of the
paper 𝑑 will be fixed to 𝑑 = 3.

Hence, for a given instant of space 𝑥 and time 𝑡, the operation
adΨ (𝜖(𝐮)) can be thought of as a matrix–vector multiplication of a ma-
trix R9×9 and a vector R9 for the three-dimensional case. In the follow-
ing, as is customary for linear operators and especially matrix–vector
multiplications, we will omit the parentheses around the argument and
just write adΨ 𝜖(𝐮).

Lastly, we define 𝑓 (adΨ) as the application of the function

(𝑥) =
𝑥∕2

tanh(𝑥∕2)
(4)

to the 9 × 9-dimensional matrix that represents adΨ.
To summarize: For each instant of space and time, we think of

(adΨ) 𝜖(𝐮) as the function 𝑓 applied to a 9 × 9-matrix representation
of adΨ, and the result being multiplied with a 9-vector representation
of 𝜖(𝐮).

Journal of Non-Newtonian Fluid Mechanics 322 (2023) 105133F. Becker et al.

w

𝑓

w
a
c
u
f

a

U
E

Ψ

F

i
e

Ψ

S
a

Ω

w
t
T
i
t
e

3

f
e
a

r

This is already, modulo several optimizations for symmetric ma-
trices, the gist of the Algorithm 1 in the following section: We will
evaluate this function 𝑓 of a matrix that represents adΨ without the
need to do an eigenvalue decomposition of Ψ.

This brings us to the second part of this section: The question how
previous log-conformation formulations have evaluated this term.

A straightforward way is using the Taylor expansion of 𝑓 , which is
given by

𝑓 (𝑥) =
∞
∑

𝑛=0

𝐵2𝑛
(2𝑛)!

𝑥2𝑛 , (5)

here 𝐵2𝑛 are the even Bernoulli numbers. Substituting 𝑥 by adΨ yields

(adΨ) 𝜖(𝐮) =
∞
∑

𝑛=0

𝐵2𝑛
(2𝑛)!

ad2𝑛 Ψ 𝜖(𝐮)

=
∞
∑

𝑛=0

𝐵2𝑛
(2𝑛)!

[Ψ, [Ψ, [… , [Ψ
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
2𝑛 commutators

, 𝜖(𝐮)]…] .
(6)

This formulation was first proven in [11, Theorem 1]. However, as it
was noted in [11], this formulation alone is for practical numerical
simulations not directly usable, since 𝑓 (𝑥) has singularities at ±2𝜋𝑖,
which limits the convergence radius of the Taylor expansion.

To make a connection with the eigenvalue-based formulations, we
introduce the eigenvalue decomposition of Ψ

Ψ = 𝐎
⎛

⎜

⎜

⎝

𝜆1
𝜆2

𝜆3

⎞

⎟

⎟

⎠

𝐎𝑇 , (7)

ith 𝐎 =
(

𝐞1, 𝐞2, 𝐞3
)

being an orthogonal matrix. 𝜆𝑖 are the eigenvalues
nd 𝐞𝑖 the corresponding eigenvectors. For the following, it is also
ustomary to introduce the projection operators 𝐏𝑖 = 𝐞𝑖𝐞𝑇𝑖 , which allows
s to state the decomposition in the form Ψ =

∑

𝑖 𝜆𝑖𝐏𝑖. Furthermore, the
act 𝐎𝐎𝑇 = 𝟏 yields 𝟏 =

∑

𝑖 𝐏𝑖.
In combination, we can thus state

dΨ 𝜖(𝐮) = Ψ𝜖(𝐮) − 𝜖(𝐮)Ψ

=
∑

𝑖,𝑗
(𝜆𝑖 − 𝜆𝑗)𝐏𝑖𝜖(𝐮)𝐏𝑗 .

Furthermore, it is not difficult to see by algebraic manipulations that
this can be generalized to any polynomial 𝑝

𝑝(adΨ) 𝜖(𝐮) =
∑

𝑖,𝑗
𝑝(𝜆𝑖 − 𝜆𝑗)𝐏𝑖𝜖(𝐮)𝐏𝑗 .

It is now mostly an application of the Stone–Weierstrass theorem
that this not only holds for polynomials, but also for the continuous
function 𝑓

𝑓 (adΨ) 𝜖(𝐮) =
∑

𝑖,𝑗
𝑓 (𝜆𝑖 − 𝜆𝑗)𝐏𝑖𝜖(𝐮)𝐏𝑗 . (8)

Eq. (8) is the formulation as it was used for numerical evaluation
in [10,12,19], and is in some sense closest to what was used in [20].

To see that the more popular eigenvalue-based formulations are
just variations of this formulation, we also need to incorporate the
rotational term
Ψ𝜔(𝐮) − 𝜔(𝐮)Ψ

=
∑

𝑖,𝑗
(𝜆𝑖 − 𝜆𝑗)

𝑒𝜆𝑖 − 𝑒𝜆𝑗

𝑒𝜆𝑖 − 𝑒𝜆𝑗
𝐏𝑖

∇𝐮 − ∇𝐮𝑇
2

𝐏𝑗 .

sing tanh((𝜆𝑖 − 𝜆𝑗)∕2) = (𝑒𝜆𝑖 − 𝑒𝜆𝑗)∕(𝑒𝜆𝑖 + 𝑒𝜆𝑗) we can combine this with
q. (8) to get

𝜔(𝐮) − 𝜔(𝐮)Ψ − 2 𝑓 (adΨ) 𝜖(𝐮)

= −
∑ 𝜆𝑖 − 𝜆𝑗

𝜆 𝜆𝑗
𝐏𝑖

(

𝑒𝜆𝑗∇𝐮 + 𝑒𝜆𝑖∇𝐮𝑇
)

𝐏𝑗 .
(9)
3

𝑖,𝑗 𝑒 𝑖 − 𝑒 a
urthermore, note that lim𝜆𝑗→𝜆𝑖
𝜆𝑖−𝜆𝑗
𝑒𝜆𝑖−𝑒𝜆𝑗

= 𝑒−𝜆𝑖 , which allows us to split
off the 𝑖 = 𝑗 part

Ψ𝜔(𝐮) − 𝜔(𝐮)Ψ − 2 𝑓 (adΨ) 𝜖(𝐮)

= −2𝐁 −
∑

𝑖≠𝑗

𝜆𝑖 − 𝜆𝑗
𝑒𝜆𝑖 − 𝑒𝜆𝑗

𝐏𝑖
(

𝑒𝜆𝑗∇𝐮 + 𝑒𝜆𝑖∇𝐮𝑇
)

𝐏𝑗 ,
(10)

with

𝐁 =
∑

𝑖
𝐏𝑖 𝜖(𝐮)𝐏𝑖 =

∑

𝑖
𝐏𝑖 ∇𝐮𝐏𝑖 . (11)

Except notation, Eq. (10) is the same formulation as given in [21,
Eq. (44)].

To prove the equivalence to the most widespread log-conformation
formulation, we introduce

𝐌̃ =
⎛

⎜

⎜

⎝

𝑚̃11 𝑚̃12 𝑚̃13
𝑚̃21 𝑚̃22 𝑚̃23
𝑚̃31 𝑚̃32 𝑚̃33

⎞

⎟

⎟

⎠

∶= 𝐎𝑇∇𝐮𝐎 .

We can thus express 𝐁 as

𝐁 = 𝐎
⎛

⎜

⎜

⎝

𝑚̃11 0 0
0 𝑚̃22 0
0 0 𝑚̃33

⎞

⎟

⎟

⎠

𝐎𝑇 . (12)

Moreover, considering the case of distinct eigenvalues, we introduce

Ω = −
∑

𝑖≠𝑗

1
𝑒𝜆𝑖 − 𝑒𝜆𝑗

𝐏𝑖
(

𝑒𝜆𝑗∇𝐮 + 𝑒𝜆𝑖∇𝐮𝑇
)

𝐏𝑗 . (13)

With the projection operators 𝐏𝑖 being orthogonal and idempotent,
.e., 𝐏𝑖𝐏𝑗 = 𝛿𝑖𝑗𝐏𝑖 and 𝛿𝑖𝑗 being the Kronecker Delta, this yields the
quivalent formulation

𝜔(𝐮) − 𝜔(𝐮)Ψ − 2 𝑓 (adΨ) 𝜖(𝐮)
= −2𝐁 +ΨΩ −ΩΨ .

(14)

imilarly to the formulation of 𝐁 we can also reformulate Ω using 𝐌̃
s

= 𝐎
⎛

⎜

⎜

⎝

0 𝜔12 𝜔13
𝜔21 0 𝜔23
𝜔31 𝜔32 0

⎞

⎟

⎟

⎠

𝐎𝑇 , (15)

where the 𝜔𝑖𝑗 are given by

𝜔𝑖𝑗 ∶= −
𝑒𝜆𝑗 𝑚̃𝑖𝑗 + 𝑒𝜆𝑖 𝑚̃𝑗𝑖

𝑒𝜆𝑖 − 𝑒𝜆𝑗
. (16)

This is mostly the original formulation, as it was first used by Fattal and
Kupferman [1] and has been used in many numerical implementations.

For the sake of completeness, and without proof, we also mention
the formulation using a Dunford-type/Cauchy-type integral

𝑓 (adΨ) 𝜖(𝐮)

= 1
(2𝜋𝑖)2 ∫𝛤 ∫𝛤

𝑓 (𝑧 − 𝑧′) (𝑧𝟏 −Ψ)−1 𝜖(𝐮)
(

𝑧′𝟏 −Ψ
)−1 𝑑𝑧 𝑑𝑧′ ,

(17)

here 𝛤 is a suitably chosen integration contour in the complex plane
hat encompasses the eigenvalues 𝜆𝑖, but avoids the singularities of 𝑓 .
his formulation, which was proven in [10,12], facilitates analytical

nsights into the log-conformation formulation, but is less suited for
he direct numerical implementation, due to the expected cancellation
ffects in the Cauchy-type integral.

. Eigenvalue-free algorithm design

In the last section, we discussed several of the different existing
ormulations for the 𝑓 (adΨ) 𝜖(𝐮) term in the logarithmic constitutive
quation. We also mentioned the connection to the eigenvalue-based
lgorithms.

In this section, we will come to an eigenvalue-free algorithm that
epresents adΨ as a matrix on a suitably chosen vector space, which
llows us to evaluate 𝑓 (adΨ) as a matrix function.

Journal of Non-Newtonian Fluid Mechanics 322 (2023) 105133F. Becker et al.

w
s

i
T
m
a
a
p
o

r
a
c
t

e

G
c
a

e

s
e
P
o

[
d

e
t
a

w
s
c
a
a
m

t
t
t
r
f

𝑔

t
a

𝑔

w

M
3
o
t
i

p
o

ℎ

w
c

a
r

m
(

Since it is instructive for what comes, and since it is also neces-
sary for the numerical implementation, we will first concern ourselves
with the eigenvalue-free evaluation of the matrix function exp(Ψ). We

ill use the Scaling&Squaring algorithm, which has been extensively
tudied. For an in-depth review article, we refer to [22].

The basic idea of the Scaling&Squaring algorithm consists of two
ngredients: One ingredient is a simple approximation of the function.
his can, e.g., be a truncated Taylor series, or a rationale approxi-
ation. For the exponential function, the Padé approximation 𝑅𝑚,𝑚

s a rationale approximation is a common choice. Usually, such an
pproximation is only reasonable in a small region close to some pivot
oint, which, for our approximation of the exponential function, is the
rigin of the coordinate system.

At this point, the second ingredient comes into action: a functional
elation that helps to map the argument to the region where the
forementioned simple approximation is valid, and thus allows us to
onstruct a more universal approximation. For the exponential function
his relation is

xp(Ψ) = exp(Ψ∕2)2 . (18)

iven a general Ψ and iterating this functional equation, one can
hoose a 𝑗 ∈ N such that 2−𝑗‖Ψ‖ is small enough for the Padé
pproximant to be sufficiently good. Then evaluating

xp(Ψ) ≈
(

𝑅𝑚,𝑚(Ψ∕2𝑗)
)2𝑗 (19)

hould give a reasonable approximation even for large Ψ. As is appar-
nt, we first scale the argument with 2−𝑗 and after the evaluation of the
adé approximant, we employ 𝑗 successive squarings. Hence, the name
f the algorithm: Scaling&Squaring.

For the actual implementation, we use the software library Eigen
23], which uses variations of the Scaling&Squaring algorithm, as
escribed in [24, Algorithm 2.3] and [25, Algorithm 3.1].

In principle, as already noted in the previous section, we want to
mploy a similar algorithm for 𝑓 (adΨ). However, we want to reduce
he computational complexity first, i.e., we do not want to represent
dΨ as a 9 × 9 matrix.

Notice that we will apply 𝑓 (adΨ) to the symmetric matrix 𝜖(𝐮) and
ill get as a result a symmetric matrix again. In fact, the application of a

ymmetric matrix to 𝑓 (adΨ) will always give a symmetric matrix. This
an, e.g., be seen from Eq. (8) by simply transposing the equation, but
lso from the Taylor series expansion in Eq. (6) and the fact that ad2 Ψ
lso has this feature: ad2 Ψ maps symmetric matrices to symmetric
atrices, and antisymmetric matrices to antisymmetric matrices.

The fact that ad2 Ψ decomposes into two parts, of course nurtures
he idea of just using the part operating on symmetric matrices. Since
he vector space of symmetric 3 × 3 matrices is only 6-dimensional,
his would already reduce the computational complexity. We could
epresent ad2 Ψ as a 6 × 6-dimensional matrix, and then apply the
unction

(𝑧) =

⎧

⎪

⎨

⎪

⎩

√

𝑧
tanh

√

𝑧
for Re 𝑧 ≥ 0

√

−𝑧
tan

√

−𝑧
for Re 𝑧 < 0

, (20)

such that

𝑓 (adΨ) = 𝑔
(1
4
ad2 Ψ

)

. (21)

This shifts the problem from evaluating a matrix function 𝑓 to a matrix
function 𝑔. Note that we have added the negative real part in Eq. (20) to
illustrate that 𝑔 can be continued analytically in the negative half-plane
o a meromorphic function. It thus becomes evident that 𝑔 has a pole
t 𝑧 = −𝜋2. In fact, the Taylor expansion follows from Eq. (5)

(𝑧) =
∞
∑

𝑛=0

𝐵2𝑛
(2𝑛)!

4𝑛𝑧𝑛 , (22)

hich, due to the pole, only converges absolutely for |𝑧| < 𝜋2.
4

However, we can go one step further: First, we notice that adΨ
maps symmetric matrices, like 𝜖(𝐮), to an antisymmetric 3 × 3-matrix.

ore importantly, the vector space of antisymmetric 3 × 3-matrices is
-dimensional, hence any ad2𝑛 Ψ is at most of rank-3 as a linear operator
r matrix for 𝑛 > 0. In other words, in the Taylor series of 𝑓 or 𝑔 applied
o adΨ, only the 𝑛 = 0 term, which is the identity operator/matrix 𝟏,
s of full rank, while all other terms are at most of rank-3.

This clearly motivates to split off the identity matrix 𝟏 and only com-
ute the remaining part on a 3 × 3-matrix instead of an 6 × 6-matrix
r 9 × 9-matrix. Thus, we define

(𝑥) = 1
𝑥

(
√

𝑥

tanh
√

𝑥
− 1

)

, (23)

with its Taylor series for small 𝑥 given as

ℎ(𝑥) =
∑

𝑛=1

𝐵2𝑛
(2𝑛)!

4𝑛𝑥𝑛−1 . (24)

Using the equations above, we can write

𝑓 (adΨ) 𝜖(𝐮)

= 𝜖(𝐮) + 1
4
adΨ ℎ

(1
4
ad2 Ψ

)

adΨ 𝜖(𝐮) ,
(25)

hich contains already all components of the final algorithm that will
ompute 𝑓 (adΨ)𝜖(𝐮).

In the actual computation, we will need different representations of
dΨ. Going through the different instances of adΨ in Eq. (25) from
ight to left:

• adΨ𝜖(𝐮) as noted earlier is an antisymmetric 3 × 3-matrix, and
thus can be represented in some basis as a 3-dimensional vector.
We will denote this vector as 𝐯 ∈ R3.

• On the 3-dimensional space of antisymmetric 3 × 3-matrices, the
operator ad2 Ψ will be represented as a 3 × 3-matrix, which
we will denote by 𝐗 ∈ R3×3. Dividing by four and applying
ℎ gives another 3 × 3-matrix ℎ

(

1
4 ad

2 Ψ
)

, which is multiplied
with the 3-vector 𝐯 that represents adΨ𝜖(𝐮). The final result of
ℎ
(

1
4 ad

2 Ψ
)

adΨ𝜖(𝐮) is once again then represented by a 3-vector
ℎ(𝐗∕4) 𝐯.

• The last invocation of adΨ linearly maps an antisymmetric 3 × 3-
matrix to a symmetric 3 × 3-matrix. Therefore, it can be repre-
sented as a 6 × 3-matrix, which we will denote by 𝐘 ∈ R6×3. It is
multiplied by the 3-vector from the previous step, resulting in a
6-vector 𝐘ℎ(𝐗∕4) 𝐯.

In order to concretize the computational steps, we will need to
choose specific bases. We start with the basis for the symmetric 3 × 3-

atrices: the matrix Ψ is already stored in most codes as a 6-vector
𝛹11, 𝛹12, 𝛹13, 𝛹22, 𝛹23, 𝛹33)𝑇 . The same holds for 𝜖(𝐮) with
(𝜖11, 𝜖12, 𝜖13, 𝜖22, 𝜖23, 𝜖33)𝑇 .

For the antisymmetric 3 × 3-matrices to be represented as a 3-vector,
we want to have further properties for the representation of ad2 Ψ
as a matrix on that vector space. Most notably, we want ad2 Ψ to be
represented as a symmetric matrix 𝐗 ∈ R3×3

𝑠𝑦𝑚.
For that, we first define a scaled Frobenius product of two matrices

𝐀,𝐁 ∈ R3×3, i.e.,

(𝐀,𝐁)𝑠𝐹 ∶= 1
2
tr 𝐀𝑇𝐁 . (26)

The factor 1∕2 is introduced to avoid several
√

2 factors in the following
formulas. The more important aspect here is that ad2 Ψ is selfadjoint
with respect to this scalar product

(𝐀, ad2 Ψ𝐁)𝑠𝐹 =1
2
tr
(

𝐀𝑇 (

Ψ2𝐁 − 2Ψ𝐁Ψ + 𝐁Ψ2))

=1
2
tr
(

(

Ψ2𝐀 − 2Ψ𝐀Ψ + 𝐀Ψ2)𝑇 𝐁
)

=(ad2 Ψ𝐀,𝐁)𝑠𝐹 .

Journal of Non-Newtonian Fluid Mechanics 322 (2023) 105133F. Becker et al.

R

a

𝐄

𝐄

𝐄

s
c

𝑣

𝑣

𝑣

i
A
t

𝑋

𝑋

𝑋

𝑋

𝑋

𝑋

m
a
a

𝐘

w
o
i

w

𝑔

C
a
b
w

s
a

Algorithm 1 Computing 𝑓 (ad𝚿) 𝜖(𝐮)

Require: 𝚿 given as (𝛹11, 𝛹12, 𝛹13, 𝛹22, 𝛹23, 𝛹33)𝑇

equire: 𝜖(𝐮) given as (𝜖11, 𝜖12, 𝜖13, 𝜖22, 𝜖23, 𝜖33)𝑇

compute 𝐯 ∈ R3 according to Eq. (30)–(32)
compute 𝐗 ∈ R3×3 according to Eq. (33)–(38)
compute 𝐘 ∈ R6×3 according to Eq. (39)
use Algorithm 2 to compute 𝐙 ← ℎ(𝐗∕4)
return 𝜖(𝐮) + 1

4𝐘𝐙𝐯

One ramification of the selfadjointness is that the matrix representation
of ad2 Ψ in a basis will yield a symmetric matrix 𝐗, if we choose that
basis to be orthonormal with respect to the same scalar product.

This motivates our choice of an orthonormal basis
{

𝐄𝑖
}

of the
ntisymmetric 3 × 3-matrices

1 =
⎛

⎜

⎜

⎝

0 1 0
−1 0 0
0 0 0

⎞

⎟

⎟

⎠

(27)

2 =
⎛

⎜

⎜

⎝

0 0 1
0 0 0
−1 0 0

⎞

⎟

⎟

⎠

(28)

3 =
⎛

⎜

⎜

⎝

0 0 0
0 0 1
0 −1 0

⎞

⎟

⎟

⎠

. (29)

Going through the different needed representations of adΨ, we will
tart with adΨ 𝜖(𝐮), which we represent as a vector 𝐯 ∈ R3, whose
omponents are given by 𝑣𝑖 = (𝐄𝑖, adΨ 𝜖(𝐮))𝑠𝐹 . The latter yields

1 = −𝜖11𝛹12 + 𝜖12𝛹11 − 𝜖12𝛹22

−𝜖13𝛹23 + 𝜖22𝛹12 + 𝜖23𝛹13
(30)

2 = −𝜖11𝛹13 − 𝜖12𝛹23 + 𝜖13𝛹11

−𝜖13𝛹33 + 𝜖23𝛹12 + 𝜖33𝛹13
(31)

3 = −𝜖12𝛹13 + 𝜖13𝛹12 − 𝜖22𝛹23

+𝜖23𝛹22 − 𝜖23𝛹33 + 𝜖33𝛹23 .
(32)

To represent ad2 Ψ on the space of antisymmetric 3 × 3-matrices, we
ntroduce 𝐗 ∈ R3×3, whose entries are given by 𝑋𝑖𝑗 = (𝐄𝑖, ad

2 Ψ𝐄𝑗)𝑠𝐹 .
s noted, the resulting matrix 𝐗 is symmetric. With our chosen basis,

he coefficients are given by

11 =𝛹 2
11 − 2𝛹11𝛹22 + 4𝛹 2

12 + 𝛹 2
13 + 𝛹 2

22 + 𝛹 2
23 (33)

12 = − 2𝛹11𝛹23 + 3𝛹12𝛹13 + 𝛹22𝛹23 + 𝛹23𝛹33 (34)

13 = − 𝛹11𝛹13 − 3𝛹12𝛹23 + 2𝛹13𝛹22 − 𝛹13𝛹33 (35)

22 =𝛹 2
11 − 2𝛹11𝛹33 + 𝛹 2

12 + 4𝛹 2
13 + 𝛹 2

23 + 𝛹 2
33 (36)

23 =𝛹11𝛹12 + 𝛹12𝛹22 − 2𝛹12𝛹33 + 3𝛹13𝛹23 (37)

33 =𝛹 2
12 + 𝛹 2

13 + 𝛹 2
22 − 2𝛹22𝛹33 + 4𝛹 2

23 + 𝛹 2
33 . (38)

For the last representation of adΨ, from the space of antisymmetric
atrices to the space of symmetric 3 × 3-matrices, we compute adΨ𝐄𝑖

nd extract the coefficients. We denote the representation by 𝐘 ∈ R6×3

nd its coefficients are given by

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−2𝛹12 −2𝛹13 0
𝛹11 − 𝛹22 −𝛹23 −𝛹13
−𝛹23 𝛹11 − 𝛹33 𝛹12
2𝛹12 0 −2𝛹23
𝛹13 𝛹12 𝛹22 − 𝛹33
0 2𝛹13 2𝛹23

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (39)

Taking for the moment the algorithm to compute ℎ(𝐗∕4) as given,
e can then use Eq. (25) to compute 𝑓 (adΨ) 𝜖(𝐮) as a series of matrix
perations. The actual algorithm to compute 𝑓 (adΨ)𝜖(𝐮) is illustrated
5

n Algorithm 1.
Algorithm 2 Computing ℎ(𝐗)
Require: 𝐗

𝑗 ← max
(

0, 𝑗0 + std::ilogb(‖𝐗‖2𝐹)∕4
)

𝐋 ← 𝐗∕4𝑗

𝐇 ←
(((

5
66

45
3628800𝐋 − 1

30
44

40320 𝟏
)

𝐋 + 1
42

43
720 𝟏

)

𝐋

− 1
30

42
24𝟏

)

𝐋 + 1
6
4
2 𝟏

𝐆 ← 𝟏 +𝐇𝐋
for 𝑖 = 1 to 𝑗 do
𝐇 ← 1

4

(

𝐇 +𝐆−1)

𝐋 ← 4𝐋
𝐆 ← 𝟏 +𝐇𝐋

end for
return 𝐇

Before we come to the general case of computing ℎ(𝐗∕4), we want to
first mention a case in which evaluating ℎ becomes as easy as a simple
function evaluation: the two-dimensional case.

To see this, note that in the two-dimensional case 𝑋12 and 𝑋13 are
both zero. As such 𝐗 is the direct sum of two submatrices, of which the
first one consists of just a single entry 𝑋11. Furthermore, since 𝑣1 is the
only non-zero entry of 𝐯 in this case, it is also just ℎ(𝑋11) that needs to
be calculated. In fact, acknowledging that

ℎ(𝑥) = 1
𝑥

(

√

𝑥 +
2
√

𝑥

𝑒2
√

𝑥 − 1
− 1

)

, (40)

this yields exactly the representation of 𝑓 (adΨ) 𝜖(𝐮) that was given
in [11, Theorem 2].

Coming to the general case, we so far only have a Taylor series of ℎ,
Eq. (24), which only works for small 𝐗. Taking the Scaling&Squaring al-
gorithm for the matrix exponential function as an instructive example,
we seek a functional equation that allows us to reduce the computation
to arguments that are amenable to the Taylor series.

In fact, using the formula for doubling the argument of tanh 𝑥

tanh 𝑥 =
2 tanh 𝑥

2

1 + tanh2 𝑥
2

, (41)

we obtain

ℎ(𝑥) = 1
4
(

ℎ(𝑥∕4) + (𝑔(𝑥∕4))−1
)

(42)

ith

(𝑥∕4) = 1 + 𝑥∕4ℎ(𝑥∕4) . (43)

onsidering a general 𝐗 ∈ R3×3
𝑠𝑦𝑚, we can readily use this to seek an

ppropriate 𝑗 ∈ N such that 𝐗∕4𝑗 is small enough to be approximated
y a truncated Taylor series. Then iterating Eqs. (42) and (43) 𝑗-times
e get the final result. The full algorithm is displayed in Algorithm 2.

For the actual algorithm, we needed to decide on when 𝐗∕4𝑗 is
mall enough. Evaluating Algorithm 2 for scalar instead of matrix
rguments and comparing it with a high-precision calculation of ℎ gives

an indication on the accuracy of the algorithm. This analysis yields
that 𝑗0 = 4 is sufficient for an absolute accuracy of 10−16 in the scalar
argument case. Therefore, this is also the value that was used for all
our numerical evaluations. We also compared the matrix argument
case with an eigenvalue-based evaluation for random 𝐗 and could not
observe any severe issues.

However, this should not be taken without a word of caution.
The functions 𝑔(𝑥) and ℎ(𝑥) asymptotically behave like

√

𝑥 and 1∕
√

𝑥,
respectively. In fact,

√

𝑥 as a function is known as a prime example,
where an algorithm works for scalar arguments, but may fail for matrix
arguments of even moderate condition number, cf. [26,27]. Hence,
although our numerical experiments do already give a strong indication
for a stable algorithm, a thorough mathematical error analysis of the
algorithm is still outstanding and subject of future research.

Journal of Non-Newtonian Fluid Mechanics 322 (2023) 105133F. Becker et al.

a
f
i
k
s

4

a
i

∇

𝜌

w
s
T
e
𝑓
e

𝜕

a

I
c

a
w
W
a
o
c
f

∇

s
𝐮
s
i

S
m

w
m
i
o

t
s
𝑝

(

4. Finite volume implementation

In the following, we are going to embed the new eigenvalue-free
constitutive formulation in a numerical implementation. We will, there-
fore, augment the constitutive equation (3) with a system of partial
differential equations consisting of the continuity equation and the mo-
mentum balance, as well as Kramers’ expression to relate the polymeric
stress and the log-conformation field. These equations will then be
solved using a finite volume method (FVM), where the polymeric stress
is computed with the log-conformation approach according to Eq. (3),
and where the 𝑓 (adΨ) 𝜖(𝐮)-term on the right-hand side is computed
without an eigenvalue decomposition of Ψ according to Eq. (25) and
Algorithm 1.

As noted earlier, the eigenvalue-free log-conformation formulation
is quite universal and not necessarily tied to a specific discretization
scheme. Like the eigenvalue-based formulation, it needs a point-based
evaluation of Ψ, and the discretization scheme needs to provide a good
approximation of ∇𝐮 at the same point, such that Algorithm 1 can
compute the 𝑓 (adΨ) 𝜖(𝐮) term also at this point in space and time.

To illustrate how easily this different evaluation of the 𝑓 (adΨ) 𝜖(𝐮)
term can be dropped into an existing code, we chose to base our
numerical implementation on one of the existing and established open
source computational rheology packages: RheoTool [13]. It is based on
OpenFOAM® [28] and has many constitutive models for viscoelastic
fluid simulations implemented already. The eigenvalue-free formula-
tions for the log-conf variants of the Oldroyd-B and Giesekus mod-
els, which are subject of this work, are implemented among those
models and can be used and configured analogously in the overall
OpenFOAM® framework. More specifically, we use RheoTool in version
6 and OpenFOAM® in version 9.

A detailed description of the system of partial differential equations
nd algebraic equations that we will use, and of the corresponding
inite volume discretization and linearization follows next. Afterwards,
n Section 5, our implementation is applied to the study of two well-
nown tests for viscoelastic fluid flow: the confined cylinder and the
edimenting sphere benchmarks.

.1. Statement of the full set of partial differential equations

To state the full system of partial differential equations, which we
re going to discretize and solve, we start with the incompressible
sothermal Navier–Stokes equations

⋅ 𝐮 = 0 (44)

(𝜕𝑡𝐮 + (𝐮 ⋅ ∇)𝐮) = −∇𝑝 + ∇ ⋅ (𝜂𝑠∇𝐮) + ∇ ⋅ 𝝉 , (45)

here 𝐮 is the velocity vector, 𝑝 the pressure, 𝝉 the polymeric extra
tress tensor, 𝜂𝑠 the solvent viscosity, and 𝜌 the density of the fluid.
hese equations are coupled with an additional partial differential
quation for the log-conf tensor Ψ, which was already stated in its
(adΨ) form in Eq. (3). Rearranging some terms, the constitutive
quation can be written as

𝑡Ψ + (𝐮 ⋅ ∇)Ψ = −Ψ𝜔(𝐮) + 𝜔(𝐮)Ψ
+2 𝑓 (adΨ) 𝜖(𝐮) − 𝑃 (𝑒Ψ)𝑒−Ψ .

(46)

In the following benchmarks, we only consider the Oldroyd-B and
Giesekus constitutive models, thus setting 𝑃 (exp(Ψ)) = 1

𝜆 (exp(Ψ) − 𝟏)
nd 𝑃 (exp(Ψ)) = 1

𝜆 (𝟏 + 𝛼 (exp(Ψ) − 𝟏)) (exp(Ψ) − 𝟏), respectively. The
conformation tensor and the log-conformation field are related to the
polymeric stress 𝝉 by means of Kramers’ expression

𝝉 =
𝜂𝑝
𝜆
(𝑒Ψ − 𝟏) , (47)

where 𝜂𝑝 is the polymeric viscosity and 𝜆 the relaxation time of the
fluid.

In total, the set of partial differential equations and one algebraic
equation (44)–(47) composes, when augmented with appropriate initial
and boundary conditions, the mathematical problem we try to solve. In
6

the following, we will lay out our chosen discretization scheme. O
4.2. Temporal discretization, linearization and SIMPLEC

Starting off with the set of equations in Eqs. (44)–(47), we at first
discretize in time using the backwards Euler scheme. This leads to

∇ ⋅ 𝐮𝑡 = 0 (48)
𝜌
𝛥𝑡

𝐮𝑡 + 𝜌
(

𝐮𝑡 ⋅ ∇
)

𝐮𝑡 = −∇𝑝𝑡 + ∇ ⋅ (𝜂𝑠∇𝐮𝑡)

+∇ ⋅ 𝝉 𝑡 +
𝜌
𝛥𝑡

𝐮𝑡−𝛥𝑡
(49)

1
𝛥𝑡

Ψ𝑡 + (𝐮𝑡 ⋅ ∇)Ψ𝑡 = −Ψ𝑡𝜔(𝐮𝑡) + 𝜔(𝐮𝑡)Ψ𝑡

+2 𝑓 (adΨ𝑡) 𝜖(𝐮𝑡)

−𝑃 (𝑒Ψ𝑡)𝑒−Ψ𝑡 + 1
𝛥𝑡

Ψ𝑡−𝛥𝑡

(50)

𝝉 𝑡 =
𝜂𝑝
𝜆
(𝑒Ψ𝑡 − 𝟏) . (51)

n order to not overload the notation, we drop the 𝑡 indices from the
urrent time-step and only keep 𝐮𝑡−𝛥𝑡 and Ψ𝑡−𝛥𝑡.

As a next step, we approach the non-linearity. Therefore, we choose
Picard-type fixed-point iteration. We indicate the current iteration
ith a suffix 𝑖 and start our iteration with 𝐮0 = 𝐮𝑡−𝛥𝑡 and Ψ0 = Ψ𝑡−𝛥𝑡.
e linearize our equations in such a way that Ψ𝑖 is solved for after 𝐮𝑖

nd 𝑝𝑖 have been computed. In the constitutive equation, all non-linear
ccurrences of Ψ are replaced by Ψ𝑖−1. In the momentum equation, we
hoose to linearize the convective derivative as usual, by computing the
lux based on the previous iteration. We thus obtain

⋅ 𝐮𝑖 = 0 (52)
𝜌
𝛥𝑡

𝐮𝑖 + 𝜌
(

𝐮𝑖−1 ⋅ ∇
)

𝐮𝑖 = −∇𝑝𝑖 + ∇ ⋅ (𝜂𝑠∇𝐮𝑖)

+∇ ⋅ 𝝉 𝑖−1 +
𝜌
𝛥𝑡

𝐮𝑡−𝛥𝑡
(53)

1
𝛥𝑡

Ψ𝑖 + (𝐮𝑖 ⋅ ∇)Ψ𝑖 = −Ψ𝑖−1𝜔(𝐮𝑖) + 𝜔(𝐮𝑖)Ψ𝑖−1

+2 𝑓 (adΨ𝑖−1) 𝜖(𝐮𝑖)
−𝑃 (𝑒Ψ𝑖−1)𝑒−Ψ𝑖−1 + 1

𝛥𝑡
Ψ𝑡−𝛥𝑡

(54)

𝝉 𝑖 =
𝜂𝑝
𝜆
(𝑒Ψ𝑖 − 𝟏) . (55)

Note that the way we have linearized the system, first 𝐮𝑖 and 𝑝𝑖
hould be solved in a coupled way, then Ψ𝑖 can be computed based on
𝑖, which, at last, results in 𝝉 𝑖. It is also noteworthy that our chosen
cheme does not use any type of both-sides diffusion (BSD), which was
ntroduced in [29] and applied in a finite volume context in [14].

To further reduce the coupling between 𝐮𝑖 and 𝑝𝑖 we employ the
IMPLEC method [30]. For that, consider the following form of the
omentum equation (53)

=∶𝐴−𝐻
⏞⏞⏞
(𝜌
𝛥𝑡

+ 𝜌(𝐮𝑖−1 ⋅ ∇) − ∇ ⋅ (𝜂𝑠∇)
)

𝐮∗

= −∇𝑝∗ + ∇ ⋅ 𝝉 𝑖−1 +
𝜌
𝛥𝑡

𝐮𝑡−𝛥𝑡
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=∶𝐛

,
(56)

here 𝐴 − 𝐻 encodes the linear operator that operates on 𝐮 in the
omentum equation.1 After the spatial discretization, which follows

n Section 4.3, 𝐴 will be the diagonal part of the matrix and −𝐻 the
ff-diagonal part. In particular 𝐴 will be easy to invert.

Now, assuming 𝐮∗ solves Eq. (56) given the pressure 𝑝∗ ∶= 𝑝𝑖−1 from
he previous iteration, we seek an update 𝐮′ such that 𝐮𝑖 = 𝐮∗ + 𝐮′
olves the continuity equation (52). Introducing the pressure update
′ = 𝑝𝑖 − 𝑝∗, the velocity update 𝐮′ needs to solve

𝐴 −𝐻)𝐮′ = −∇𝑝′ . (57)

1 Our notation deviates a bit from the actual implementation in
penFOAM®, where 𝐻 is used to denote what is here given as 𝐻𝐮∗ + 𝐛.

Journal of Non-Newtonian Fluid Mechanics 322 (2023) 105133F. Becker et al.
SIMPLEC now approximates 𝐻 by another operator 𝐻1, which like 𝐴
is easy to invert. In the actual implementation, i.e., after the spatial
discretization, 𝐻1 will be realized as a matrix lumping of the off-
diagonal entries onto the diagonal. For the details consult [14]. Thus,
we can solve

𝐮′ = −
(

𝐴 −𝐻1
)−1 ∇𝑝′ . (58)

Therefore, the continuity equation ∇ ⋅ (𝐮′ + 𝐮∗) = 0 amounts to

0 = ∇⋅
(

−
(

𝐴 −𝐻1
)−1 ∇(𝑝𝑖 − 𝑝∗)

+𝐴−1 (𝐻𝐮∗ − ∇𝑝∗ + 𝐛
))

,
(59)

which can be rearranged to the pressure correction equation

∇ ⋅
(

(

𝐴 −𝐻1
)−1 ∇𝑝𝑖

)

= ∇ ⋅
(

𝐴−1(𝐻𝐮∗ + 𝐛) +
(

(𝐴 −𝐻1)−1 − 𝐴−1)∇𝑝∗
)

.
(60)

The corrected velocity 𝐮𝑖 is then given by

𝐮𝑖 = 𝐴−1(𝐻𝐮∗ + 𝐛) +
(

(𝐴 −𝐻1)−1 − 𝐴−1)∇𝑝∗

−
(

𝐴 −𝐻1
)−1 ∇𝑝𝑖 .

(61)

In principle, we now have arrived at a set of decoupled partial differ-
ential equations (56), (54) and (60) and two algebraic evaluations (55)
and (61) that can be composed into an algorithm as illustrated in Fig. 1.
However, Fig. 1 contains another interior fixed-point loop around the
pressure correction equation (60). The rationale here is that the spatial
discretization of the surface gradient ∇𝑝𝑖, which will be described in the
following section, is defective for non-orthogonal meshes. To correct
for this, some computations in the scheme are deferred in a non-linear
fashion, which then necessitate another fixed-point loop around the
discretized version of Eq. (60). The latter happens even though Eq. (60)
looks linear on the current level of abstraction. For the details, we refer
the reader to [31, Sec. 9.8].

In all simulations that are presented in Section 5, a total of two inner
iteration loops and two non-orthogonal correction steps per time-step
are used.

4.3. Spatial discretization

After temporal discretization, linearization and decoupling of ve-
locity and pressure with the SIMPLEC method, we arrive at three
decoupled, linear partial differential equations (56), (60) and (54).
In order to solve those, we need to choose a method for spatial dis-
cretization. As noted earlier, we have chosen the Finite Volume Method
(FVM), and in particular base our implementation on RheoTool [13]
and OpenFOAM® [28].

In the FVM, the computational domain is subdivided into a set
of appropriate interconnected control volumes (the mesh) and the
integral form of these PDEs is then evaluated on every single control
volume [31]. The variables of interest (𝐮∗, 𝑝𝑖 and Ψ𝑖) are, in our choice
of a cell-centered FVM, considered as discrete fields (vector-, scalar-
and tensorfields, respectively) which attain their respective value at
the cell center. The appearing spatial differential operators are then
approximated using different schemes that solely depend on those cell-
centered quantities. With the initial PDEs being linear, this approach
results in sparse linear equation systems.

Next, we list the configuration of the spatial discretization schemes,
which will be used throughout all simulations that follow in Section 5.

• The divergence terms are discretized according to the divergence
theorem via the Gauss scheme. For that, the argument of the
divergence operator needs to be evaluated on the faces of the cell.
For ∇ ⋅𝝉 𝑖−1 or ∇ ⋅

(

𝐴−1(𝐻𝐮∗ + 𝐛)
)

this means that the cell-centered
value is interpolated linearly from cell to face. In Eq. (60) the term

−1 −1
7

(𝐴 −𝐻1) − 𝐴 is also linearly interpolated from cell to face.
• The Laplacian terms, such as ∇ ⋅ (𝜂𝑠∇𝐮𝑖) and ∇ ⋅
(

(

𝐴 −𝐻1
)−1 ∇𝑝𝑖

)

,
are also discretized using Gaussian integration, with the differ-
ence that only the inner factors are linearly interpolated. The
gradients ∇𝐮𝑖 and ∇𝑝𝑖, but also ∇𝑝∗ in Eq. (60), are directly
evaluated on the face using a surface normal scheme. In all
our computations we have employed a surface normal gradient
scheme with an explicit deferred non-orthogonal correction.

• Cell-centered gradients, as ∇𝑝∗ and ∇𝐮𝑖 in Eqs. (54), (56), (61),
are computed using the Gauss scheme with linear interpolation.
Interpolation in general is linear per default, whenever needed.

• For the convective term in the constitutive equation, (𝐮𝑖 ⋅ ∇)Ψ𝑖,
the corrected, component-wise CUBISTA scheme is used, which is
described in [14]. The convective term (𝐮𝑖−1 ⋅∇)𝐮𝑖 in the momen-
tum balance is removed from Eq. (56) in the later benchmarks
(to enforce Re = 0) and, therefore, no discretization scheme is
needed.

Overall, all used spatial discretization schemes are under ideal con-
ditions, i.e., on orthogonal meshes, second order accurate. However,
as for example shown in [32], the gradient computation may lose
its second order accuracy on meshes of poor quality, e.g., high non-
orthogonalities or skewnesses. As a consequence, particular attention
was paid to the selection and design of the hexahedral meshes in
Section 5.

A crucial aspect when simulating incompressible Navier–Stokes
equations, regardless of the actually employed spatial discretization
scheme, are the issues with checkerboard patterns and in general the
saddle-point structure of the linearized problem. Here, this issue has
been approached with the Rhie–Chow method [33], where ∇𝑝𝑖,∇𝑝∗

are differently discretized in Eq. (60) than they are in Eqs. (56) and
(61). We do not want to go into the details here, since they have
already been laid out in [14], but solely mention two points: Firstly,
there is a connection to the—in the finite element world important—
inf-sup condition, and we refer the interested reader to [34] for a recent
account into that direction. Secondly, on top of what has just been
described, OpenFOAM® employs a correction of the flux in Eq. (60)
that shall remedy unphysical dependencies of steady-state solutions on
the actually chosen time-step size. The reader is once again referred
to [14] for the details.

Of course, boundary conditions do also constitute an important
aspect of numerical methods for partial differential equations. The
specific choice of boundary conditions for the later benchmarks will
follow in the corresponding Sections 5.1 and 5.2. Nonetheless, it
should be noted that boundary conditions are handled according to
the technique that is implemented in OpenFOAM®, where specific
boundary structures, called patches, are used to store boundary infor-
mation. Hence, whenever needed by a certain discretization scheme for
elements at the edge of the computational domain, the required values,
that cannot be provided by interior neighbors, are fetched form these
boundary patches.

Finally, we will mention that the choice of the viscoelastic model
(e.g., Oldroyd-B or Giesekus) and in particular the implementation of
the eigenvalue-free 𝑓 (adΨ) term does not affect the overall procedure
depicted in Fig. 1, but rather the assembling of the right-hand side
of Eq. (54). It can therefore be implemented quite straightforward as
described in Section 3 by computing the 𝑓 (adΨ) term according to
Algorithm 1.

4.4. Choice of linear solvers

Through the spatial discretization in the last section, we now have
effectively derived three systems of sparse linear equation system that
correspond to Eqs. (56), (60), (54) and which are solved for the cell-
centered values of 𝐮∗, 𝑝𝑖 and Ψ𝑖. For the rest of this section, we
will refer to these systems as the 𝐮∗, 𝑝𝑖 and Ψ𝑖 equation respectively.
One immediate computational optimization, which is employed in

Journal of Non-Newtonian Fluid Mechanics 322 (2023) 105133F. Becker et al.

O
d

u
t
B
o
i
s
m

Fig. 1. Solver flowchart.
penFOAM®, is that the left-hand sides of Eqs. (54) and (60) can be
ecoupled and solved individually for the components of 𝐮∗,Ψ𝑖.

After this optimization, the individual linear systems are solved
sing the following solvers: For the 𝐮∗ and 𝑝𝑖 equations, the Precondi-
ioned Conjugate Gradient Method (PCG) is applied with an Diagonal-
ased Incomplete Cholesky preconditioner (DIC). An absolute tolerance
f 10−10, relative tolerance of 10−4 and a maximum number of 1000
terations are chosen as the possible termination criteria for these
olvers. The Ψ𝑖 equation uses a Preconditioned Bi-Conjugate Gradient
ethod (PBiCG) with an Diagonal-Based Incomplete LU preconditioner
8

(DILU). The same termination configuration is chosen as for the 𝐮∗ and
𝑝𝑖 equations.

In our numerical algorithm, the currently available field data is used
as the initial guess for the corresponding iterative solver. In our bench-
marks, a dimensionless timescale 𝑇 = 𝑡∕𝜆 is used and each simulation
is run until 𝑇 = 30 with a Courant number of 0.5. We, therefore, ensure
that the viscoelastic stresses in the fluid have converged at the end
of a simulation, i.e., that the fluid has reached a steady-state. Within
this steady-state, the initial guesses for the iterative solvers will already
be close to the actual solutions, such that the number of iterations is

Journal of Non-Newtonian Fluid Mechanics 322 (2023) 105133F. Becker et al.

c

e
v
t
T

s
r

expected to decrease as the simulation progresses in time. However,
in a non-steady-state, i.e., at the beginning of a simulation, the initial
guesses may be quite far from the actual solution of the system, such
that more iterations are needed in general.

Typically, the 𝑝𝑖 equation is the most expensive to solve. At the
beginning of a simulation, the 𝑝𝑖 equation requires several hundred
iterations for convergence or even reaches the maximum number of
iterations on our finest meshes. Overall the number of iterations needed
for convergence decreases as the fluid approaches a steady-state. In
a steady-state, there is often no need for a single iteration of the 𝐮∗
and Ψ𝑖 equations, since the initial guess already solves the system well
enough.

5. Benchmarks

In this section, our implementation of the newly derived eigenvalue-
free constitutive formulation is applied to a study of two benchmarks:
the confined cylinder and the sedimenting sphere. These benchmarks
represent similar flow problems, i.e., flow around an obstacle, in a two-
dimensional and a three-dimensional case, respectively. Both bench-
marks have been examined in the literature before, in order to validate
new numerical schemes or models, see for example [11,21,35–39] for
the confined cylinder and [12,40–43] for the sedimenting sphere. For
comparability, we specifically follow the setups, i.e., the geometries
and fluid parameters, that were used in [11] for the confined cylinder
and [12] for the sedimenting sphere. A detailed description will follow
in the corresponding Sections 5.1 and 5.2, where results for the
eigenvalue-free logarithmic Oldroyd-B and Giesekus models are shown
and discussed.

The main quantity of interest in both benchmarks is the drag
coefficient 𝐶𝑑 , which describes the non-dimensionalized force the fluid
exerts on the obstacle in 𝑥-direction. 𝐶𝑑 is given by

𝐶𝑑 = 1
(𝜂𝑠 + 𝜂𝑝)𝑢̄ ∫𝛤

𝐞𝑥 ⋅ (𝝈𝐧) , (62)

where 𝛤 is the surface of the obstacle, 𝐧 the corresponding unit normal,
𝐞𝑥 the unit vector in 𝑥-direction and 𝝈 the Cauchy stress tensor

𝝈 = −𝑝𝟏 + 𝜂𝑠(∇𝐮 + ∇𝐮𝑇) + 𝝉 . (63)

It is known that the drag coefficient varies with the Reynolds number
Re of the simulation. This has for example been investigated by [35].
However, for comparability, we follow the literature and consider
creeping flow conditions (Re = 0) in both benchmarks by removing
the convective term from the momentum equation (45).

Overall, a variety of flow simulations for different Weissenberg
numbers will be presented and the corresponding drag coefficient val-
ues will be compared to the literature. The dimensionless Weissenberg
number is given by

Wi = 𝜆𝑢̄
𝑅

, (64)

where 𝜆 is the relaxation time of the fluid, 𝑅 is the radius of the cylinder
or the sphere and 𝑢̄ the mean inflow velocity.

5.1. Confined cylinder

In the confined cylinder case, a two-dimensional channel with a
cylindrical obstacle of radius 𝑅 in its center is considered as the
omputational domain. The channel has a height of 4𝑅, such that the

ratio of the channel height to the cylinder diameter is 2. Our setup
mimics the setup of Knechtges et al. [11] and Hulsen et al. [21], where
the channel has a total length of 30𝑅 in order to reduce effects of the
inflow and outflow and where the cylinder center is at (15𝑅, 2𝑅). An
9

illustration of the geometry can be seen in Fig. 2. a
Fig. 2. Illustration (not to scale) of the confined cylinder. Fluid flows from the inlet
at the left side to the outlet at the right side. The upper and lower boundaries of the
channel and the cylinder surface are considered as solid walls.

Fig. 3. Convergence of the 𝐶𝑑 values for the confined cylinder case on mesh M3 at
different Weissenberg numbers over time from 𝑇 = 1 to 𝑇 = 30 using the eigenvalue-free
logarithmic Oldroyd-B formulation.

Table 1
Mesh statistics for the confined cylinder geometry.

M1 M2 M3

Number of elements in the mesh 99 576 398 304 1 593 216
Number of elements on the cylinder surface 756 1512 3024
Average element non-orthogonality 12.6 12.6 12.7
Maximum element non-orthogonality 44.7 44.9 45.0
Maximum element skewness 1.5 1.5 1.5

5.1.1. Setup
Boundary and initial conditions are chosen according to literature.

At the inlet, a fully developed Poiseuille solution for an Oldroyd-B fluid
is imposed for the velocity 𝐮 (with mean inflow 𝑢̄) and the polymeric
extra stresses 𝝉 and Ψ, similar to [11]. A zero-gradient condition is
considered for the pressure 𝑝. The exact values for the Poiseuille flow
are given in the Appendix. Furthermore, at the channel and cylinder
walls, zero-gradient conditions are considered for the pressure and zero
velocities (𝐮 = 𝟎). The polymeric extra stress components are linearly
xtrapolated. At the outlet, zero-gradient conditions are imposed for all
ariables, except for the pressure, which is set to zero. Initially (𝑡 = 0)
he fluid is at rest (𝐮 = 𝟎) and the extra-stresses are null (𝝉 = Ψ = 𝟎).
he pressure is set to zero as well.

In all of the following tests, 𝑅 = 1m and 𝑢̄ = 1m∕s were fixed,
uch that the Weissenberg number equals the numerical value of the
elaxation time in seconds and could therefore easily be controlled by
change of 𝜆. Finally, as in the corresponding literature, a viscosity

Journal of Non-Newtonian Fluid Mechanics 322 (2023) 105133F. Becker et al.
Fig. 4. Comparison of 𝛹𝑥𝑥 at the final time-step 𝑇 = 30. Top: computed with the eigenvalue-free logarithmic Oldroyd-B formulation; bottom: computed with the standard logarithmic
Oldroyd-B formulation that relies on an eigenvalue decomposition. Looking at the entrance of both simulations, it can additionally be seen that developed Poiseuille inflow conditions
have been used, since the 𝛹𝑥𝑥 components are already developed at the inlet.
ratio of 𝛽 = 𝜂𝑠∕(𝜂𝑠 + 𝜂𝑝) = 0.59 and a density of 𝜌 = 1 kg∕m3 have been
used.2

Three quadrilateral meshes M1, M2 and M3 of different refine-
ment levels have been considered. Their main properties are shown in
Table 1. In each refinement step the total number of elements is quadru-
pled from mesh to mesh and the number of elements at the cylinder
surface is doubled. An important property of these meshes and their re-
finement is that characteristics, such as the element non-orthogonality
and skewness, are sufficiently small. Element non-orthogonality refers
to the angle between the vector of two neighbored cell centers and their
corresponding face normal. Element skewness refers to the deviation
of the intersection point of this cell-center-connecting vector from
the actual face center. For example, in a pure square mesh, element
non-orthogonality and skewness would both be zero. In the FVM,
the gradient computation can be negatively affected by such mesh
irregularities, as is described and investigated by Syrakos et al. [32].
Furthermore, the importance of good quality meshes and strategic mesh
refinement is particularly emphasized in [31]. Therefore, only mesh
configurations were considered where these characteristic values were
sufficiently small on all refinement levels. RheoTool does already pro-
vide a confined cylinder case with an appropriate mesh [13]. The latter
has been used as the basis for our benchmarks and adjusted, e.g., by
adding several different refinement levels for the mesh. It should also
be mentioned, that in order to achieve reasonable 𝐶𝑑 values, boundary
layers around the obstacle surface were used. This use of thin boundary
layers has increased the resolution of the solution close to the obstacle
surface and did also reduce the extrapolation error, resulting in 𝐶𝑑
values that are in good agreement with the literature.

As already mentioned in Section 4.4, adaptive time-stepping kept
a Courant number of 0.5 in all simulations. Typical time-step sizes
were then ranging from 1.8 × 10−3 s on M1, to 9.0 × 10−4 s on M2, and
4.5 × 10−4 s on M3. For all simulations, a dimensionless timescale 𝑇 =
𝑡∕𝜆 was used with end time 𝑇 = 30 in order to ensure convergence
of the fluid to a steady-state. Therefore, the 𝐶𝑑 values also converge
eventually, as can be seen in Fig. 3.

5.1.2. Results
Table 2 shows the final 𝐶𝑑 values for the eigenvalue-free logarithmic

Oldroyd-B formulation. Overall, the results on the finest mesh M3
show good agreement with the literature at all considered Weissenberg
numbers. At smaller Weissenberg numbers (Wi ≤ 0.7) the values in the
compared publications [11,21,35,36] deviate at a magnitude of 10−3

2 The parameters for our tests are chosen according to the literature for
comparability and do not represent real fluids.
10
Table 2
Final values for the drag coefficient 𝐶𝑑 at 𝑇 = 30 for the confined cylinder case, using
the eigenvalue-free Oldroyd-B formulation at different Weissenberg numbers.

Wi 𝐶𝑑

M1 M2 M3 [11] [21] [35] [36]

0.1 130.31898 130.36049 130.36653 130.3626 130.363 130.364 130.36
0.2 126.58894 126.62264 126.62875 126.6252 126.626 126.626 126.62
0.3 123.16959 123.18940 123.19475 123.1912 123.193 123.192 123.19
0.4 120.59084 120.59124 120.59500 120.5912 120.596 120.593 120.59
0.5 118.85227 118.82872 118.83021 118.8260 118.836 118.826 118.83
0.6 117.83174 117.78125 117.77988 117.7752 117.775 117.776 117.78
0.7 117.40242 117.32483 117.32079 117.3157 117.315 117.316 117.32
0.8 117.45188 117.35293 117.35114 117.3454 117.373 117.368 117.36
0.9 117.87883 117.76574 117.77477 117.7678 117.787 117.812 117.80
1.0 118.60224 118.47727 118.49927 118.471 118.49

and our results on M3 (which we consider as our most accurate ones)
do also fit into this range. At higher Weissenberg numbers the values
tend to deviate more from each other among all publications, roughly
at a magnitude of 10−2; a property that has already been observed and
described for example in [11]. Furthermore, all publications agree that
the minimum drag coefficient is obtained at Wi = 0.7. The highest 𝐶𝑑
values of around 130.36 are reached at the lowest Weissenberg number
of 0.1.

Fig. 4 shows solutions of the confined cylinder case at 𝑇 = 30 and
a Weissenberg number Wi = 0.7. Presented are the 𝛹𝑥𝑥 components for
the eigenvalue-free logarithmic Oldroyd-B formulation in comparison
with a eigenvalue-based formulation, that is described by Pimenta [14,
Eq. (7)] and previously implemented in RheoTool [13]. The contours
of the tensor components, and in particular those close to the cylinder,
look almost identical. To emphasize and quantify the similarity of these
solutions, it can additionally be stated that their final 𝐶𝑑 difference is
only of magnitude 10−6.

Table 3 shows 𝐶𝑑 results for computations with the eigenvalue-
free logarithmic Giesekus model. The Giesekus model has an additional
parameter, the mobility factor 𝛼 ∈ [0, 1]. Again, good agreement
with the literature can be observed. Additionally, our results show the
significant influence of 𝛼 on the drag coefficient. We do not want to go
into detail here, as the effect of 𝛼 on 𝐶𝑑 has already been investigated
by others, see for example [35]. As 𝛼 increases (for fixed Wi), the drag
decreases, which is explained by the shear-thinning property of the
Giesekus model. When 𝛼 tends to zero, the Giesekus model transitions
to the Oldroyd-B model and thus, the 𝐶𝑑 values converge to the
corresponding values in Table 2.

All computations were run in parallel on the Caro HPC cluster of the
German Aerospace Center. M1 simulations were run on 32 cores, M2

Journal of Non-Newtonian Fluid Mechanics 322 (2023) 105133F. Becker et al.

k

Table 3
Final values for the drag coefficient 𝐶𝑑 at 𝑇 = 30 for the confined cylinder case, using the eigenvalue-free Giesekus formulation at different Weissenberg numbers. Three different
mobility factors 𝛼 ∈ {0.1, 0.01, 0.001} were considered.

Wi 𝐶𝑑

𝛼 = 0.1 𝛼 = 0.01 𝛼 = 0.001

M1 M2 M3 [35] M1 M2 M3 [35] M1 M2 M3 [35]

0.1 125.542 125.585 125.591 125.587 129.626 129.667 129.674 129.671 130.246 130.287 130.293 130.291
0.2 117.068 117.109 117.116 117.113 124.629 124.666 124.672 124.670 126.358 126.392 126.398 126.396
0.3 111.055 111.095 111.102 111.098 120.050 120.081 120.087 120.085 122.753 122.775 122.780 122.778
0.4 106.814 106.852 106.859 106.855 116.487 116.513 116.519 116.517 119.974 119.979 119.984 119.981
0.5 103.694 103.731 103.737 103.733 113.842 113.863 113.869 113.867 118.020 118.005 118.008 118.005
0.6 101.304 101.340 101.345 101.341 111.884 111.900 111.906 111.906 116.756 116.721 116.722 116.719
0.7 99.413 99.447 99.452 99.448 110.401 110.415 110.421 110.422 116.040 115.986 115.985 115.982
0.8 97.875 97.908 97.913 97.909 109.238 109.249 109.255 109.258 115.736 115.666 115.665 115.679
0.9 96.599 96.631 96.636 96.631 108.287 108.297 108.302 108.307 115.724 115.641 115.642 115.664
1.0 95.520 95.552 95.556 95.552 107.483 107.491 107.496 107.505 115.907 115.811 115.813 115.868
a

m
T
b
s
c
m
n
f
l
e
e
w
t
a
q
w
𝐾

𝐾

w

Fig. 5. Illustration (not to scale) of the sedimenting sphere. Fluid flows from the inlet
at the left side to the outlet at the right side. A fixed non-zero velocity is considered
at the channel wall. A sphere with solid surface (zero velocity) is placed inside the
channel.

simulations on 64 cores and M3 simulations on 128 cores. In its cur-
rent state, we observe that our implementation of the eigenvalue-free
variant is slightly slower than the standard eigenvalue-based implemen-
tation. In particular, we measure a runtime increase of around 7% per
time-step in the log-conf equation. However, solving the constitutive
equation for a single relaxation mode has only a minor impact on
the overall runtime of the algorithm, since the momentum equation
and the SIMPLEC algorithm are more computationally heavy. This is
corroborated by the comparison of the total runtimes for our test case
on M3 using the eigenvalue-free formulation with those of the standard
formulation, which differ by less than 1%.

Further performance optimizations of the Algorithms 1 and 2 are
possible, but at the moment not considered in our prototypical imple-
mentation. At the moment, e.g., our implementation does not exploit
the matrix symmetry of 𝐗 in Algorithm 2, which could easily save
some floating point operations. Another optimization opportunity that
is currently unexploited, and which is for the eigenvalue-based im-
plementations much more difficult to pursue, is to bring the actual
computations onto a GPU.

We also applied the eigenvalue-free approach to other simulation
cases at higher Weissenberg numbers and did not observe any sig-
nificant differences regarding its stability compared to the standard
approach.

5.2. Sedimenting sphere

To demonstrate the eigenvalue-free approach on a three-
dimensional problem, a simulation similar to the confined cylinder, the
sedimenting sphere, is considered. In this benchmark, fluid flow around
a spherical obstacle inside a three-dimensional channel is considered.
The sphere has a radius of 𝑅 and the channel a height (or diameter) of
4𝑅. Based on the setup in [12], we impose a channel length of 20𝑅 and
eep the sphere centered at (7𝑅, 0, 2𝑅). An excerpt of the computational
11

domain is shown in Fig. 5. s
Table 4
Mesh statistics for the sedimenting sphere geometry.

M1 M2 M3

Number of elements in the mesh 139 392 1 115 136 8 921 088
Number of elements on the sphere surface 1152 4608 18 432
Average element non-orthogonality 11.1 11.7 12.0
Maximum element non-orthogonality 41.1 52.4 64.4
Maximum element skewness 1.7 1.8 1.8

5.2.1. Setup
Boundary and initial conditions are chosen according to the liter-

ature in order to increase comparability. A uniform inlet condition is
considered, with a fixed non-zero velocity 𝑢̄ in 𝑥-direction, zero poly-
meric extra stress components, and a zero-gradient condition for the
pressure. At the channel wall, the boundary conditions are chosen equal
to the inlet conditions. Thus, in particular, the velocity is uniformly
fixed with non-zero component in 𝑥-direction as well. At the sphere, a
no-slip condition for the velocity is considered (𝐮 = 𝟎). The polymeric
extra stress components are linearly extrapolated onto the surface and
the pressure uses a zero-gradient condition. At the outlet, zero-gradient
conditions are imposed for all variables except for the pressure, which
uses a fixed value condition 𝑝 = 0.

In the following tests, 𝑅 = 1m and 𝑢̄ = 1m∕s were used, such that
the Weissenberg number equals the numerical value of the relaxation
time in seconds and can again be controlled by a change of 𝜆. As in the
corresponding literature, a viscosity ratio of 𝛽 = 𝜂𝑠∕(𝜂𝑠 + 𝜂𝑝) = 0.5 and

density of 𝜌 = 1 kg∕m3 have been used.
Three purely hexahedral meshes M1, M2 and M3 of different refine-

ent levels have been considered. Their main properties are shown in
able 4. During refinement, the total number of elements is multiplied
y eight from mesh to mesh, while the number of elements at the sphere
urface is quadrupled. It was observed that the 𝐶𝑑 computation in this
ase was very sensitive to the overall mesh quality. Configuring the
esh for the sedimenting sphere simulations, with the goal to minimize
on-orthogonalities and skewnesses on all refinement levels, did there-
ore play an important role during our research. Additionally, boundary
ayers around the sphere surface were introduced for smaller numerical
rrors close to the surface and, therefore, a better 𝐶𝑑 accuracy. An
xcerpt of mesh M1 is presented in Fig. 6. Again, an end time 𝑇 = 30
as used and a Courant number of 0.5 was fixed, leading to typical

ime-step sizes ranging from 1.6 × 10−2 s on M1, to 8.0 × 10−3 s on M2
nd 4.0 × 10−3 s on M3. At this point, it should be mentioned that the
uantity of interest in the following tests is the drag correction factor 𝐾,
hich is typically used in sedimenting sphere benchmarks [12,40–43].
is given by

=
𝐶𝑑
6𝜋

, (65)

here 𝐶𝑑 is the drag coefficient value from Eq. (62) with 𝛤 being the
phere surface. The definition of 𝐾 is motivated by Stokes’ law [44,45].

Journal of Non-Newtonian Fluid Mechanics 322 (2023) 105133F. Becker et al.
Fig. 6. Rendering of the hexahedral mesh M1 for the sedimenting sphere benchmark.
Table 5
Final values for the drag coefficient 𝐶𝑑 at 𝑇 = 30 for the sedimenting sphere case, using the eigenvalue-free Oldroyd-B formulation at different Weissenberg numbers. RE corresponds
to the Richardson extrapolation value.

Wi 𝐾

M1 M2 M3 RE [12] [40] [41] [42] [43]

0.1 5.73784 5.82977 5.86723 5.90469 5.90576
0.2 5.64635 5.73532 5.77120 5.80708 5.80763
0.3 5.53994 5.62529 5.65930 5.69331 5.69356 5.69368 5.6963
0.4 5.43888 5.52076 5.55300 5.58524 5.58527
0.5 5.35026 5.42977 5.46043 5.49109 5.49093 5.4852
0.6 5.27577 5.35396 5.38330 5.41264 5.41227 5.41225 5.4117 5.4009
0.7 5.21468 5.29244 5.32071 5.34898 5.34838 5.3411
0.8 5.16544 5.24335 5.27092 5.29849 5.29747 5.2945
0.9 5.12649 5.20481 5.23202 5.25923 5.25761 5.25717 5.2518
1.0 5.09638 5.17511 5.20219 5.22927 5.22700 5.2240
1.1 5.07430 5.15274 5.17989 5.20704 5.20402 5.2029
1.2 5.05872 5.13653 5.16379 5.19105 5.18733 5.18648 5.1842 5.1877
1.3 5.04914 5.12552 5.15281 5.18010 5.17581 5.1763
1.4 5.04439 5.11890 5.14608 5.17326 5.16851
1.5 5.04361 5.11609 5.14291 5.16973 5.15293
5.2.2. Results
Table 5 shows 𝐾 values for the eigenvalue-free logarithmic Oldroyd-

B formulation and varying Weissenberg numbers between 0.1 and
1.5. In most cases, the compared publications show similar values
up to a magnitude of 10−3. In comparison, our results differ slightly
more, at a magnitude of 10−2. However, the mesh convergence of
our results suggests that better values could possibly be reached when
considering even finer meshes M4, M5 etc. To emphasize this point, we
apply a Richardson extrapolation with the discretization length ℎ as a
parameter. In our setting, we expect the error in 𝐶𝑑 to scale linearly
with ℎ, since we are using a piecewise linear approximation of the
sphere surface when computing the integral in Eq. (62). Furthermore,
the discretization length ℎ is divided by two in each refinement step. In
this case, the Richardson extrapolation value 𝐾RE of the drag correction
factor using the obtained values for M2 and M3 yields 𝐾RE = 2𝐾M3 −
𝐾M2. The resulting values are shown in the RE column of Table 5 and
they show a very good agreement with the compared publications, now
deviating at a magnitude of 10−3 as well. However, as already observed
by Knechtges [12], the results start to deviate more from each other
with increasing Weissenberg numbers, especially for 𝑊 𝑖 ≥ 1.4. Finally,
it can be noted that all data in Table 5 agrees on the overall trend of
decreasing 𝐾 values for increasing Weissenberg numbers.

Table 6 shows 𝐾 values for the eigenvalue-free logarithmic Giesekus
model, evaluated for the same variety of Weissenberg numbers as
before and mobility factors 𝛼 ∈ {0.1, 0.01, 0.001}. Our data agrees
with the literature. We observe a noticeable mesh convergence towards
the compared values. Furthermore, increasing Weissenberg numbers
result in decreasing 𝐾 values, which also agrees with the literature.
12
For decreasing 𝛼 values, an expected convergence of 𝐾 towards the
corresponding values in Table 5 is observed.

6. Conclusion and outlook

In this paper, we have shown how the 𝑓 (adΨ)-based formulation
that was first introduced in [10] can be used to engineer an eigenvalue-
free numerical algorithm for the log-conformation formulation.

In the course of our analysis, we first have proven the equivalence
of this formulation to many different log-conformation formulations,
including the original formulation by Fattal and Kupferman [1].

The new algorithm is in principle not tied to a specific discretization
scheme of the resulting constitutive equation. However, in order to
verify our algorithm, we have shown a working implementation in the
RheoTool [13,14] framework, which is based on OpenFOAM® [28].
The resulting implementation was successfully validated on the con-
fined cylinder and sedimenting sphere benchmarks.

For the future, we plan to bridge the performance gap of our
prototypical implementation in comparison to the standard implemen-
tation by exploiting the matrix symmetries even more. Furthermore,
we mostly see the application of this eigenvalue-free algorithm in
areas that have so far been hindered by the eigenvalue decomposition.
One is certainly bringing more of these heavy computations per finite
volume cell onto the GPU. Another is that the algorithm facilitates the
development of semi-implicit or fully implicit discretization schemes, in
the same vein as [11] facilitated adoption of automatic differentiation
methods in [46]. The latter may allow us to perform more efficient
simulations with larger time-steps in the future.

Journal of Non-Newtonian Fluid Mechanics 322 (2023) 105133F. Becker et al.

𝛼

Table 6
Final 𝐶𝑑 values at 𝑇 = 30 for the sedimenting sphere case, using the eigenvalue-free Giesekus formulation at different Weissenberg numbers. Again, three different mobility factors
∈ {0.1, 0.01, 0.001} were considered.
Wi 𝐾

𝛼 = 0.1 𝛼 = 0.01 𝛼 = 0.001

M1 M2 M3 [12] M1 M2 M3 [12] M1 M2 M3 [12]

0.1 5.65893 5.74798 5.78425 5.82166 5.72846 5.82003 5.85734 5.89573 5.73688 5.82878 5.86622 5.90473
0.2 5.42343 5.50506 5.53791 5.57160 5.61367 5.70137 5.73675 5.77275 5.64289 5.73172 5.76754 5.80393
0.3 5.18896 5.26348 5.29312 5.32349 5.47733 5.56024 5.59341 5.62694 5.53296 5.61800 5.65191 5.68610
0.4 4.98481 5.05332 5.08021 5.10785 5.34386 5.42207 5.45317 5.48451 5.42763 5.50898 5.54108 5.57324
0.5 4.81155 4.87494 4.89950 4.92489 5.22228 5.29652 5.32581 5.35531 5.33417 5.41278 5.44327 5.47366
0.6 4.66432 4.72327 4.74586 4.76938 5.11488 5.18557 5.21331 5.24127 5.25443 5.33106 5.36019 5.38910
0.7 4.53822 4.59333 4.61424 4.63616 5.02073 5.08810 5.11447 5.14118 5.18772 5.26290 5.29093 5.31861
0.8 4.42928 4.48107 4.50052 4.52109 4.93780 5.00201 5.02716 5.05280 5.13245 5.20647 5.23366 5.26037
0.9 4.33445 4.38330 4.40151 4.42090 4.86418 4.92515 4.94915 4.97387 5.08704 5.15984 5.18638 5.21235
1.0 4.25128 4.29753 4.31466 4.33303 4.79803 4.85574 4.87859 4.90248 5.04996 5.12126 5.14722 5.17264
1.1 4.17782 4.22181 4.23799 4.25545 4.73806 4.79234 4.81404 4.83716 5.02010 5.08921 5.11451 5.13955
1.2 4.11255 4.15453 4.16988 4.18653 4.68319 4.73395 4.75444 4.77684 4.99613 5.06247 5.08689 5.11165
1.3 4.05423 4.09441 4.10902 4.12496 4.63261 4.67979 4.69906 4.72077 4.97718 5.04009 5.06323 5.08774
1.4 4.00185 4.04042 4.05436 4.06966 4.58567 4.62929 4.64735 4.66840 4.96206 5.02120 5.04264 5.06688
1.5 3.95458 3.99169 4.00503 4.01975 4.54196 4.58201 4.59889 4.61931 4.95004 5.00520 5.02443 5.04829
w

𝐁

N
a

F

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgments

This Project is supported by the Federal Ministry for Economic
Affairs and Climate Action (BMWK) on the basis of a decision by
the German Bundestag. In addition, the third author thanks MAGMA
Gießereitechnologie GmbH for the freedom to work on cutting-edge
research topics.

Last but not least, the authors want to thank the reviewers of the
Journal of Non-Newtonian Fluid Mechanics for their valuable com-
ments.

Appendix. Poiseuille inflow conditions in the confined cylinder
benchmark

As written in Section 5.1, we want to prescribe a fully developed
Poiseuille flow at the inflow of the confined cylinder. This poses the
question of whether an easy expression to specify Ψ exists. For 𝝉 it is
known that

𝝉 =
(

𝜏𝑥𝑥 𝜏𝑥𝑦
𝜏𝑥𝑦 0

)

, (A.1)

with 𝜏𝑥𝑥 = 2𝜆𝜇𝑃
(

𝜕𝑦𝑢𝑥
)2 and 𝜏𝑥𝑦 = 𝜇𝑃 𝜕𝑦𝑢𝑥. The velocity 𝐮 is given by

𝐮 =
⎛

⎜

⎜

⎝

3
8 𝑢̄
(

4 − (𝑦−2𝑅)2

𝑅2

)

0

⎞

⎟

⎟

⎠

, (A.2)

with mean inflow velocity 𝑢̄ = 1m∕s in all benchmarks. The coordinate
system is centered at the lower left corner of the confined cylinder
domain (hence the −2𝑅 term), as depicted in Fig. 2.

The corresponding conformation tensor is thus given by

𝐂 = 𝟏 + 𝜆
𝜇𝑃

𝝉 = 𝟏 +
(

2𝑙2 𝑙
𝑙 0

)

, (A.3)

with 𝑙 = 𝜆 𝜕𝑦𝑢𝑥.
We claim that Ψ is given by

Ψ = log𝐂 = 1
(

𝑝 − 𝑞𝑙2∕𝑜 −𝑞𝑙∕𝑜
2

)

, (A.4)
13

2 −𝑞𝑙∕𝑜 𝑝 + 𝑞𝑙 ∕𝑜
with

𝑜 =
√

𝑙2(1 + 𝑙2) = |𝑙|
√

1 + 𝑙2 (A.5)

𝑝 = log(1 + 𝑙2) (A.6)

𝑞 = log
(

1 + 2(𝑙2 − 𝑜)
)

= 2 arsinh (−|𝑙|) . (A.7)

This is the same formulation as it was used for the actual computations
in [11]. Even though the correct formula was used for computations
in [11], a small error creeped into the formulas printed in [11], which
unfortunately omitted factors of 𝑙 in 𝛹𝑥𝑦 and 𝛹𝑦𝑦. With this appendix
we want to correct this error.

Coming to the proof, we split Ψ into two parts: one which encodes
the traceful part and one traceless part

Ψ =
𝑝
2
𝟏 + 𝐁 , (A.8)

ith

=
𝑞𝑙
2𝑜

(

−𝑙 −1
−1 𝑙

)

. (A.9)

ote that the identity matrix 𝟏 and 𝐁 obviously commute and thus
llow us to compute the matrix exponential as two factors

expΨ = exp
(𝑝
2

)

exp𝐁 (A.10)

=
√

1 + 𝑙2 exp𝐁 . (A.11)

In order to compute exp𝐁 it is helpful to see that the following identity
holds

𝐁2 =
𝑞2

4
𝟏 . (A.12)

rom this, it follows immediately

𝐁2𝑛 =
(𝑞
2

)2𝑛
𝟏 (A.13)

𝐁2𝑛+1 =
(𝑞
2

)2𝑛+1 2
𝑞
𝐁 . (A.14)

Therefore, we can split the computation of exp𝐁 into two summands

exp𝐁 =
∞
∑

𝑛=0

1
𝑛!
𝐁𝑛 (A.15)

=
∞
∑

𝑛=0

1
(2𝑛)!

𝐁2𝑛 +
∞
∑

𝑛=0

1
(2𝑛 + 1)!

𝐁2𝑛+1 (A.16)

= cosh
(𝑞
2

)

𝟏 + sinh
(𝑞
2

) 2
𝑞
𝐁 . (A.17)

Together with the identity cosh(arsinh(−|𝑙|)) =
√

1 + 𝑙2 it follows

exp𝐁 = 1
√

(

1 + 2𝑙2 𝑙
)

. (A.18)

1 + 𝑙2 𝑙 1

Journal of Non-Newtonian Fluid Mechanics 322 (2023) 105133F. Becker et al.
In total we obtain

expΨ =
(

1 + 2𝑙2 𝑙
𝑙 1

)

, (A.19)

which is what had to be proven.

References

[1] R. Fattal, R. Kupferman, Constitutive laws for the matrix-logarithm of the
conformation tensor, J. Non-Newton. Fluid Mech. 123 (2) (2004) 281–285.

[2] M.A. Hulsen, A sufficient condition for a positive definite configuration tensor
in differential models, J. Non-Newton. Fluid Mech. 38 (1) (1990) 93–100.

[3] G.C. Sarti, G. Marrucci, Thermomechanics of dilute polymer solutions: Multiple
bead-spring model, Chem. Eng. Sci. 28 (4) (1973) 1053–1059.

[4] H.C. Booij, The energy storage in the rouse model in an arbitrary flow field, J.
Chem. Phys. 80 (9) (1984) 4571–4572.

[5] M. Grmela, P.J. Carreau, Conformation tensor rheological models, J.
Non-Newton. Fluid Mech. 23 (1987) 271–294.

[6] P. Wapperom, M.A. Hulsen, Thermodynamics of viscoelastic fluids: The
temperature equation, J. Rheol. 42 (5) (1998) 999–1019.

[7] B. Jourdain, C. Le Bris, T. Lelièvre, F. Otto, Long-time asymptotics of a multiscale
model for polymeric fluid flows, Arch. Ration. Mech. Anal. 181 (1) (2006)
97–148.

[8] D. Hu, T. Lelièvre, New entropy estimates for the Oldroyd-B model and related
models, Commun. Math. Sci. 5 (4) (2007) 909–916.

[9] S. Boyaval, T. Lelièvre, C. Mangoubi, Free-energy-dissipative schemes for the
Oldroyd-B model, ESAIM Math. Model. Numer. Anal. 43 (03) (2009) 523–561.

[10] P. Knechtges, Simulation of Viscoelastic Free-Surface Flows (Ph.D. thesis), RWTH
Aachen, 2018, http://dx.doi.org/10.18154/RWTH-2018-229719.

[11] P. Knechtges, M. Behr, S. Elgeti, Fully-implicit log-conformation formulation of
constitutive laws, J. Non-Newton. Fluid Mech. 214 (2014) 78–87, http://dx.doi.
org/10.1016/j.jnnfm.2014.09.018, arXiv:1406.6988.

[12] P. Knechtges, The fully-implicit log-conformation formulation and its application
to three-dimensional flows, J. Non-Newton. Fluid Mech. 223 (2015) 209–220,
http://dx.doi.org/10.1016/j.jnnfm.2015.07.004, arXiv:1503.03863.

[13] F. Pimenta, M. Alves, RheoTool, 2016, https://github.com/fppimenta/rheoTool.
[14] F. Pimenta, M. Alves, Stabilization of an open-source finite-volume solver for

viscoelastic fluid flows, J. Non-Newton. Fluid Mech. 239 (2017) 85–104.
[15] M. Alves, P. Oliveira, F. Pinho, Numerical methods for viscoelastic fluid flows,

Annu. Rev. Fluid Mech. 53 (2021) 509–541.
[16] N. Balci, B. Thomases, M. Renardy, C.R. Doering, Symmetric factorization of the

conformation tensor in viscoelastic fluid models, J. Non-Newton. Fluid Mech.
166 (11) (2011) 546–553.

[17] T. Vaithianathan, L.R. Collins, Numerical approach to simulating turbulent flow
of a viscoelastic polymer solution, J. Comput. Phys. 187 (2003) 1–21.

[18] M.A. Carrozza, M.A. Hulsen, M. Hütter, P.D. Anderson, Viscoelastic fluid flow
simulation using the contravariant deformation formulation, J. Non-Newton.
Fluid Mech. 270 (2019) 23–35.

[19] C. Fernandes, A fully implicit log-conformation tensor coupled algorithm for the
solution of incompressible non-isothermal viscoelastic flows, Polymers 14 (19)
(2022) 4099.

[20] P. Saramito, On a modified non-singular log-conformation formulation for
Johnson–Segalman viscoelastic fluids, J. Non-Newton. Fluid Mech. 211 (2014)
16–30, http://dx.doi.org/10.1016/j.jnnfm.2014.06.008.

[21] M.A. Hulsen, R. Fattal, R. Kupferman, Flow of viscoelastic fluids past a cylinder
at high Weissenberg number: stabilized simulations using matrix logarithms, J.
Non-Newton. Fluid Mech. 127 (1) (2005) 27–39.
14
[22] C. Moler, C. Van Loan, Nineteen Dubious Ways to Compute the Exponential of
a Matrix, Twenty-Five Years Later, SIAM Rev. 45 (1) (2003) 3–49.

[23] G. Guennebaud, B. Jacob, et al., Eigen v3, 2010, http://eigen.tuxfamily.org.
[24] N.J. Higham, The scaling and squaring method for the matrix exponential

revisited, SIAM J. Matrix Anal. Appl. 26 (4) (2005) 1179–1193.
[25] A.H. Al-Mohy, N.J. Higham, A new scaling and squaring algorithm for the matrix

exponential, SIAM J. Matrix Anal. Appl. 31 (3) (2010) 970–989.
[26] N.J. Higham, Newton’s method for the matrix square root, Math. Comp. 46 (174)

(1986) 537–549.
[27] N.J. Higham, Functions of Matrices: Theory and Computation, SIAM, 2008.
[28] H.G. Weller, G. Tabor, H. Jasak, C. Fureby, A tensorial approach to computa-

tional continuum mechanics using object orientated techniques, Comput. Phys.
12 (1998) 620–631.

[29] R. Guénette, M. Fortin, A new mixed finite element method for computing
viscoelastic flows, J. Non-Newton. Fluid Mech. 60 (1) (1995) 27–52.

[30] J.P. Van Doormaal, G.D. Raithby, Enhancements of the SIMPLE method for
predicting incompressible fluid flows, Numer. Heat Transfer 7 (2) (1984)
147–163.

[31] J.H. Ferziger, M. Perić, R.L. Street, Computational Methods for Fluid Dynamics,
Springer, 2019.

[32] A. Syrakos, S. Varchanis, Y. Dimakopoulos, A. Goulas, J. Tsamopoulos, A critical
analysis of some popular methods for the discretisation of the gradient operator
in finite volume methods, Phys. Fluids 29 (12) (2017) 127103, http://dx.doi.
org/10.1063/1.4997682.

[33] C.M. Rhie, W.-L. Chow, Numerical study of the turbulent flow past an airfoil
with trailing edge separation, AIAA J. 21 (11) (1983) 1525–1532.

[34] G. Negrini, N. Parolini, M. Verani, The Rhie–Chow stabilized box method for the
Stokes problem, 2023, arXiv:2308.01059.

[35] S. Claus, T. Phillips, Viscoelastic flow around a confined cylinder using
spectral/hp element methods, J. Non-Newton. Fluid Mech. 200 (2013) 131–146.

[36] Y. Fan, R. Tanner, N. Phan-Thien, Galerkin/least-square finite-element methods
for steady viscoelastic flows, J. Non-Newton. Fluid Mech. 84 (2) (1999) 233–256.

[37] A.W. Liu, D.E. Bornside, R.C. Armstrong, R.A. Brown, Viscoelastic flow of
polymer solutions around a periodic, linear array of cylinders: comparisons of
predictions for microstructure and flow fields, J. Non-Newton. Fluid Mech. 77
(3) (1998) 153–190.

[38] J. Sun, M. Smith, R. Armstrong, R. Brown, Finite element method for viscoelastic
flows based on the discrete adaptive viscoelastic stress splitting and the discontin-
uous Galerkin method: DAVSS-G/DG, J. Non-Newton. Fluid Mech. 86 (3) (1999)
281–307.

[39] A. Afonso, P. Oliveira, F. Pinho, M. Alves, The log-conformation tensor approach
in the finite-volume method framework, J. Non-Newton. Fluid Mech. 157 (1)
(2009) 55–65.

[40] W.J. Lunsmann, L. Genieser, R.C. Armstrong, R.A. Brown, Finite element analysis
of steady viscoelastic flow around a sphere in a tube: calculations with constant
viscosity models, J. Non-Newton. Fluid Mech. 48 (1) (1993) 63–99.

[41] R.G. Owens, T.N. Phillips, Steady viscoelastic flow past a sphere using spectral
elements, Internat. J. Numer. Methods Engrg. 39 (9) (1996) 1517–1534.

[42] C. Chauvière, R.G. Owens, How accurate is your solution?: Error indicators for
viscoelastic flow calculations, J. Non-Newton. Fluid Mech. 95 (1) (2000) 1–33.

[43] Y. Fan, Limiting behavior of the solutions of a falling sphere in a tube filled
with viscoelastic fluids, J. Non-Newton. Fluid Mech. 110 (2) (2003) 77–102.

[44] G.G. Stokes, On the effect of the internal friction of fluids on the motion of
pendulums, Trans. Camb. Phil. Soc. IX Part II (1856) 8–106.

[45] P.C.F. Pau, J. Berg, W. McMillan, Application of Stokes’ law to ions in aqueous
solution, J. Phys. Chem. 94 (6) (1990) 2671–2679.

[46] F. Zwicke, P. Knechtges, M. Behr, S. Elgeti, Automatic implementation of material
laws: Jacobian calculation in a finite element code with TAPENADE, Comput.
Math. Appl. 72 (11) (2016) 2808–2822.

http://dx.doi.org/10.18154/RWTH-2018-229719
http://dx.doi.org/10.1016/j.jnnfm.2014.09.018
http://dx.doi.org/10.1016/j.jnnfm.2014.09.018
http://dx.doi.org/10.1016/j.jnnfm.2014.09.018
http://arxiv.org/abs/1406.6988
http://dx.doi.org/10.1016/j.jnnfm.2015.07.004
http://arxiv.org/abs/1503.03863
https://github.com/fppimenta/rheoTool
http://dx.doi.org/10.1016/j.jnnfm.2014.06.008
http://eigen.tuxfamily.org
http://dx.doi.org/10.1063/1.4997682
http://dx.doi.org/10.1063/1.4997682
http://dx.doi.org/10.1063/1.4997682
http://arxiv.org/abs/2308.01059

	An eigenvalue-free implementation of the log-conformation formulation
	Introduction
	Theory of Log-Conformation Formulations
	Eigenvalue-Free Algorithm Design
	Finite Volume Implementation
	Statement of the full set of partial differential equations
	Temporal discretization, linearization and SIMPLEC
	Spatial discretization
	Choice of linear solvers

	Benchmarks
	Confined cylinder
	Setup
	Results

	Sedimenting sphere
	Setup
	Results

	Conclusion and Outlook
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix. Poiseuille Inflow Conditions in the Confined Cylinder Benchmark
	References

