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ARTICLE INFO ABSTRACT
Keywords: Using curvature and torsion to describe Lagrangian trajectories gives a full description of these as well as an
Turbulence

insight into small and large time scales as temporal derivatives up to order 3 are involved. One might expect
that the statistics of these observables depend on the geometry of the flow. Therefore, we calculated curvature
and torsion probability density functions (PDFs) of experimental Lagrangian trajectories processed using the
Shake-the-Box algorithm of turbulent von Kérmén flow, Rayleigh-Bénard convection and a zero-pressure-
gradient turbulent boundary layer over a flat plate. The results for the von Karman flow compare well with
experimental results for the curvature PDF and results obtained by numerical simulations of homogeneous and
isotropic turbulence for the torsion PDF. Results for Rayleigh-Bénard convection agree with those measured
for von Karman flow, while results for the logarithmic layer within the boundary layer differ slightly. We
provide a potential explanation for the latter. To detect and quantify the effect of anisotropy either resulting
from a mean flow or large-scale coherent motions on the geometry or tracer particle trajectories, we introduce
the curvature vector. We connect its statistics with those of velocity fluctuations and demonstrate that strong
large-scale motion in a given spatial direction results in meandering rather than helical trajectories.

Lagrangian statistics
Intermittency

1. Introduction Unusually high values of torsion and curvature in tracer particle trajec-
tories indicate the presence of intense small-scale vortices. These can

An important feature of turbulent flows in nature and engineer-
ing applications is large-scale spatio-temporal coherence, more pre-
cisely, the presence of persistent large-scale structures. Such turbulent
superstructures occur in turbulent boundary layers in the laboratory
[1-4] or the atmosphere [5], and also in Rayleigh-Bénard convection
[6-9], for instance. They influence mixing and extreme events and, at
least in case of turbulent boundary layers, contribute significantly to
momentum exchange and kinetic energy of the flow [10,11] and to
the Reynolds stress [3,12]. One particular question that is of interest

usually not be resolved in numerical simulations at parameters relevant
in industrial applications or atmospheric physics, that is, their effect
needs to be incorporated into turbulence models. There is no doubt that
large-scale spatio-temporally coherent structures influence the motion
of Lagrangian particle trajectories, and presumably the statistics of
instantaneous curvature and torsion thereof. Curvature is a multi-scale
observable in the sense that connects velocity and acceleration, hence
its statistics may contain information regarding the effect of large-scale

from a fundamental and from a turbulence modelling perspective is
the connection between turbulent superstructures and extreme small-
scale velocity fluctuations [13,14], in particular near a solid boundary.

* Corresponding authors.

dynamics on the small scales.
The purpose of this paper is to compare curvature and torsion
statistics across different turbulent flows, including for the first time
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a turbulent boundary layer, to provide (a) baseline statistics for more
refined analyses in connection with large-scale coherent structures in
the flow, and (b) an observable that quantifies in a geometric sense and
with that the intuitive impression on how Lagrangian particles move in
different turbulent flows.

The statistics of curvature, «, and torsion, r of Lagrangian parti-
cle trajectories have been calculated for homogeneous and isotropic
turbulence [15-17] and Rayleigh-Bénard convection [18]. Across all
datasets, the same seemingly universal form for the probability density
functions (PDFs) of curvature and torsion have been found, with low-
curvature tails proportional to x and high-curvature tails proportional
to 723, and low-torsion tails proportional to z° and high-torsion
tails proportional to z=3. The power laws for governing both tails
of the curvature PDFs and that describing high-torsion events can
be derived assuming independent Gaussian statistics of velocity and
acceleration [16,18], which is not the case for turbulent flows. That
is, curvature and torsion statistics are seemingly insensitive to details
of the flow and in particular to at least low or moderate levels of
anisotropy.

Based on these results, we anticipate that the presence of turbulent
superstructures will not alter curvature and torsion statistics, hence a
more refined observable is required to provide information on how
large-scale coherent flow structures or a mean flow alter the geometry
of Lagrangian particle trajectories. To do so, we introduce the curva-
ture vector. It distinguishes between different spatial directions and
its statistics allow a physical interpretation of how Lagrangian parti-
cles move in different turbulent flows, depending on the large-scale
structure of the flow.

We find that curvature and torsion PDFs for Rayleigh-Bénard con-
vection (RBC) and von Kirmén datasets can be mapped to a mas-
ter curve after appropriate re-scaling with respect to the Taylor-scale
Reynolds number. This may have been anticipated for the curvature
since the bulk curvature statistics in RBC are the same as in homo-
geneous isotropic turbulence [18]. Here, we extend these results to
torsion statistics. This assessment is corroborated by the results for
the zero-pressure-gradient (ZPG) boundary layer in the logarithmic
region, where the torsion statistics agree with those of the aforemen-
tioned datasets. For curvature, the strong unidirectional flow in the
ZPG turbulent boundary layer suppresses high curvature events, and
low-curvature events become more likely compared to RBC and von
Karmén flow. In contrast, the statistics of the curvature vector prove
sensitive to even low levels of anisotropy. As such, we demonstrate the
curvature vector to be a useful observable to provide a quantification
of anisotropy in the Lagrangian frame of reference.

The paper is organised as follows. Section 2 outlines the required
background in the differential geometry of space curves in the context
of Lagrangian particle trajectories. The experiments, collected datasets
and analysis methods are described in Section 3. Section 4 contains
a summary and comparison of velocity, acceleration, curvature and
torsion statistics for the different datasets considered here. Our main
results are presented in Section 5, which focuses on the statistics of
the curvature vector. We conclude with a summary of our results and
provide suggestions for further research in Section 6.

2. Curvature and torsion of space curves

We consider a Lagrangian particle trajectory x(r) in a flow geo-
metrically as given by the motion of a particle along a differentiable
curve embedded in three-dimensional space. The Frenet-Serret formu-
lae describe such curves through the respective rates of changes of
the tangent vector T to the curve, the vector normal to it, N and the
binormal vector B = T x N with respect to the arclength s of the curve

d
ST =xN, 1
P K (@]
4N-_«T+:B, 2
ds
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iB =—7N ,
ds
where k = |d/dsT| is the curvature and r = |d/ds B| the torsion. Since
T is the tangent vector to the curve with respect to arclength, its rate
of change will always be perpendicular to it, hence N is normal to T.
For Lagrangian trajectories it is useful to express curvature and
torsion as time derivatives of the particle position, that is velocity and
acceleration, instead of in terms of the arclength of the curve
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where u is the instantaneous velocity, a the instantaneous acceleration
and a, the acceleration component normal to the velocity vector, and
a denotes the total time derivative of the acceleration.

As most flows in nature or engineering applications are not statis-
tically homogeneous and isotropic, a measurement that reveals these
broken statistical symmetries is needed. Curvature and torsion are
global properties that measure the total instantaneous change in the
shape of a trajectory. By construction, no information about the contri-
butions to the total curvature stemming from the rate of change of the
tangent vector to the curve in each coordinate direction is retained.
In order to obtain such information, in what follows we define the
curvature vector, and propose to consider the statistics of its projections
onto coordinate directions defined by the experimental configurations.

2.1. Curvature vector

As introduced above, the curvature is defined as the magnitude of
the rate of change of the tangent vector with respect to the arclength
of the curve. In the context of anisotropy and a fixed coordinate system
determined by the experimental apparatus, one may consider the rates
of change of the tangent vector to a Lagrangian trajectory in the
respective coordinate direction, expressed in terms of time derivatives

d

ds

vt _ 1
ds |ul

(6)

Inspired by the definition of the signed curvature for planar curves
and since the arclength derivative of the tangent vector is always
perpendicular to the tangent vector, we define the curvature vector as
the cross product between T and d/dsT

x=T><iT=T><LT=
ds |ul

uxa

lul®
and its absolute value is given by the expression for the curvature in
Eq. (4). The curvature vector, visualised in Fig. 1 for an example
trajectory, is perpendicular to the velocity u and the acceleration vector
a, and is closely related to the bi-normal vector as part of the Frenet—
Serret formulae. For planar curves, where x is always perpendicular to
the plane the curve lies in, it corresponds to the signed curvature. To
probe the effect of large-scale coherent flow structures and more gener-
ally anisotropy on the geometry of Lagrangian particle trajectories, we
will discuss the statistics of the projection of this vector onto the x-, y-
and z-directions, respectively,
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The curvature vector quantifies what physical intuition would tell us
about the geometry of particle trajectories in configurations with a
strong mean flow. For instance, by Eq. (8) a strong unidirectional flow
should lead to smaller changes in the tangent vector to the curve in the
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Fig. 1. Curvature vector of a trajectory and projections onto the x-, y- and z- directions.
The dashed line represents a space curve, the colors indicate the different directions
with blue (dark gray) corresponding to the x-component, red (gray) to the y-component
and green (light gray) to the z-component of the curvature vector, and the curvature
vector, as defined in Eq. (8), is shown in black.

mean flow direction and hence one may expect a higher probability of
small values of the curvature in this direction compared to the other
coordinate directions. We will see in Section 5 that this is indeed the
case.

Finally, considering again the expressions for the components of the
curvature vector given in Eq. (8), we note that the same argument that
determines the shape of the right tail of the curvature PDF [16] may
be applied here to the PDFs of the curvature vector components.

A power-law governing the left tails of the curvature vector compo-
nents can be derived by noting that each component of the curvature
vector can be interpreted as the (signed) curvature of a 2D space curve.
We now apply the same arguments proposed in Ref. [16] to determine
the asymptotics of the left tails of the full 3D curvature PDF to the
2D case. That is, we assume that the component PDF scale with the
normal acceleration in the limit x; — 0, where i stands for x, y or z, and
further assume Gaussian statistics for the single acceleration component
normal to the — now 2D - velocity. The leading order term is then
constant. In summary, we may expect the left tails of the PDF of the
curvature vector components k; to scale as K?. We will see that this is
indeed the case.

3. Methods and data

The analysed data consists of a turbulent von Karmén flow, Rayleigh—
Bénard convection at two different Rayleigh numbers and a ZPG turbu-
lent boundary layer. Key properties and observables of the experiments
are provided in

Table 1, and descriptions of the different experimental configura-
tions and obtained datasets are provided below. For all datasets, a
global coordinate system is used, that is the standard Rayleigh-Bénard
convection setup where x- and y-directions define the horizontal plane
and z is the vertical direction normal to the heated bottom plate.
Therefore the coordinate system for the boundary layer here has its
wall-normal direction in z-direction rather than the commonly used y-
direction. The coordinate system for the von-Karman flow is defined
to have the propellers along the z-axis. In all cases, the experimental
error is estimated as noise using a spectral analysis of the particle
positions. The amplitude spectrum falls of with a specific slope, until it
turns towards a constant value for high frequencies. The frequency at
which this transition occurs, is called the crossover frequency f, and
the positional error Ax of the raw particle tracks can be estimated as
the height of this constant level [19].
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Fig. 2. Visualisation of a subset of tracer particle trajectories in von Karmén flow. The
colour bar indicates the absolute value of the velocity. A color version of this figure
is available in the web vesion of this article.

3.1. Shake-The-Box algorithm

All present data was obtained by applying Lagrangian Particle
Tracking [20]. In particular, the Shake-The-Box (STB) [21] algorithm
was used to derive long particle trajectories from the time-resolved
projections of a dense field of illuminated flow tracers onto several
cameras. STB overcomes the limitations in seeding density of prior
particle tracking methods by combining the use of an iterative particle
triangulation approach and a temporal predictor/corrector scheme.
More precisely, STB employs advanced Iterative Particle Reconstruction
(IPR) [22,23] to determine 3D particle positions. From the recon-
structed 3D positions of the first few time-steps in a series, short
trajectories are extracted by searching for low-acceleration combina-
tions. These first tracks are then extended (predicted) to the following
time-step and an image matching scheme is applied to correct for the
occurring prediction errors prior to any reconstruction step. This ‘shak-
ing’ results in a very reliable extension of known trajectories, while
new ones are continually extracted and added by further application
of IPR on the residual images until convergence after typically 10-15
time steps is reached. At this state, almost all trajectories inside the
measurement volume are known and can be predicted and corrected in
all subsequent time steps, while only those few particles newly entering
the volume per time step need to be reconstructed by IPR and further
added to the tracking system. The complete process allows the tracking
of particles in high numbers (on the order of 100.000 particles per
megapixel camera resolution), while avoiding the generation of false
(ghost) tracks.

3.2. von Kdrmdn flow

The experiment was carried out by DLR Goéttingen at the von
Karmén facility at the MPI Gottingen [24]. The device consists of two
counter-rotating propellers of 500 mm diameter in a tank filled with
water rotating with frequency f, = 0.5 Hz. That generates approxi-
mately homogeneous and isotropic turbulence in a small volume in the
centre of the flow chamber. The flow is seeded with Dynoseeds TS20
as tracer particles, with a Stokes number of 10~* effects on the flow
can be neglected. The particles are illuminated by a high-repetition
speed laser. The camera system recording the flow consists of four
cameras operating at 1250 Hz, leading to a high temporal resolution
(z, - f = 16.25), where 7, is the Kolmogorov time scale. To track the
tracer particles the Shake-The-Box algorithm is applied, yielding up to
100000 tracked particles per time step in a volume of approximately
40 x 15 x 40 mm>. A visualisation of a subset of particle trajectories is
provided in Fig. 2.
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Table 1

Parameters and key observables of the analysed datasets, von Kadrméan flow (vK), Rayleigh-Bénard convection (RBC) and the ZPG turbulent
boundary layer (BL). The Taylor-scale Reynolds number is Re, = /15(Uyy,)*n2/v? where U, =
of the velocity fluctuations in the different directions, # the Kolmogorov length-scale, 7, the Kolmogorov time-scale, and v viscosity. The friction
Reynolds number is Re, = %, with u, = m where 7, is the wall-shear stress, 5 the boundary-layer thickness and p the density; f is
the camera (sampling) frequency and Ax the experimental uncertainty measured spectrally [19] where f, is the frequency where the spectra
becomes constant. The Stokes number S is the ratio of the particles’ response time and a timescale of the flow. Flow-specific properties and
parameters are the propeller frequency f, for von Kérmén flow and the mean velocity U for the boundary layer. For the RBC, we have the
Rayleigh number Ra = gadT H?/(vk), Prandtl number Pr = v/k, with g the gravitational acceleration, « the isobaric expansion coefficient, x
the thermal diffusivity, H the cell height and AT the temperature difference between top and bottom plate. The aspect ratio is denoted by
I' and the thickness of the thermal boundary layer by A, = H/(2Nu), with Nu the Nusselt number. The volume V is the volume where the
trajectories are recorded, V,, the sub-volume considered for our calculations, and N is the number of total number of trajectories, histograms
of trajectories lengths are shown in Fig. 5.

1/3 ((u2) + u2) + (u2)) is the root-mean-square

vk RBC I RBC II BL
Re, 270 147 186 108
Re, - - - 2295
7, [s] 0.013 0.35 0.18 0.0023
f [Hz] 1250 20 30 1000
7, f 16.25 7 5.4 2.3
7 [mm] 0.1 2.3 1.7 0.186
Ax [pm] 3 22 24 30
n/Ax 33 96 70 6.2
fe (0.15,0.15,0.18) (0.18,0.18,0.18) (0.22,0.22,0.22) (0.25,0.2,0.25)
S1[1073] 0.1 0.80 +0.17 0.80 +0.17 10
f, [Hz] 05 - - -
U [m/s] - - - (7,0,0)
Ra[10%] - 5.25+0.06 153+0.3 -
Pr - 0.7 0.7
AT [K] - 4.03 +0.06 11.8+0.2 -
r - 1 1 -
4, [mm] - 11.5 8.5 -
V [cm?] 0.4%0.15% 0.4 55272 x 110 5527 x 110 280 x 80 x 25
V,, [em?] 04x0.15x0.4 52.5%7 x 104.5 52.5%7 x 104.5 100 x 80x 1
N 92739514 1287242 12150782 99286611
T———
[ —
6001//‘
\ — |
sw0+— | &
00— | J : ]
) \
e A ——-
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Fig. 3. Visualisation of a single long tracer particle trajectory in Rayleigh-Bénard convection at Ra = 1.53 - 10°. The colour bar indicates the vertical component of the velocity.A

color version of this figure is available in the web vesion of this article.

3.3. Rayleigh-Bénard convection

Both datasets of the Rayleigh-Bénard convection were generated at
the DLR Géttingen [25]. The Rayleigh numbers are Ra = 5.25 - 108
(RBC D) and Ra = 1.53 - 10° (RBC II) for the two different datasets. The
experimental set up contains a cylindrical convection cell filled with
air at aspect ratio I' = 1 and height H = 1.1 m in z-direction and the
top and bottom plate in the xy-plane. To ensure constant heating at
the bottom, the plate is an electrically heated aluminium plate and for
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constant cooling at the top, the top plate is water perfused. The flow
is seeded with helium filled soap bubbles as tracers with a diameter of
370 pm with an average life expectancy of 326s. Their Stokes number
is ~ 8-10~* which again allows to treat the particles as passive tracers.
The flow is illuminated by 849 pulsed LEDs placed above the top plate
and synchronised with a system of six scientific cameras operating at
20 Hz and 30 Hz for the two different cases. The tracking of over
500000 tracer particles is again carried out using the Shake-The-Box
algorithm. A visualisation of single long trajectory is provided in Fig. 3.



Y. Hengster et al.

European Journal of Mechanics / B Fluids 103 (2024) 284-298

2/ 0

10 1073 L 100

30
U, =Tm/s

Ut =t
20 + +

— Ut =log(z")/0.41 + 5.2

5

10 g

103 10?

10%

100

z

150 200 250
+

300

Fig. 4. Turbulent boundary layer. Top: Stream-wise mean velocity as a function of the distance to the wall, measured in + -units where U* = u,/u, and z* = zu_ /v with u_ the
friction velocity and expected velocity profiles. The data clearly follows the logarithmic law from around z* =30 to z* = 400. The box indicates the volume used for the analysis
presented here, that is z+ = 153 to z* = 287. Middle: Visualisation of a subset of tracer particle trajectories within a turbulent boundary layer coloured with stream-wise velocity.
The ZPG region analysed here extends from x = 0 mm until x = 1000 mm. Bottom: Kolmogorov time 7, as a function of the wall normal distance in wall units. The red box indicates
the sub-volume used in the analysis. A color version of this figure is available in the web vesion of this article.

Further details of the experiment and flow visualisations including a
video introduction to the experiment are provided in Refs. [25,26]. We
point out that large-scale motion in form of the large-scale circulation
(LSC) is observed in both datasets, see Ref. [26].

3.4. Turbulent boundary layer

The last dataset considered is of a turbulent boundary layer with
ZPG [27] and a bulk flow velocity of 7 m/s. The experiment was
conducted in the atmospheric wind tunnel at the Universitat der Bun-
deswehr Miinchen as part of a joint campaign between the University
and the DLR. The wind tunnel has a 22m long test section with a 7m
long boundary layer model installed on the side wall several meter
downstream from the beginning of the test section. The boundary
layer model consists of an S-shaped flow deflection and a downstream
straight ramp designed to produce strong adverse pressure gradients up
to separation. In between the flow deflections, a 4 m long flat plate is
installed over which ZPG conditions are present.

The analysis carried out here is restricted to a fraction of the
logarithmic layer (zt = 153 — 287) of the turbulent boundary layer

288

in the ZPG region, as indicated by the box in Fig. 4 (top). We only
focus on a fraction of the logarithmic layer as it is not possible to define
global Kolmogorov scales. We determined the size of the sub volume by
balancing the convergence of the data analysis and the assumption of
constant Kolmogorov scales (Fig. 4 (bottom)). The Kolmogorov length
scale varies between 174.24 pm and 186.14 pm and the time scale
between 2.02 ms and 2.56 ms. Details on the method used to calculate
the Kolmogorov are given in Ref. [28].

The camera system consists of twelve high speed cameras operating
at 1000 Hz recording a volume of approximately 2800 x 800 x 250 mm?
in stream-wise X span-wise x wall-normal direction. The ZPG region
was fully recorded with a length of 1800 mm in stream-wise direc-
tion. Ten high power LED arrays, installed above the wind tunnel,
illuminated the flow containing helium filled soap bubbles (HFSB) as
tracers. The Stokes number, based on the response time of HFSB (~
30 ps [29]), and the free-stream velocity and displacement thickness, is
0.01. Therefore, we do not expect any inertial effects to play a role
and are assuming the particles to be passive tracers. Up to 600000
bubbles can be tracked instantaneously within the full volume over
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Fig. 5. Histograms of trajectory length for (a) von Karmén flow, (b) boundary layer,
Trajectories considered for the analysis have a minimal length of 100 time steps.

time-series of approximately 1382 images using the DLR Shake-The-
Box implementation. A visualisation of a subset of particle trajectories
is provided in Fig. 4 (middle). A more detailed explanation of the
experimental set up, calibration and the Lagrangian particle tracking
can be found in Ref. [27]. We point out that turbulent superstructures
in form of coherent structures of considerable stream-wise extent are
observed in this dataset, see Ref. [27], fig. 5.

3.5. Data processing

To calculate derivatives up to order three, and hence curvature
and torsion, accurately, the analysed trajectories should not be too
short. Histograms of the trajectory lengths are presented in Fig. 5. As
can be seen from the heavy tails of the histograms, we tracked many
long trajectories. The mean trajectory lengths are 141 frames for von
Kéarman flow, 656 frames for RBC I, 475 frames for RBC II and 155
frames for the turbulent ZPG boundary layer. We only use trajectories
consisting of at least 100 time steps. We use the Trackfit algorithm
as introduced by Gesemann et al. [19] to fit B-Splines of order three
to the particle positions smoothing with an optimal filter length de-
termined by assuming third derivative to be white noise. In principle
this can become a problem when calculating the torsion. To obtain
at least qualitative information on the latter, we show time-series of
the velocity and acceleration components of a single trajectory of each
dataset Figs. 6 and 7. Comparing these individually for each dataset,
we can see that the velocity fluctuates on time scales larger than for
the acceleration, as expected. For all cases we can see that the signal
is highly intermittent. However, the time series of the acceleration
appears sufficiently smooth to allow a physical interpretation of its
derivative, at least for von Kdrmén flow and RBC.

To verify that the methods used agree with previous results from
the literature, we calculate the acceleration auto-correlation functions:

Ri(7) =(a;() - a;(t + 7)) , )

where ¢;(?) is the instantaneous acceleration in the ith-direction.

The auto-correlation functions are only calculated for trajectories
that lie fully in a selected sub-volume, V,,, which for Rayleigh-Bénard
convection excludes thermal and side-wall viscous boundary layers
and for the turbulent boundary layer restricts our calculations to the
logarithmic region, see Table 1) for further details.

length [time steps]

(c) RBC I and (d) RBC II. The histograms are based on the full measurement volume V.
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Fig. 6. Time series of velocity components for (a) von-Kdrmén flow, (b) RBC II, (c)
the turbulent boundary layer.

For the von Kirmén data, a zero-crossing around 2.2 7, is ex-
pected [30,31], and similarly for Rayleigh-Bénard convection [32].
Stelzenmuller et al. [33] calculated the auto-correlation function in
turbulent channel flow, based on the initial height of the particles.
For span-wise and wall normal direction, the zero-crossing of the auto-
correlation function is also found to be around 2 7, and shifted to a
higher value in stream-wise direction. We expect the same behaviour
for the boundary layer dataset, as the analysed heights in both cases
are where the mean velocity follows the logarithmic law, see also Fig. 4
(top). So far, no physical argument was found, why the auto-correlation
functions have the zero crossing around 2 7, and this is still one of the
open questions in turbulence theory.
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Fig. 7. Time series of acceleration components for (a) von-Karman flow, (b) RBC II,
(c) the turbulent boundary layer.

In Fig. 8 the correlation functions of the acceleration components
are shown. For the von Karman flow and the two RBC cases the ac-
celeration auto-correlation functions have the expected zero-crossings
around 2 7, with slight differences in the different directions. For the
boundary layer, the zero-crossing is around 2.9 7, and 2.2 7, in y-
and z—directions, respectively. In stream-wise direction, the correlation
function crossed zero around 3.1 z,.. This is slightly higher than reported
for the pipe flow in [33]. What should be noted here is that the
temporal resolution is close to the Kolmogorov timescale, and therefore
events on this timescales could be filtered out.

4. Velocity, acceleration, curvature and torsion

The following sections present probability density functions (PDFs)
of velocity, acceleration, curvature and torsion for the previously de-
scribed datasets. We compare the results with literature as well as be-
tween the different datasets, focusing in the first instance on similarities
and differences between the respective curves and model predictions
assuming statistical homogeneity and isotropy [16], and subsequently
also on the effect of the Taylor-scale Reynolds number Re,.

4.1. von Kdrmdn flow

Fig. 9(a) presents the standardised PDFs of each velocity component
of the von Karmén flow at Re; = 270 with PDFs of u, and u,, P(u,) and
P(u,), being approximately Gaussian as expected and first reported in
Refs. [34,35]. In fact, the flatness values of P(u,) and P(u,) are 2.77
and 2.33, respectively, indicating slightly sub-Gaussian statistics. The
PDF of the velocity component normal to the propellers, u,, however,
has super-Gaussian tails leading to a flatness value of 3.44. The latter
indicates that extreme velocity fluctuations are more likely in the
z-direction compared with the x- and y-directions. This shows that
large-scale fluctuations that break statistical isotropy occur, which is
known indeed that von Karmén flow is not fully isotropic [36]. Its
large-scale dynamics is dominated by a shearing and a pumping mode,
the former being the result of the counter-rotating propellers, while
the latter drives fluid first inwards and subsequently upwards towards
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the propellers through centrifugal pumping, see the visualisations in
fig. 11 of ref. [37]. Furthermore, as the ratio of transverse and axial
components of the rms velocity of around 1.5 varies only weakly with
propeller speed, the large-scale dynamics appear not to depend strongly
on Reynolds number [37]. By inspection and comparison between the
standardised PDFs of each acceleration component shown in Fig. 9(b),
we note that all PDFs have similarly wide tails, in qualitative agreement
with known results on Lagrangian acceleration statistics in homoge-
neous and isotropic turbulence obtained from numerical data [30,38-
41] and experimental data [40-43]. For a quantitative comparison, we
consider numerical data at a slightly higher value of Re; = 350 [38],
where extreme events up to 40 times the standard deviation occur with
probabilities around 1077, see figure 3(a) of Ref. [38]. As can be seen
from Fig. 9(b), our results are commensurate with these values.

Curvature and torsion PDFs are shown in Figs. 10(a) and (b),
respectively, and we observe the expected power laws for left and right
tails of the PDFs as in previous work on curvature and torsion statis-
tics in homogeneous and isotropic turbulence using either DNS data
for curvature and torsion [15,17] or experimental data for curvature
only [16]. That is, the left tail of the curvature PDF that corresponds
to small-curvature events is proportional to xx while the right tail that
corresponds to high-curvature events scales as (k7). For the torsion
PDF we find P(z) ~ (zn)° for low-torsion events and P(r) ~ (z5)~3
for high-torsion events. These curvature PDF exponents can be derived
assuming independent Gaussian statistics for velocity and acceleration
[16], similar arguments apply to the exponent describing the right
tail of the torsion PDF [17,18]. Acceleration statistics in developed
turbulence are not Gaussian and velocity and acceleration statistics
are not independent either [30]; however, using a recently developed
decomposition technique of Lagrangian statistics into Gaussian sub-
ensembles [38], the PDF exponents can be derived without these
assumptions [44].

Rather than connecting curvature with vortical flow structures,
Xu et al. [16] showed that large-scale flow reversals affect curvature
statistics and suggest to filter out these events in order to probe the
more intuitive idea that connects curvature with vorticity. As large-
scale flow reversals generally occur on short time scales, the filtering
was implemented by averaging the curvature along a trajectory over a
small interval in time. Such filtering is also useful to detect correlations
between high-normal-acceleration events and vortex filaments [45].

To compare with previous measurements of curvature statistics and
extend to torsion statistics, we filtered curvature and torsion along each
trajectory for time intervals of one, five and ten Kolmogorov times with
results shown in Figs. 10(a) and (b) alongside the unfiltered case for
curvature and torsion, respectively. The filtering intervals were chosen
to match those in Ref. [16]. Ideally a comparison to the time scales
of large-scale flow reversals would be in order, however, we cannot
extract this information from our data. For the curvature PDFs of the
filtered data, the right tail corresponding to large values of the cur-
vature seems to remain relatively stable, while we observe significant
differences between the left tails of the PDFs associated with small
values of the curvature compared with the unfiltered case. Small values
of curvature are becoming increasingly less likely with increasing filter
scale. Similar results have been reported by Xu et al. [16], albeit with
more profound effects in the high-curvature tail. For torsion PDFs, we
observe the opposite trend, with the low-torsion tail remaining largely
unaffected by the filtering while high torsion events become less likely
with increasing filter width. Disregarding potential correlations, such
behaviour can be explained by inspection of Eq. (5) that describes the
torsion, where the curvature appears in the denominator. Hence a sup-
pression of low curvature events can plausibly result in a suppression
of high torsion events.
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Fig. 9. Standardised PDFs of (a) velocity, (b) and acceleration components for von Kdrméan flow on semi-logarithmic scales. The dashed line in (a) corresponds to a Gaussian with
zero mean and a standard deviation of unity.
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Fig. 10. (a) Curvature PDFs and b) torsion PDFs for the von Kdrman dataset. PDFs of averaged curvature and torsion over different time windows 4. The color gradient indicates
the level of averaging, where the lightest color corresponds to no averaging and the darkest color to 4 =10 .

4.2. Rayleigh-Bénard convection We focus on the bulk by conditioning the statistics on wall-distance in
both vertical and horizontal directions resulting in the measurement

In what follows we consider velocity, acceleration, curvature and domains V,, reported in Table 1. For the RBC II case, we estimated
torsion statistics for the two RBC datasets described in Section 3 with that after 2 1, the average velocity is 92% of the maximal velocity.

Rayleigh numbers Ra = 5.25 - 108 and Ra = 1.53 - 10°, respectively. To disregard any effects of the walls, we decided to disregard data at

201
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Fig. 11. Standardised velocity and acceleration PDFs for Rayleigh-Bénard convection. Top row: velocity components for (a) Ra =5.3-10% and (b) Ra = 1.53-10°. The black dashed
line corresponds to a Gaussian with zero mean and unit variance. Bottom row: acceleration components for (c) Ra=53-10° and (d) Ra = 1.53-10°.

distances of 25.5 mm = 3 4,. For the RBC I case, we used the same
distances, resulting in 2.2 4,.

Velocity and acceleration statistics for both datasets are presented in
Fig. 11. Figs. 11(a), (b) present velocity-component PDFs for RBC I and
RBC II, respectively. From subfigure a) it can be seen that for the lower-
Ra case the PDF of u, is slightly super-Gaussian with a flatness value
of 3.18 while those of the remaining directions have approximately
Gaussian and slightly sub-Gaussian tails with flatness values of 2.92
and 2.84, in y and z direction, respectively. For the higher-Ra case, the
velocity PDFs in subfigure b) in the horizontal directions are slightly
super-Gaussian and the PDF of the vertical component is approximately
Gaussian. Flatness values for velocity PDFs in x-, y- and z-direction are
3.22,3.14 and 3.02, respectively. The more pronounced sub-Gaussianity
in the lower-Ra case compared to the higher-Ra case may be connected
to a less perturbed large-scale circulation in the former case. Interest-
ingly, the deviations from Gaussianity in both cases are smaller than
for the von Karman flow.

Acceleration PDFs for RBC I and RBC II are shown in 11(c), (d),
respectively. As can be seen by comparison of the data in the two
subfigures, the PDFs in all directions are very similar in shape with
fluctuations up to 25-30 times the root-mean-square value. As Re;
270 is much higher for the von Karman data, than for the two RBC
datasets which corresponds to Re,; ~ 147 and Re, ~ 186, one could have
expected wider tails for the von Karmén acceleration PDFs compared to
the RBC datasets. The measurements presented here for Ra = 5.3 x 108
are commensurate with those reported by Schumacher [46] in the bulk
for numerical simulations at Ra = 1.2 x 10® in a domain with free-
slip boundary conditions on the top and bottom plate and periodic
boundary conditions in the transverse directions.

Fig. 12 presents filtered and unfiltered curvature and torsion PDFs
for both datasets. For both observables and both Rayleigh numbers,
we find the same power laws as in the case for homogeneous and
isotropic turbulence, turbulent von Kédrman flow and previous works
on non-rotating and rotating Rayleigh-Bénard convection and rotating
electromagnetically forced turbulence [18]. For the unfiltered case, the
PDF of the non-dimensionalised curvature is linear for small values
and proportional to (x#)~>/2 for high values, for the torsion the PDF
is constant for small values and the right tail follows a power law with
exponent of —3. Filtering out flow reversals by averaging curvature
and torsion along each trajectory leads to a similar behaviour than for
the von Karman flow where the tail for high values of the curvature
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does not change while for small values of the curvature, the power law
changes and vice versa for the torsion.

4.3. Turbulent boundary layer

For the ZPG boundary layer we focus only on a sub-volume in the
logarithmic region, that is, distances of z* = 153 — 287 from the bottom
wall. This dataset differs substantially from the von Karman and RBC
datasets by having a strong mean velocity in x-direction, see Table 1.

PDFs of velocity and acceleration components in stream-wise, span-
wise and wall-normal directions are shown in Fig. 13(a), (b), respec-
tively. As can be seen from in subfigure a), the PDF of the stream-wise
velocity component u, has nonzero mean and clearly sub-Gaussian
tails with a flatness value of 2.69. The PDFs of the velocity in span-
wise y-direction and wall-normal z-direction both have super-Gaussian
tails but approximately zero mean and flatness values of 3.29 and
3.36, respectively. These clear indications of anisotropy are not present
in the PDFs of stream-wise, span-wise and wall-normal acceleration
components, which fluctuate very similarly as can be seen from the
data shown in subfigure b). However, the boundary layer dataset has
less extreme acceleration events compared to the other datasets, in
this context we point out that Taylor-scale Reynolds number of the
turbulent ZPG boundary layer is smaller in comparison with the other
datasets, see Table 1. For a further analysis of Eulerian and Lagrangian
statistics obtained from the same dataset, see Ref. [47].

Having discussed velocity and acceleration statistics, we now focus
on - to the best of our knowledge first — measurements of curvature
and torsion fluctuations in the ZPG boundary layer (Fig. 14). The
most striking observation here is that the right tail of the curvature
PDF differs significantly from the curvature PDFs of the previously
discussed datasets and from those reported in Refs. [15,16,18]. The
left tail of the curvature PDF is still linear, however, low curvature
events are more likely in the turbulent boundary layer compared to the
aforementioned datasets. The right tail of the PDF does not have power
law form, and is much lighter than for the aforementioned datasets. To
explain this observation, we recall that the formula for the curvature
is k = a,/u?, and extreme curvature events are generated mainly by
low-velocities events, rather than by high acceleration events [16].
A strong unidirectional flow results in low-velocity events to be less
likely, resulting in less high curvature events. While the right tail of the
curvature PDF is strongly influenced by large-scale motions, the torsion
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Fig. 13. Standardised PDFs of velocity (a) and acceleration (b) components in the logarithmic region of a ZPG turbulent boundary layer over a flat plate using the root-mean-square
(rms) of velocity fluctuations for the velocity and the rms of the acceleration for acceleration PDFs. The dashed line in (a) corresponds to a Gaussian with zero mean and unit

variance.

PDF has power law tails with the same exponents as observed for the
other datasets discussed here. Importantly, high torsion values are less
likely and low-torsion events more likely to occur in the ZPG turbulent
boundary layer as compared to von Karmén flow and RBC, which
can be interpreted as trajectories in a flow with a strong stream-wise
velocity component to be less twisted.

4.4. Quantitative comparison of curvature and torsion statistics
Curvature and torsion have units of inverse length and can be made

dimensionless by the ratio of the rms-value of the acceleration and the
velocity variance [16], that is,

_lal @) .
P W) (10
a2
u-(axa) <uz>|/z<az>1/2<u<2)1>/2 (@)12 an
o jul’x? na (@2 W)
@) ( W) )

Based on Kolmogorov’s original scaling arguments [48,49], Heisenberg
and Yaglom [50,51] derived the following scaling relation for the
acceleration covariance (cf. [37,52])

(aiaj) = 0053/2v_1/25,~j ) (12)
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where a, does not depend on the Reynolds number for K41 scaling.
In conjunction with Egs. (10) and (11), Heisenberg-Yaglom scaling
results in a Reynolds-number-dependent non-dimensionalisation of cur-
vature [16] and torsion and thus enables a comparison of PDFs for data
at different Reynolds numbers. For von Karmén flow, curvature PDFs
for 200 < Re; < 815 indeed collapse onto a master curve [16].

Here, we use the same ansatz to compare the PDFs of curvature
and torsion for von Kédrmén flow and Rayleigh-Bénard convection at
different Reynolds numbers with results shown in Figs. 15(a), (b).
The curvature PDFs collapse onto master curves, while the torsion
PDFs become close after rescaling but do not collapse on a master
curve. A residual and consistent Re,-dependence can be observed in
the data presented in Fig. 15(b), with high torsion events becoming
more likely with increasing Re;. There may be several reasons for
this. As torsion measurements probe smaller scales, the measurements
may be more sensitive to intermittency, that is, a Re,;-dependence of
ay. However, the torsion measurements need to be taken with caution
here, as outlined in Section 3. The collapse on master curves for the
curvature PDFs and approximately so for the torsion PDFs confirms
that in the bulk, the form of the curvature and torsion PDFs are only
determined velocity and acceleration fluctuations and do not depend
on the geometry of the flow or the type of turbulence production, as
suggested in Ref. [18], at least for RBC or, more generally, relatively
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low levels of anisotropy. As the curvature PDF for the turbulent bound-
ary layer is phenomenologically different from the curvature PDFs of
the von Kdrman and RBC data, as can be appreciated by comparsion of
Fig. 14(a) and Fig. 15(a), it is not included in the comparison. However,
even the torsion PDF or the turbulent boundary layer could not be re-
scaled with Re, using Heisenberg-Yaglom scaling to fit on the torsion
master curve, which may be connected to the low value of Taylor-scale
Reynolds number, Re; = 108.

5. Curvature vector statistics

As seen in previous sections, large-scale turbulent fluctuations in all
presented datasets are statistically anisotropic, either due to the motion
and location of the propellers in the von Kdrman experiment, the
direction of a temperature gradient and the ensuing presence of the LSC
in Rayleigh-Bénard convection (i.e. the remnants of a superstructure)
or a strong unidirectional flow and the presence of large-scale coherent
structures in the ZPG turbulent boundary layer.

As discussed in Section 4, curvature fluctuations are insensitive
to anisotropy, unless the degree of anisotropy is appreciably large
- a quantification thereof may be addressed in future work — and
differences in curvature fluctuations between the respective datasets
are only due to Reynolds number. This may not be too surprising, since
curvature as a global observable is coordinate-independent and mixes
information pertaining to the different spatial directions. As such, it can
only provide information on how curved trajectories in general are in a
flow. To provide further insight into how large-scale motion affects the
geometry of particle trajectories, we now focus on the statistics of the
curvature vector, which can give a measure of anisotropy of the flow
as detailed in Section 2.

Fig. 16 shows the PDFs of the absolute value of the projection
of the curvature vector onto the x-, y- and z-directions for the four
different datasets. A few general observations can be made for all
datasets. Firstly, the left tails of the PDFs are constant in all cases. The
corresponding plateaux distinguish between the different directions,
as can be seen from the insets in Figs. 16(a), (c), (d) and directly in
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Fig. 16(b). Second, the right tails, which describe high-curvature events
in the respective spatial directions have the same power law as the
curvature PDF for von Karman flow and Rayleigh-Bénard convection,
which may be expected as discussed in Section 2. For the ZPG boundary
layer, the high-curvature tails again do not follow a power law and are
qualitatively similar to the full curvature PDF.

To give a plausible explanation for the differences in likelihood of
low-curvature events in the different directions, we connect large-scale,
i.e. velocity, statistics with curvature vector statistics for and across
all datasets. For that, we calculate the PDFs of the curvature vector
components, conditioned on small velocities (|u; /%[| < 0.1) or large
velocities (|u;/c,,| > 3) of one component. These values are chosen for
all datasets and all components, expect for the stream-wise direction of
the boundary layer, where the PDFs are conditioned on “~* < —2 or

“"6;"" > 2 for low and high velocity events, respectively. For simplicity,
onulxy the PDFs conditioned on u, are shown, the remaining PDFs show
the same effects. An intuitive expectation would be that trajectories are
less curved in a direction if the velocity in this direction is high. This
would result in a lower probability of high curvature events compared
to the other directions (right tail), which indeed can be seen in the
right column of Fig. 17. It can also be seen that high velocity events
suppress high curvature events, resulting in a change of the power law
for high curvature values, similar to the shape of the curvature PDF of
the turbulent ZPG boundary layer. On the other hand, having a small
velocity in one direction (Fig. 17 left column) leads to an decreased
probability of low curvature events for the von Kdrman dataset and the
RBC. This is not true for the boundary layer. Due to the nature of this
flow and the filtering approach we took, small velocity events have still
velocities significantly larger than zero. As a result low curvature events
in x-direction are more likely than in y- and z-direction. What can also
be noted here, that if high velocity events are filtered, the right tail of
the PDFs flatten and follow a power law. This shows that the effect of
a non-zero mean dominates the statistics of the curvature vector and
is another indicator that the changes of the power law for the right
curvature PDF tail of the turbulent ZPG boundary layer origins in a
strong mean flow.
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curvature events in all cases.

In a geometric sense, this implies that trajectories are rarely curved
against the direction of the mean flow. They predominantly either
meander, that is, they bend in spanwise direction or have helical shape
with rotation axis aligned with the mean flow direction.

Comparing all datasets, we point out that the differences between
the low-curvature plateaux in the PDFs for von Kdrmén flow and bulk
Rayleigh-Bénard convection shown in the insets of Figs. 16(a), (c) and
(d), respectively, are all of the same order of magnitude. Interestingly,
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according to the curvature vector statistics von Karmén flow is geomet-
rically less isotropic than Rayleigh-Bénard convection in the bulk. For
the latter, anisotropy - in the sense of differences between the statistics
of the curvature vector components — decreases with increasing Ra, as
can be expected.

Generally speaking, strong velocity events in one direction lead to
an increase of low curvature events and a decrease of high-curvature
events in that same direction. Based on the data of the turbulent
ZPG boundary layer, we expect that a mean flow in one direction
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suppresses effects of extreme events on the curvature vector, especially
for its component in stream-wise direction. This poses the question
as to the effect of extreme acceleration events. It is conceivable that
more extreme fluctuations at small scale in one direction leads to an
increased probability of high curvature events in that direction. This
would be physically intuitive as extreme events indicate turbulence,
hence vortices, where trajectories are expected to be more curved, but
this remains to be investigated.

Before concluding, we briefly compare the aforementioned results
with standard methods of anisotropy detection. Anisotropy in the La-
grangian frame of reference is mostly studied by comparison of La-
grangian structure functions and spectra in different reference direc-
tions. For von Karmén flow, such measurements reveal differences in
the scaling constants of both velocity and acceleration prefactors [37,
42,53-55], which implies that the large-scale anisotropy that is present
in the flow due to large-scale strain [54] affects turbulent fluctuations
at the small scales. Such measurements provide global statistical in-
formation on the level of anisotropy on large and small scales, they
do not encode information on the type of anisotropy. More detailed
information can be obtained in the Eulerian frame of reference through
the Lumley triangle [56-58], based on measurements of the second
and third invariant of the Reynolds stress tensor. The Lumley triangle
distinguishes between types of anisotropy, such as disk-like and rod-like
flow structures. For von Kadrmén flow at Re, = 815 flow structures are
predominantly disk-like, and occasionally rod-like, [59] (see Fig. 13).
For slowly rotating RBC, flow structures in the bulk appear to be mostly
rod-like [60] in the direction of the temperature gradient (CHECK),
which has been attributed to the influence of the LSC. For a canonical
channel flow, flow structures in the log-law region are mainly rod-
like [58,61], with the principal axis preferentially aligned with the
mean flow direction (CHECK). The measurements of the curvature
vector statistics are commensurate with the presence of such structures.
For RBC and the turbulent ZPG-BL, low-curvature events are more
likely in the direction of either the temperature gradient (z-direction)
or the mean flow (x-direction), respectively. In the case of von Kdrmén
flow, low-curvature events are less likely in the contractile (z-direction)
of the flow, where the flow velocity is lower and more likely in the
extensional directions where the flow velocities are higher. In sum-
mary, the comparison with standard Eulerian measurements supports
the hypothesis that trajectories are less likely to bend in the direction
of strong flow.

6. Conclusions

Here, we compared Lagrangian statistics for four experimental
datasets of three different types of turbulent flows, focusing on the
effect large-scale motion on the geometry of tracer particle trajectories.
To observe and quantify the latter, we introduced the curvature vector
and calculated statistics of its projections in the spatial directions
determined by the experimental apparatus.

The datasets we considered were von Kirman flow, Rayleigh—
Bénard convection in the bulk at two different Rayleigh numbers and
a turbulent zero-pressure-gradient boundary layer in the logarithmic
region. The Taylor-scale Reynolds numbers are Re, = 270 for the von
Karméan flow, Re, = 147 and 186 for the RBC with Ra = 5.3 - 108
and Ra 1.53 - 10° respectively and Re, = 2295 (Re;, = 108)
for the turbulent boundary layer. To establish the baseline statistical
characteristics of the flows, we first calculated PDFs of instantaneous
velocity, acceleration, curvature and torsion of Lagrangian trajectories.
Rayleigh-Bénard convection (bulk only) and von Karmén data behave
statistically very similar: the PDFs of the velocity components are
approximately Gaussian, acceleration PDFs have the expected wide
tails. The power laws found for the tails of the curvature PDFs agree
with previous results from numerical simulations of homogeneous
and isotropic turbulence (HIT) [15], experiments of von Karmén flow
[16] and numerical simulations of Rayleigh-Bénard convection [18].
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Similarly, the torsion PDFs in all three datasets show the same scaling
as for numerical simulations of homogeneous isotropic turbulence [17]
and RBC [18]. Both curvature and torsion PDFs can be re-scaled using
Heisenberg-Yaglom scaling to adjust for different Reynolds numbers
and collapse onto a master curve. That is, the geometry and flow type
do not seem to have an influence of any of these statistics, as long
as there is no mean flow. The turbulent boundary layer has a mean
flow in x-direction. The PDFs of all velocity components are near-
Gaussian, with approximately zero mean on wall-normal and span-wise
directions. The acceleration PDFs do not seem to be influenced by
that, we found PDFs with wide tails, which, when normalised by the
respective standard deviations, collapsed into one. The curvature PDF
has the same tail for small values of the curvature but deviates from
the —2.5 power law for high values. This is most likely due to the
strong unidirectional flow suppressing high-curvature events and a
strong unidirectional flow breaks the apparent universal form of the
curvature PDF. The torsion PDF is unaffected by the geometry and
the same power laws tails as for homogeneous isotropic turbulence are
found.

For the components of the curvature vector, however, we observe
marked differences between datasets and spatial directions. Firstly, the
projection of the curvature vector is much more likely to be smaller
in stream-wise direction compared to the span-wise and wall-normal
direction for the ZPG boundary layer, reflecting the physical intuition
that trajectories of particles with strong stream-wise velocity are less
curved against the flow and more likely to meander in wall-normal and
span-wise directions. Secondly, also for von Kdmén flow and Rayleigh—
Benard convection we find differences in the low-curvature tails of the
curvature vector PDFs in the respective spatial directions. A comparison
between velocity statistics and curvature vector statistics reveals that
low-curvature events occur mostly in directions where velocity fluctu-
ations are stronger. This is commensurate with the observations made
for the turbulent boundary layer.

In summary, through connecting the statistics of the curvature
vector with that of velocity fluctuations we demonstrate that large-
scale motion in a given spatial direction results in meandering rather
than helical trajectories. For the turbulent boundary layer, this is com-
mensurate with the current understanding of superstructures [4,62].
However, further analysis is required to distinguish between trajec-
tories within a superstructure and the background. This requires the
calculation of curvature statistics conditioned on the presence of a
large-scale coherent structure, which in turn requires a clear identi-
fication thereof. For RBC, turbulent superstructures can be found by
data-driven means [8,63], hence RBC lends itself well for a first investi-
gation and quantification of the effects of turbulent superstructures on
the geometry of tracer particle trajectories. Further work should also
include a quantification of the observations made here through e.g. the
calculation of joint statistics of acceleration and curvature vector com-
ponents, and specifically for RBC the detection of potential correlations
with between high-curvature events and ejecting plumes [46]. The
latter requires statistics conditioned on temperature. Finally, regarding
the connection between Eulerian and Lagrangian statistics, one may try
to connect curvature vector statistics with vortical structures. We will
address these questions in future projects.
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