

Emulator-based Neural Network Prediction for SIF Retrieval in the O₂-A Absorption Band

12.06.2023

<u>Jim Buffat¹, Miguel Pato², Kevin Alonso³, Stefan Auer², Emiliano Carmona², Stefan Maier², Rupert Müller²,</u> Patrick Rademske¹, Uwe Rascher¹ and Hanno Scharr⁴

¹ Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, IBG-2: Plant Sciences ² German Aerospace Center (DLR), Earth Observation Center, Remote Sensing Technology Institute, Oberpfaffenhofen, Germany ³ RHEA Group c/o European Space Agency (ESA), Largo Galileo Galilei, 00044 Frascati, Italy ⁴ Forschungszentrum Jülich GmbH, Institute of Advanced Simulations, IAS-8: Data Analytics and Machine Learning

Mitglied der Helmholtz-Gemeinschaft

FluoMap: a Helmholtz Al funded project

What is Sun-Induced Fluorescence (SIF)?

12.06.23 Mitglied der Helmholtz-Gemeinschaft

Agricultural use cases

→ ESA Earth Explorer FLEX **Global Fluorescence** estimations

Airborne HyPlant Spectrometer

- FLUO is the **airborne demonstrator** for **FLEX**
- 0.24 nm FWHM, 0.11 nm SSI
- 5 years of comparable campaign acquisitions
- 773 acquisitions, 384 × [2000, 10'000] px
- **Operational Baseline SIF Retrieval** Methods
 - Spectral Fitting Method (SFM), Cogliati et al. 2019
 - Improved Fraunhofer Line Discrimination (iFLD), Damm et al. 2022

Airborne HyPlant Spectrometer

- FLUO is the airborne demonstrator for **FLEX**
- 0.24 nm FWHM, 0.11 nm SSI
- 5 years of comparable campaign acquisitions
- 773 acquisitions, 384 × [2000, 10'000] px
- **Operational Baseline SIF Retrieval** Methods
 - Spectral Fitting Method (SFM), Cogliati et al. 2019
 - Improved Fraunhofer Line Discrimination (iFLD), Damm et al. 2022

ົວ

[mW nm]

-sensor

at

O₂-**A**

Flight direction $[2 \times 10^3, 10^4]$

Spectral Fitting Methods to Retrieve Fluorescence

- Conventional Least Squares Optimization in Spectral Fitting Method (SFM)
 - Data inefficiency:
 no benefits from statistical relationships
 - Slow:
 Individual fit of each spectral pixel
 - Model failure: in topographically variable terrain

5

Spectral Fitting Method Neural Network (SFMNN)

Input

Spectral Fitting Method Neural Network (SFMNN)

Input

Loss and Constraint Formulation Self-Supervised Loss Formulation for Signal Reconstruction

- Inversion under incomplete knowledge of physical process is **ill-posed**.
- Architectural **constraint** formulation: difference in spatial variation of terms contributing to radiance signal

$$\begin{split} \ell(y, \hat{y}) &= \left(\ell_{R,f} + \gamma_{f} \ell_{f} + \gamma_{N} \ell_{\text{NDVI}}\right)(y, \hat{y}) \\ &= \left\langle \left(y(\lambda) - \hat{y}(\lambda)\right)^{2} + \gamma_{f} \left(w_{\lambda} \left(y(\lambda) - \gamma_{N} \hat{f} \delta \left(\text{NDVI}_{y} \leq t\right)\right)\right) \right\rangle \\ &+ \gamma_{N} \hat{f} \delta \left(\text{NDVI}_{y} \leq t\right) \end{split}$$

Simulation of HyPlant At-sensor Radiance

- Radiative Transfer Modelling (MODTRAN)
- Extensive coverage of observational conditions
- Inclusion of topographic variation

	Para	ameter	HyPlant DB
	Atmosphere	model	mid-latitude summer
		H_2O [cm]	0.3 - 3.0
		O_3 [DU]	332
		AOT_{550} []	0.05 - 0.40
13 paramete	rs	aerosol model	rural
		g []	[-1,+1]
	Geometry	TA [°]	0–20
		SZA [°]	20 - 55
		RAA [°]	0–180
		$h_{ m gnd} \ [{ m m}]$	0–300
		$h_{ m sen} \; [m km]$	0.659–0.691 agl 1.543–1.598 agl
	Surface	$ ho_{740}$ []	0.05 - 0.60
		${\rm d} ho/{\rm d}\lambda~{ m [nm^{-1}]}$	0-0.008
		F_{737}/F_0	0–8
	Sensor	$\delta_{\lambda} \; [\mathrm{nm}]$	[-0.080, +0.023]
		$\delta_{ m FWHM}~[m nm]$	[-0.040, +0.040]

Emulation of HyPlant At-sensor Radiance

10

- High-dimensional regression problem (13 \rightarrow 349 dims)
- A set of regression models were tested
- Polynomial of 4th degree (P4) is precise enough
- P4 was used as forward simulator in SFMNN

Comparison with in-situ measurements

- Small set of synchronous SIF ground measurements
- Good correlation
- Absolute errors impacted by systematic biases
- Might be caused by domain gap between simulations and HyPlant observations

Data Set			MAE	MAE[calib]	
		r^{pear}	$\rm mW~nm^{-1}$	$^{1} {\rm m}^{-2} {\rm sr}^{-1}$	N
CKA-2020 (600m)	SFM SFMNN iFLD	0.85 0.78 0.53	$egin{array}{c} {f 0.43} \pm {f 0.05} \ 0.90 \pm 0.03 \ 0.41 \pm 0.07 \end{array}$	0.17 ± 0.02 0.18 ± 0.04 0.24 ± 0.01	18 18 18
SEL-2018 (600m)	SFM SFMNN iFLD	0.91 0.93 0.82	0.53 ± 0.07 0.40 \pm 0.03 0.61 ± 0.09	0.11 ± 0.00 0.11 ± 0.00 0.18 ± 0.00	$ \begin{array}{c} 12 \\ 12 \\ 12 \\ 12 \end{array} $

SIF Prediction in Topographically Variable Terrain

SFM

SIF [mW nm⁻¹ sr⁻¹ m⁻²] **SIF** [mW nm⁻¹ sr⁻¹ m⁻²]

SFMNN

Diurnal SIF Dynamics are phenologically plausible

- Time series from repeated flights
- Second order derivative β as a measure for diurnal SIF dynamics

-0.3

Conclusions & Outlook

- The emulator-based neural network prediction achieves correlation comparable to SFM on a data set of in-situ measurements.
- Further analysis is needed to establish the reasons for systematic errors in absolute SIF prediction.
- The impact of the topographic variation on the atmospheric transfer is compensated in SFMNN.
- SFMNN predicted diurnal SIF dynamics are physiologically plausible.
- The possibility to extend this method to other sensors is currently being evaluated:
 - DESIS (onboard the ISS) in FluoMap
 - FLEX, simulated hyperspectral imagery

14

j.buffat@fz-juelich.de 0174 627 0142

FluoMap Project Members

Miguel Pato Kevin Alonso Stefan Auer **Emiliano** Carmona **Stefan Maier** Rupert Müller Patrick Rademske Hanno Scharr Uwe Rascher

Deutsches Zentrum für Luft- und Raumfahrt

