

First year EnMAP radiometric performance based on scenes over RadCalNet and PICS sites

M. Pato^{1,*}, M. Bachmann², R. de los Reyes¹, K. Alonso³, S. Baur⁴, B. Gerasch¹, S. Holzwarth², M. Langheinrich¹, D. Marshall¹, M. Schneider¹, P. Schwind¹, H. Witt¹, M. Brell⁵, S. Chabrillat^{5,6}, E. Carmona¹

Hyperspectral/Multispectral Imaging and Sounding of the Environment (HISE) Optica Sensing Congress Munich, 31.07.2023

¹German Aerospace Center (DLR), Remote Sensing Technology Institute, Weßling, Germany
 ²German Aerospace Center (DLR), German Remote Sensing Data Center, Weßling, Germany
 ³RHEA Group c/o European Space Agency (ESA), Frascati, Italy
 ⁴OHB-System AG, Weßling, Germany
 ⁵Helmholtz Center Potsdam, GFZ German Research Center for Geosciences, Potsdam, Germany
 ⁶Leibniz University Hannover, Institute of soil science, Hannover, Germany
 * Miguel.FigueiredoVazPato@dlr.de

Federal Ministry for Economic Affairs and Climate Action

EnMAP (Environmental Mapping and Analysis Program)

www.enmap.org

EnM

Mission fact sheet (abbreviated)

EnMAP specification	VNIR	SWIR		
Spectral range	420 – 1000 nm	900 – 2445 nm		
Number of spectral bands	91	133		
Spectral sampling distance	6.5 nm	10 nm		
Spectral full width at half maximum	6 – 11 nm	7 – 11 nm		
Spectral accuracy	0.5 nm	1 nm		
Radiometric accuracy	<5%			
Radiometric stability	<2.5%			
Orbit type, altitude and inclination	Sun-synchronous, 653 km, 97.96 $^\circ$			
Orbit period and repeat cycle	1.6 h, 398 revolutions in 27 days			
Local time descending node	11:00 h ± 18 min			
Revisit time	4 days (±30° off-nadir tilt) 21 days (±5° off-nadir tilt)			
Ground sampling distance	30 m (at nadir; sea level)			
Swath width	30 km (2.63° across track)			
Swath length	1000 km / orbit; 5000 km / day			
Product size	30 km x 30 km			

Mission status:

- Launch: Apr 1, 2022
- Commissioning: Apr Oct 2022
- Operations started in Nov 2022
- Tasking and download open to global users
- 31756 archived products as of 27.07.2023

Miguel Pato, German Aerospace Center (DLR), 31.07.2023

EnMAP (Environmental Mapping and Analysis Program)

www.enmap.org

Mission fact sheet (abbreviated)

EnMAP specification	VNIR	SWIR		
Spectral range	420 – 1000 nm	900 – 2445 nm		
Number of spectral bands	91	133		
Spectral sampling distance	6.5 nm	10 nm		
Spectral full width at half maximum	6 – 11 nm	7 – 11 nm		
Spectral accuracy	0.5 nm	1 nm		
Radiometric accuracy	<5%			
Radiometric stability	<2.5%			
Orbit type, altitude and inclination	Sun-synchronous, 653 km, 97.96°			
Orbit period and repeat cycle	1.6 h, 398 revolutions in 27 days			
Local time descending node	11:00 h ± 18 min			
Revisit time	4 days ($\pm 30^{\circ}$ off-nadir tilt) 21 days ($\pm 5^{\circ}$ off-nadir tilt)			
Ground sampling distance	30 m (at nadir; sea level)			
Swath width	30 km (2.63° across track)			
Swath length	1000 km / orbit; 5000 km / day			
Product size	30 km x 30 km			

EnMAP talks at HISE:

- Ground Segment (T. Storch)
- Calibration (D. Marshall)
- Data QC (M. Bachmann)

- Mon 2:30 PM
- Mon 3:00 PM
- Wed 3:30 PM

This talk: EnMAP radiometric performance based on RadCalNet and PICS scenes

Miguel Pato, German Aerospace Center (DLR), 31.07.2023

EnMAP tasking, acquisition and processing

Workflow:

- Task EnMAP over RadCalNet and PICS sites as often as possible.
- Select scenes of acceptable quality, geometry and weather.
- For RadCalNet scenes, select scenes with coincident RadCalNet data.
- L1B process scenes and evaluate based on top-of-atmosphere reflectances.

Challenges:

- Reduced observation opportunities for each site.
- Increased tasking difficulties after start of operations (frequent order conflicts, outage Dec 2022 Feb 2023).
- Coincident RadCalNet data not always available or reliable.

Note: Detailed list of all RadCalNet and PICS scenes in back-up slides.

EnMAP scenes over RadCalNet sites

RCN RVUS DT0000001130 TILE2 VNIR QL

Railroad Valley (RVUS): 8 scenes (6 with off-nadir <20°) RCN LCFR DT0000001434 TILE33 VNIR QL

La Crau (LCFR): 1 scene RCN GONA DT000000006 TILE16 VNIR QL

Gobabeb (GONA): 9 scenes (6 with off-nadir <20°)

Miguel Pato, German Aerospace Center (DLR), 31.07.2023

- EnMAP vs RadCalNet TOA (nadir): [-5,+15]%
- Scene variability:
 - Railroad Valley: high
 - La Crau: one scene only
 - Gobabeb: low
- Correlation with off-nadir angle: small or none.
- VNIR/SWIR mismatch:
 - Railroad Valley: small or none
 - La Crau/Gobabeb: 5–10%
- Limited reliability of Railroad Valley data from Aug to Oct 2022.

No trend with time observed. 1.1

No sign that VNIR degradation plays a role.

Radiometric accuracy based on RadCalNet scenes

radiometric calibration tables

8

	Λ
4	
/	DLR

variable

small effect

small effect

EnMAP vs RadCalNet TOA (nadir): $ ho_{ m TOA}/ ho_{ m TOA}^0$ (1 σ interval)									
VNIR			SWIR					Number of	
500 nm	700 nm	860 nm	avg.	1050 nm 1250 nm 1650 nm 2250 nm avg.				avg.	scenes
1.00±0.06	1.02±0.05	1.03±0.05	1.02±0.06	1.05±0.03	1.06±0.04	1.08±0.04	1.09±0.05	1.07±0.04	12

Bottomline: Comparison to RadCalNet is roughly in line with the 5% requirement for VNIR and slightly above for SWIR.

Disclaimer: These numbers are not a direct estimation of EnMAP radiometric accuracy but are due to uncertainties on RadCalNet data, scene and instrument.

Uncertainties:

- RadCalNet data 3–5%
- Scene
 - BRDF
 - Path radiance
 - Georeferencing
- Instrument
 - VNIR degradation <1–3%
 - Radiometric accuracy <5% (req.)

VNIR/SWIR mismatch in overlapping spectral range

- Mismatch observed in RadCalNet scenes hints at signal-dependent effect.
- Behaviour clearly confirmed in Moon observations.
- Trend with raw VNIR signal points to non-linearity inconsistencies in VNIR high gain.
- Root cause and calibration-based solution under investigation.

11

VNIR/SWIR mismatch in overlapping spectral range

- Mismatch observed in RadCalNet scenes hints at signal-dependent effect.
- Behaviour clearly confirmed in Moon observations.
- Trend with raw VNIR signal points to non-linearity inconsistencies in VNIR high gain.
- Root cause and calibration-based solution under investigation.

EnMAP scenes over PICS sites

Algeria3 DT000000005 TILE1 VNIR QL

Libya4 DT0000001969 TILE2 VNIR QL

Niger2 DT0000001387 TILE1 VNIR QL

Algeria3: 6 scenes (4 with off-nadir <20°)

12

Libya4: 4 scenes (3 with off-nadir <20°) Niger2: 11 scenes (7 with off-nadir <20°)

13

- Scene variability:
 - Algeria3: <5%
 - Lybia4: <2.5%
 - Niger2: <5%
- High stability except for absorption bands and low wavelengths.
- High across-track uniformity.

Miguel Pato, German Aerospace Center (DLR), 31.07.2023

14

- No trend with time observed.
- No sign that VNIR degradation plays a role.

Scene variability: $ ho_{ m TOA}/ ho_{ m TOA}^0$ (1 σ interval)									
	VNIR		SWIR					Number of	
500 nm	700 nm	860 nm	avg.	1050 nm 1250 nm 1650 nm 2250 nm avg.					scenes
1.00±0.03	1.00±0.02	1.00±0.01	1.00±0.02	1.00±0.01	1.00±0.01	1.00 <u>+</u> 0.01	1.00±0.02	1.00 <u>+</u> 0.01	14

Bottomline: PICS scene variability is well below the 2.5% requirement for VNIR and especially for SWIR.

Disclaimer: These numbers are not a direct estimation of EnMAP radiometric stability but are due to uncertainties on scene and instrument.

Uncertainties:

- Scene
 - Footprint
 - BRDF
 - Path radiance
 - Georeferencing
- Instrument
 - VNIR degradation
 - Radiometric stability

small effect

variable

small effect

small effect

<1–3%

<2.5% (req.)

- Radiometric accuracy (RadCalNet): VNIR in line and SWIR above 5% requirement, but conclusion not possible due to underlying uncertainties.
- Radiometric stability (PICS): VNIR and SWIR below 2.5% requirement despite underlying uncertainties.
- More data and analysis are needed for solid statistical conclusions.

Ongoing work:

- Extend analysis with additional scenes.
- Include scene-specific TOA simulated data and coincident satellite data.
- Use continously improved processor (VNIR dynamic coefficients, destriping, improved geolocation and co-registration).
 Acknowledgements: This research was supported

Acknowledgements: This research was supported by the DLR Space Agency with funds of the German Federal Ministry of Economic Affairs and Climate Action on the basis of a decision by the German Bundestag (50 EE 0850, 50 EE 1923 and 50 EE 2108).

BACKUP SLIDES

EnMAP scenes over RadCalNet sites

RadCalNet site	Datatake ID	Date	Across-track off-nadir [°]	Along-track off- nadir [°]	Scene azimuth [°]	Comment
	1130	20.06.2022	-13.5°	-1.0°	13.2°	Suspected adverse climate close to time of acquisition.
	1251	27.06.2022	18.9°	0.7°	13.1°	
	1382	01.07.2022	12.7°	0.4°	13.2°	
Railroad Valley (RVUS)	1549	09.07.2022	-0.6°	-0.4°	13.2°	Suspected adverse climate close to time of acquisition.
(1727	16.07.2022	29.8°	1.4°	13.1°	Ignored since off-nadir >20°.
	1818	20.07.2022	24.7°	1.0°	13.1°	Ignored since off-nadir >20°.
	1828	21.07.2022	-19.5°	-1.4°	13.1°	
	2707	20.08.2022	19.8°	0.7°	13.1°	
La Crau (LCFR)	1434	02.07.2022	-10.5°	-0.8°	13.8°	
	6	05.05.2022	-16.4°	-0.8°	12.1 °	
	1048	12.06.2022	13.2°	0.8°	12.2°	
	1253	28.06.2022	-17.4°	-1.0°	12.2°	
Gobabeb (GONA)	1384	02.07.2022	-24.1°	-1.5°	12.2°	Ignored since off-nadir >20°.
	1665	13.07.2022	5.9°	0.3°	12.2°	
	1728	17.07.2022	29.8°	1.4°	12.2°	Ignored since off-nadir >20°.
	1829	21.07.2022	-9.6°	-0.6°	12.2°	
	2810	24.08.2022	27.9°	1.8°	12.2°	Ignored since off-nadir >20°.
	1119	16.06.2022	5.6°	0.3°	12.2°	Only CNES reference data.

Notes:

- Frequent tasking conflicts
- Outage Dec 2022 Feb 2023
- Limited RadCalNet LCFR and GONA data availability
- Limited RadCalNet RVUS data reliability Aug – Oct 2022
- New scenes to be added

EnMAP scenes over PICS sites

RadCalNet site	Datatake ID	Date	Across-track off-nadir [°]	Along-track off- nadir [°]	Scene azimuth [°]	Comment
	5	04.05.2022	-6.7°	-0.6°	12.5°	
	2038	31.07.2022	28.0°	1.4°	12.5°	Ignored since off-nadir >20°.
Algoria	2176	04.08.2022	21.9°	1.0°	12.5°	Ignored since off-nadir >20°.
Algenas	2271	08.08.2022	15.5°	0.6°	12.5°	
	2705	20.08.2022	-6.1°	-0.7°	12.5°	
	3165	04.09.2022	15.3°	0.5°	12.5°	
	1969	29.07.2022	1.5°	-0.2°	12.4°	
Lybia 4	2032	02.08.2022	-6.0°	-0.6°	12.4°	
Lybia4	2273	06.08.2022	-13.2°	-1.0°	12.4°	
	3184	05.09.2022	29.1°	1.6°	12.4°	Ignored since off-nadir >20°.
	1387	04.07.2022	-12.0°	-1.0°	12.1°	
	1544	08.07.2022	-19.3°	-1.5°	12.1°	
	1584	12.07.2022	-25.8°	-2.0°	12.1°	Ignored since off-nadir >20°.
	1585	11.07.2022	25.9°	1.5°	12.1°	Ignored since off-nadir >20°.
	1932	23.07.2022	4.3°	-0.04°	12.1°	
Niger2	2401	11.08.2022	20.3°	1.0°	12.1°	Ignored since off-nadir >20°.
	2502	15.08.2022	13.2°	0.5°	12.1°	
	2808	23.08.2022	-12.9°	-0.4°	12.1°	
	3132	03.09.2022	26.6°	1.5°	12.1°	Ignored since off-nadir >20°.
	3244	07.09.2022	19.7°	1.0°	12.1°	
	3262	11.09.2022	12.1°	0.6°	12.1°	

Notes:

- Frequent tasking conflicts
- Outage Dec 2022 Feb 2023
- New scenes to be added

Miguel Pato, German Aerospace Center (DLR), 31.07.2023

EnMAP scenes over RadCalNet sites

(6 with off-nadir <20°)

(6 with off-nadir <20°)

Miguel Pato, German Aerospace Center (DLR), 31.07.2023

Miguel Pato, German Aerospace Center (DLR), 31.07.2023

EnMAP scenes over PICS sites

Miguel Pato, German Aerospace Center (DLR), 31.07.2023

Miguel Pato, German Aerospace Center (DLR), 31.07.2023

Miguel Pato, German Aerospace Center (DLR), 31.07.2023

Miguel Pato, German Aerospace Center (DLR), 31.07.2023