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Formation flying missions have increased their importance thanks to the better performances

that can be achieved with a distributed system of satellites. One of the most demanding challenges

linked to the formation flying missions is the formulation of a robust control plan. Due to the

recent developments in electrical propulsion, controllers that apply a continuous low-thrust to

each spacecraft in the formation have been proposed, achieving a precise control. This idea is

used in this manuscript, where an open-loop manoeuvre planning algorithm is developed, to

provide the control accelerations to achieve a formation reconfiguration in a given temporal

frame. The proposed algorithm is based on an innovative control technique, which relies on the

mean relative orbital elements as state variables of a first-order dynamic system. It includes the

effect of the gravitational field of the Earth. Finally, the algorithm is tested with two different

test cases of formation flying reconfiguration, presenting and analysing their results. The test

cases scenarios considered are based on possible future mission concepts in Low Earth Orbit,

aiming at improving the control performances for the mission design.

I. Introduction
The importance of spacecraft formation flying has increased during recent years, mainly due to two factors. First,

the possibility to use them to create novel configurations for remote sensing. In particular, the use of distributed

payloads mounted on different platforms at a certain distance allows creating a virtual sensor with better capabilities

with respect to the current missions for Earth observation, such as better resolution and accuracy [1]. A couple of

examples of formation flying missions applied to remote sensing are the GRACE [2] and the TanDEM-X [3] missions.

The other main reason why formation flying projects are becoming more popular is due to the miniaturisation of all

the space-related technology, which allows using distributed payload onboard multiple small satellites to carry out a

mission that would have been assigned to a big satellite a few years ago [4]. One of the advantages of satellite formation

flying is the possibility to give a new dimension to Earth Observation resolution [5]. When the positions of the satellites

are close to each other inside the formation, relative equations of motions are used to predict and control their position

and velocity [6]. As a result, several advancements in the close-proximity operations field have been made. One of
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the most recent advancements in the relative motion theory for Low Earth Orbits (LEO) are included in [7], where a

framework for precise relative motion propagation in LEO is described, using mean Relative Orbital Elements (ROEs)

as state variables. This article also includes a new approach to transform osculating orbital elements into mean orbital

elements and vice-versa. These techniques contribute to the simplification of the problem, allowing taking into account

only the secular effects of the perturbations in the mean orbital elements, removing the high-frequency variations due to

the short term effects.

Another important aspect of formation flying is the development of onboard controllers. Historically, the controllers

were formulated with cartesian-based relative motion models and with different techniques, ranging from linear quadratic

regulators [8, 9] to model predictive control [10], including trajectory generation using convex optimal problems [11, 12].

In these references, the problem considers continuous control over the satellites. However, there are also examples in

which the control is performed with impulsive manoeuvres. In these cases, the control profile is computed imposing the

final conditions at the end of the manoeuvring period [13, 14]. On the other hand, examples of controllers based on the

ROEs description for the formation flying relative motion are of particular importance for this work. Most of these

controllers are conceived for impulsive control configurations and are based on the eccentricity/inclination (e/i) relative

vector separation, inherited from the geostationary satellites. Some of them were employed in real missions, such as

in the GRACE formation to switch the lead-follower roles [15], the TanDEM-X formation, where the controller was

used to maintain one of the satellites orbiting in a tube of 250 m around the trajectory of the second one [16, 17], and

the PRISMA mission, whose main objective was to test several technologies related to formation flying guidance and

control [18].

Even though there exist different control designs based on ROEs for impulsive control, only a few cases consider

continuous control over the satellites during the manoeuvres. This trend has started to shift recently due to the electrical

propulsion development, whose higher specific impulses and efficiency in recent years [19] have allowed considering

continuous thrust for fine control, such as in the Formation Flying L-Band Aperture Synthesis (FFLAS) formation [20].

One of the main limitations of electric propulsion is the small thrust output, which must be taken into account in the

formulation of the problem. In [7, 21, 22], the ROEs are used to design a controller for relative motion based on low

thrust technology. The authors in [7] obtain a piece-wise constant control using techniques similar to the ones used in

the impulsive manoeuvres computation to impose a relative trajectory for a manoeuvre. In [21], the desired formation

configuration is achieved through a continuous control formulated with the Lyapunov theory, in eulerian orbital elements.

In [22], the ROEs are computed through the modification of the integration constants of the Hill-Clohessy-Wiltshire

equations to avoid singularities. This work uses the Lyapunov theory to follow a desired set of ROEs.

Finally, there are some works where the controller design is based on the relative orbital set defined in [23] and on

continuous control. One example is [24], in which the design of a computationally efficient strategy for a formation

reconfiguration in 𝐽2-perturbed near-circular orbits using a finite number of finite-time manoeuvre is included. Moreover,
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in [25], the author controls the formation configuration through a linear quadratic regulator. Finally, in [26], the authors

use a Lyapunov-based controller to reconfigure the formation, while including a reference governor that can enforce

wall, thrust and time constraints and considering 𝐽2 and differential drag effects.

Given the small number of controllers based on the ROE set defined in [23] and with continuous control, this article

aims at implementing a new continuous-time model for the ROEs’ dynamics based on [7], under the perturbation

effects caused by the non-spherical mass distribution of the Earth. Moreover, it aims at including this model in a

continuous-time and ROEs-based control algorithm: an open loop manoeuvre planning algorithm.

The manuscript is organised into different sections. Section II introduces the relative motion’s dynamic model,

including both the natural dynamics and the control matrix. Then, in Section III the open loop manoeuvre planning

algorithm is developed using the dynamic model, both in classical and convex form. This control algorithm is tested

with two different satellite formations and its performance for both cases is analysed in Section IV. Finally, Section V

covers the conclusions from the results of the analysis.

II. Dynamic model
The first elements required to define a control problem are the natural temporal evolution of the state variables and

the system control matrix, which maps the effects of the control variables into the state variables. This section covers

the process followed to obtain both of them.

A. State variable set

As aforementioned, this article aims at developing a new continuous-time model for the relative dynamics using

ROEs. However, there are several ROEs sets, therefore a clarification is due. In this article, the quasi-non singular

set of orbital elements is selected to work with circular orbits without singularity problems. In particular, the ROEs

considered are the relative semi-major axis 𝛿𝑎, the relative longitude 𝛿𝜆, the relative eccentricity vector components

𝛿𝑒𝑥 and 𝛿𝑒𝑦 and the relative inclination vector components 𝛿𝑖𝑥 and 𝛿𝑖𝑦 , as described in [7].

𝜹𝜶 = [𝛿𝑎, 𝛿𝜆, 𝛿𝑒𝑥 , 𝛿𝑒𝑦 , 𝛿𝑖𝑥 , 𝛿𝑖𝑦]𝑇 = [Δ𝑎/𝑎𝑐,Δ𝑢 + ΔΩ cos(𝑖𝑐),Δ𝑒𝑥 ,Δ𝑒𝑦 ,Δ𝑖,ΔΩ sin(𝑖𝑐)]𝑇 (1)

Where Δ is the difference between the deputy’s orbital element and the chief’s one, 𝑎 is the semi-major axis,

𝑢 = 𝜔 + 𝜃 is the argument of latitude, 𝜔 is the argument of perigee, 𝜃 the true anomaly, 𝑒𝑥 and 𝑒𝑦 are the eccentricity

vector components, 𝑖 is the orbit inclination, Ω is the right ascension of the ascending node and the subscript ·𝑐 indicates

that the orbital element belongs to the chief. The relative inclination vector has a modulus equal to the sine of the

difference between the two satellites’ inclinations and is co-planar to the chief’s orbital plane. It points towards the

relative ascending node, which is the point of the chief’s orbit at which the deputy crosses the orbital plane in the same
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direction as the chief’s angular momentum. The relative inclination vector expression can be simplified down to the one

shown in Eq. (1) considering that the differences between the chief’s and deputy’s orbital planes are small (Δ𝑖 ≪ 1

and ΔΩ ≪ 1) and applying spherical trigonometry [15]. On the other hand, the expression for the relative eccentricity

vector can be obtained as the difference of the deputy’s and chief’s eccentricity vectors, and is suitable only if both

orbital planes are close enough (same conditions as for the relative inclination vector simplification).

The ROEs can be directly related to the relative cartesian coordinates through a linear relation [23]. In particular, the

transformation between ROEs and relative cartesian coordinates is necessary for the control algorithm’s development.

Eq. (2) shows the linear relation between the ROEs and the relative cartesian coordinates:



𝑋

𝑌

𝑍

𝑣𝑋

𝑣𝑌

𝑣𝑍



=



𝑎𝑐 0 −𝑎𝑐 cos(𝑢) −𝑎𝑐 sin(𝑢) 0 0

0 𝑎𝑐 2𝑎𝑐 sin(𝑢) −2𝑎𝑐 cos(𝑢) 0 0

0 0 0 0 𝑎𝑐 sin(𝑢) −𝑎𝑐 cos(𝑢)

0 0 𝑎𝑐𝑛 sin(𝑢) −𝑎𝑐𝑛 cos(𝑢) 0 0

− 3
2𝑛𝑎𝑐 0 2𝑎𝑐𝑛 cos(𝑢) 2𝑎𝑐𝑛 sin(𝑢) 0 0

0 0 0 0 𝑎𝑐𝑛 cos(𝑢) 𝑎𝑐𝑛 sin(𝑢)





𝛿𝑎

𝛿𝜆

𝛿𝑒𝑥

𝛿𝑒𝑦

𝛿𝑖𝑥

𝛿𝑖𝑦



(2)

In Eq. (2), the variables 𝑋 , 𝑌 , and 𝑍 represent the relative position of the deputy with respect to the chief in the

Radial-Transversal-Normal (RTN) frame fixed to the chief, 𝑣𝑖 are instead the deputy’s relative velocities in this same

frame and 𝑛 represents the chief’s angular velocity 𝑛 =
√︃

𝜇

𝑎3
𝑐

. These six variables are collected into a cartesian state

vector denoted as 𝒙. This linear relation’s independent variable is the chief’s angular position along its orbit, described

by its argument of latitude 𝑢.

The linear transformation reported in Eq. (2) is obtained from [23] and is defined for Keplerian motion. The problem

formulation at hand considers also the effects of the 𝐽2 perturbation, but this linear transformation is also valid when

considering the 𝐽2 perturbation during long periods, obtaining a completely bounded error for satellite distances up to 1

km [23].

B. Natural relative dynamics’ model

Once the state variables have been introduced and their relation to the cartesian coordinates shown, it is possible

to present the dynamic model. In this manuscript, we considered a model based on the work presented in [7], where

an analytical framework for precise relative motion in LEO is developed. It describes how to convert the osculating

ROEs into mean ones and vice-versa, and presents the natural dynamics in the mean orbital elements in a perturbed

environment.

The transformation from osculating to mean orbital elements is introduced because working with the osculating
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set of orbital elements is more computationally expensive due to their short-term periodic variations. Working with

their mean counterpart has the advantage of neglecting these variations, resulting in a smoother control [27]. This

transformation is necessary because the position and velocity measurements obtained for each spacecraft during

operation give information only about their instantaneous state, and therefore, only about the osculating orbital elements.

The dynamics are expressed using a state transition matrix (STM) based on ROEs, which also includes the

geopotential perturbation effects [7]. The expression for the STM is reported in Eq. (3), where the orbital elements are

referred to the mean elements of the chief, and the subscript ·0 refers to the initial condition at 𝑡0.

Φ(𝜶0,Δ𝑡) =



1 0 0 0 0 0

𝑎Δ𝑡
∑
𝑝 𝑔

(𝑝)
𝑎 1 Δ𝑡

∑
𝑝 𝑔

(𝑝)
𝑒𝑥 Δ𝑡

∑
𝑝 𝑔

(𝑝)
𝑒𝑦 Δ𝑡

∑
𝑝 𝑔

(𝑝)
𝑖

0

𝑎Δ𝑡𝐴1
∑
𝑝 ¤𝜔 (𝑝)

𝑎 0 𝐶 + Δ𝑡𝐴1
∑
𝑝 ¤𝜔 (𝑝)

𝑒𝑥 −𝑆 + Δ𝑡𝐴1
∑
𝑝 ¤𝜔 (𝑝)

𝑒𝑦 Δ𝑡𝐴1
∑
𝑝 ¤𝜔 (𝑝)

𝑖
0

𝑎Δ𝑡𝐴2
∑
𝑝 ¤𝜔 (𝑝)

𝑎 0 𝑆 + Δ𝑡𝐴2
∑
𝑝 ¤𝜔 (𝑝)

𝑒𝑥 𝐶 + Δ𝑡𝐴2
∑
𝑝 ¤𝜔 (𝑝)

𝑒𝑦 Δ𝑡𝐴2
∑
𝑝 ¤𝜔 (𝑝)

𝑖
0

0 0 0 0 1 0

𝑎 sin (𝑖)Δ𝑡∑𝑝
¤Ω(𝑝)
𝑎 0 sin (𝑖)Δ𝑡∑𝑝

¤Ω(𝑝)
𝑒𝑥 sin (𝑖)Δ𝑡∑𝑝

¤Ω(𝑝)
𝑒𝑦 sin (𝑖)Δ𝑡∑𝑝

¤Ω(𝑝)
𝑖

1



(3)

Where,
∑
𝑝 represents a summation for varying p, which is the index of the ordered set of the considered zonal

harmonics ({𝐽0, 𝐽2, 𝐽
2
2 , 𝐽4, 𝐽6}) and the subscript notation 𝑓 (𝑝)𝑥 is used to denote the partial derivatives of 𝑓 (𝑝) (generated

by the 𝐽𝑝 contribution) with respect to the element x. The notation 𝐽0 was used for the Keplerian motion, where only

¤𝑀 = 𝑛. The expressions for 𝑆, 𝐶, 𝐴1, 𝐴2, and 𝑔 are included in Eq. (4).

𝑆 = sin (∑𝑝 ¤𝜔 (𝑝)Δ𝑡) 𝐶 = cos (∑𝑝 ¤𝜔 (𝑝)Δ𝑡)

𝐴1 = −(𝑆𝑒𝑥0 + 𝐶𝑒𝑦0) 𝐴2 = (𝐶𝑒𝑥0 − 𝑆𝑒𝑦0)

𝑔 = ¤𝜔 + ¤𝑀 + ¤Ω cos(𝑖)

(4)

Where 𝑒𝑥0 and 𝑒𝑦0 are the eccentricity vector components at the reference instant 𝑡0, ¤𝜔 the argument of perigee’s

temporal variation rate, ¤Ω is the right ascension of the ascending node temporal variation rate and ¤𝑀 is the angular

velocity associated to the mean anomaly. It is worth noting that the temporal evolution obtained with the STM is general

from the Earth’s mass distribution point of view, meaning that it is valid whichever gravity potential order is considered.

As a consequence, the accuracy provided by this model can be tuned and adapted to the needs of different missions.

Also, the model is valid for a generic eccentric orbit, not limited to circular or quasi-circular ones. With this state

transition matrix, it is possible to obtain the ROEs of the deputy at 𝑡 = 𝑡0 + Δ𝑡 if their values and the chief’s orbital

5



elements at 𝑡 = 𝑡0 are known:

𝜹𝜶(𝑡0 + Δ𝑡) = Φ(𝜶0,Δ𝑡) · 𝜹𝜶0 (5)

Even though this expression can be used to compute the values of the ROEs at a generic time instant, a continuous

expression for the system dynamics is required to formulate the control problems.

To obtain a continuous, closed-form expression for the time derivatives of the ROEs, the process followed by [28] is

used, however in the opposite direction. In this reference, the authors use the continuous, closed-form expressions of the

time derivatives to obtain state transition matrices for different models. The objective of this article, is to obtain the time

derivatives from the STM, and the process followed is described below.

• The deputy’s orbital elements 𝜶𝒅 (𝑡) are expressed explicitly as a function of the chief’s ones 𝜶𝒄 (𝑡) and the ROEs

𝜹𝜶(𝑡).

• The temporal evolution of the ROEs can be then expressed only as a function of those two variables and other relevant

parameters 𝛾 (such as solar radiation pressure, the harmonics coefficients...): 𝜹 ¤𝜶 = ®𝑓 (𝜶𝒅 (𝜶𝒄 (𝑡), 𝜹𝜶(𝑡)),𝜶𝒄 (𝑡), 𝛾).

• Since the aim is to obtain an easily solvable linear system, the non-linear dependence with the state (the ROEs)

must be eliminated. A first-order Taylor expansion centred around 𝜹𝜶 = 0 can be done, as shown in Eq. (6). Here,

the matrix A was obtained with a chain rule derivative. The constant term of the Taylor expansion around 𝜹𝜶 = 0

must be zero, since the temporal evolution of the ROEs must be zero if both satellites have the exact same orbital

elements.

𝜹 ¤𝜶 = 𝐴(𝜶𝑐 (𝑡), 𝛾)𝜹𝜶(𝑡) +𝑂 (𝛿𝛼2)

𝐴(𝜶𝑐 (𝑡), 𝛾) = 𝜕𝛿 ¤𝛼
𝜕𝛼𝑑

| 𝛿𝛼=0
𝜕𝛼𝑑
𝜕𝛿𝛼

|𝛼𝑑=𝛼𝑐
(6)

• Once the temporal derivative has been approximated as a linear function of the state, a Taylor expansion of the state at

time 𝑡 = 𝑡0+Δ𝑡 can be done: 𝜹𝜶(𝑡0+Δ𝑡) ≈ 𝜹𝜶0+𝜹 ¤𝜶 |𝑡0Δ𝑡. This implies that deriving 𝜹𝜶(𝑡0+Δ𝑡) = Φ(𝛼𝑐,0,Δ𝑡)𝜹𝜶0

with respect to Δ𝑡 should yield an expression for 𝜹 ¤𝜶 at 𝑡 = 𝑡0 and with an expression similar to that in Eq. (6).

By deriving the state transition matrix expression in Eq. (3) with respect to the temporal variable Δ𝑡, the expression

obtained for the perturbed dynamics in ROEs is:
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𝜹 ¤𝜶𝑘 ≈



0 0 0 0 0 0

𝑎
∑
𝑝 𝑔

(𝑝)
𝑎 0

∑
𝑝 𝑔

(𝑝)
𝑒𝑥

∑
𝑝 𝑔

(𝑝)
𝑒𝑦

∑
𝑝 𝑔

(𝑝)
𝑖

0

𝑎𝐴1
∑
𝑝 ¤𝜔 (𝑝)

𝑎 0 −𝑆𝐾∗ + 𝐴1
∑
𝑝 ¤𝜔 (𝑝)

𝑒𝑥 −𝐶𝐾∗ + 𝐴1
∑
𝑝 ¤𝜔 (𝑝)

𝑒𝑦 𝐴1
∑
𝑝 ¤𝜔 (𝑝)

𝑖
0

𝑎𝐴2
∑
𝑝 ¤𝜔 (𝑝)

𝑎 0 𝐶𝐾∗ + 𝐴2
∑
𝑝 ¤𝜔 (𝑝)

𝑒𝑥 −𝑆𝐾∗ + 𝐴2
∑
𝑝 ¤𝜔 (𝑝)

𝑒𝑦 𝐴2
∑
𝑝 ¤𝜔 (𝑝)

𝑖
0

0 0 0 0 0 0

𝑎 sin (𝑖)∑𝑝
¤Ω(𝑝)
𝑎 0 sin (𝑖)∑𝑝

¤Ω(𝑝)
𝑒𝑥 sin (𝑖)∑𝑝

¤Ω(𝑝)
𝑒𝑦 sin (𝑖)∑𝑝

¤Ω(𝑝)
𝑖

0



𝜹𝜶𝑘 (7)

The expressions in Eq. (7) are the same as in Eq. (3), except for the new term 𝐾∗, which corresponds to the derivative

with respect to Δ𝑡 of the arguments inside the trigonometric functions S and C. In Eq. (7), the subscript ·𝑘 is included to

remark the fact that this approximation is only valid for a certain time instant 𝑡𝑘 . To obtain the desired 𝜹 ¤𝜶𝒌 for each

𝑡𝑘 , the ROEs’ values at that same time instant are required. The plant matrix A in Eq. (7) has the same properties as

the transition matrix in Eq. (3): it is valid for any order of the Earth’s gravity potential and it is not limited to circular

or quasi-circular orbits, making it a versatile tool. In this article the main effects of the first zonal harmonic 𝐽2 are

considered to formulate the control problems, since this provides the major contribution in LEO orbits. For this reason,

in the plant matrix A in Eq. (7) the variable 𝑝 is substituted by 𝑝 = 2. The expression of the plant matrix A formulated

to consider only the 𝐽2 effect is shown in Eqs. (8) and (9) [7].

𝐴 =



0 0 0 0 0 0

𝐴2,1 0 𝐴2,3 𝐴2,4 𝐴2,5 0

𝐴3,1 0 𝐴3,3 𝐴3,4 𝐴3,5 0

𝐴4,1 0 𝐴4,3 𝐴4,4 𝐴4,5 0

0 0 0 0 0 0

𝐴6,1 0 𝐴6,3 𝐴6,4 𝐴6,5 0



(8)
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𝐴2,1 = − 3
2𝑛 −

21
8 𝐾2𝑛𝐻 (𝜂 + 1)/𝜂4 𝐴3,1 = − 21

8 𝐾2𝑛𝐴1𝐾/𝜂4

𝐴2,3 = 3
4𝐾2𝑒𝑥𝑛𝐻 (3𝜂 + 4)/𝜂6 𝐴3,3 = −𝑆 3

4𝐾2𝑛𝐾/𝜂4 + 3𝐾2𝑛𝑒𝑥𝐴1𝐾/𝜂6

𝐴2,4 = 3
4𝐾2𝑒𝑦𝑛𝐻 (3𝜂 + 4)/𝜂6 𝐴3,4 = −𝐶 3

4𝐾2𝑛𝐾/𝜂4 + 3𝐾2𝑛𝑒𝑦𝐴1𝐾/𝜂6

𝐴2,5 = − 3
4𝐾2𝑛 sin(2𝑖) (3𝜂 + 4)/𝜂4 𝐴3,5 = − 15

4 𝐾2𝑛𝐴1 sin(2𝑖)/𝜂4

𝐴4,1 = − 21
8 𝐾2𝑛𝐴2𝐾/𝜂4 𝐴6,1 = 21

8 𝐾2𝑛 sin(2𝑖)/𝜂4

𝐴4,3 = 𝐶 3
4𝐾2𝑛𝐾/𝜂4 + 3𝐾2𝑛𝑒𝑥𝐴2𝐾/𝜂6 𝐴6,3 = −3𝐾2𝑒𝑥𝑛 sin(2𝑖)/𝜂6

𝐴4,4 = −𝑆 3
4𝐾2𝑛𝐾/𝜂4 + 3𝐾2𝑛𝑒𝑦𝐴2𝐾/𝜂6 𝐴6,4 = −3𝐾2𝑒𝑦𝑛 sin(2𝑖)/𝜂6

𝐴4,5 = − 15
4 𝐾2𝑛𝐴2 sin(2𝑖)/𝜂4 𝐴6,5 = 3

2𝐾2𝑛 sin2 (𝑖)/𝜂4

(9)

In these equations, 𝑛 corresponds to the chief’s angular velocity, 𝑖 is the chief’s inclination, 𝜂 =
√

1 − 𝑒2, where 𝑒

is the chief’s eccentricity, and 𝑒𝑥 = 𝑒 cos(𝜔) and 𝑒𝑦 = 𝑒 sin(𝜔) are the chief’s eccentricity vector components. The

chief’s mean semi-major axis, inclination and eccentricity are constants for the considered formulation since they are

not affected by the secular effect. However, that is not true for the argument of perigee, whose variation produces a

change in the eccentricity vector components. The argument of perigee and eccentricity vector components’ temporal

evolutions are needed to evaluate the state vector’s derivatives at different time instants. Considering only the 𝐽2 effect,

the following temporal evolutions are considered [7]:

𝑒𝑥 (𝑡) =𝑒𝑥0 cos( ¤𝜔(𝑡 − 𝑡0)) − 𝑒𝑦0 sin( ¤𝜔(𝑡 − 𝑡0)) (10)

𝑒𝑦 (𝑡) =𝑒𝑥0 sin( ¤𝜔(𝑡 − 𝑡0)) + 𝑒𝑦0 cos( ¤𝜔(𝑡 − 𝑡0)) (11)

¤𝜔 =
3
4
𝐽2

(
𝑅⊕

𝑎(1 − 𝑒2)

)2
𝑛(5 cos2 (𝑖) − 1) (12)

In Eqs. (10) to (12) ¤𝜔 represents the argument of perigee’s temporal variation rate and 𝑅⊕ is the equatorial Earth’s

radius. On the other hand, the expressions for the parameters appearing in Eq. (9) are:

𝐾2 = 𝐽2 (𝑅⊕/𝑎)2

𝐾 = 5 cos2 (𝑖) − 1 𝐻 = 3 cos2 (𝑖) − 1

𝑆 = sin( 3
4𝐾2𝑛Δ𝑡𝐾/𝜂4) 𝐶 = cos( 3

4𝐾2𝑛Δ𝑡𝐾/𝜂4)

𝐴1 = −(𝑆𝑒𝑥 + 𝐶𝑒𝑦) 𝐴2 = (𝐶𝑒𝑥 − 𝑆𝑒𝑦)

(13)

Where 𝑒𝑥 and 𝑒𝑦 correspond to the values in in Eqs. (10) and (11), evaluated at the time instant for which the

derivative is being computed. It is worth commenting the fact that there is a Δ𝑡 term inside the expressions of 𝑆 and

𝐶. In the discrete formulation of the problem 𝛿𝛼(𝑡0 + Δ𝑡) ≈ 𝛿𝛼0 + 𝛿 ¤𝛼 |𝑡0Δ𝑡, this Δ𝑡 represents the time step between
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two successive time instants. For a totally continuous formulation, the temporal distance between two successive state

evaluations tends to zero (Δ𝑡 −→ 0) and therefore 𝐶 −→ 1 and 𝑆 −→ 0. However, considering how this continuous

model was obtained from a discrete formulation and the fact that it is going to be used in a numerical integration scheme

(which are intrinsically discrete), the term Δ𝑡 is kept, representing now the numerical integration time step. For a small

enough integration step, the term 𝐶 is close to 1, while the term 𝑆 remains close to 0.

The state variables’ temporal evolution obtained with this model has been validated using GMAT v.R2020a in order

to validate the precision, including only the 𝐽2 effects [29]. It is used to propagate two different satellites independently,

deriving the temporal evolution of the osculating ROEs. The initial condition for the simulation is reported in Tables 1

and 2.

Table 1 Mean orbital elements sets for the chief and the deputy

a [m] e [-] i [º] Ω [º] 𝜔 [º] 𝑀0 [º]
Chief 6868136.3 0.001 98.2 9 60 -60

Deputy 6868136.3 9.928·10−4 98.2004 9.0007 59.2723 -59.2722

Table 2 Relative orbital elements

𝑎𝑐𝛿𝑎 [m] 𝑎𝑐𝛿𝜆 [m] 𝑎𝑐𝛿𝑒𝑥 [m] 𝑎𝑐𝛿𝑒𝑦 [m] 𝑎𝑐𝛿𝑖𝑥 [m] 𝑎𝑐𝛿𝑖𝑦 [m]
0 0 50 -86.6 50 86.6

The ROEs were defined imposing 𝑎𝛿𝑒 = 𝑎𝛿𝑖 = 100 m, 𝜃 = 120 º and 𝜓 = 60 º. From the mean orbital elements in

Table 1, the osculating ones are computed to initialise the propagation. A first order mean to osculating transformation

based on Brouwer’s theory is used, considering only the 𝐽2 effect [30]. Then, a numerical propagation of the previously

presented model is performed to compare the temporal evolution of both ROEs sets, the mean and the osculating ones,

as shown in Fig. 1.
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(a) Relative semi-major axis.
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(b) Relative longitude.
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(c) Relative eccentricity vector component x.
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(d) Relative eccentricity vector component y.
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(e) Relative inclination vector component x.
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(f) Relative inclination vector component y.

Fig. 1 Difference between osculating and mean relative orbital elements.

Fig. 1 shows the differences between the osculating ROEs computed independently with GMAT and the mean ones

obtained from the numerical integration of the model presented in Eq. (7), using the plant matrix A described in Eqs. (8)

and (9). They are all below 1 · 10−7 and periodic functions centred at 0, meaning that the mean ROEs are actually

the mean values of the osculating ones. The only ROEs difference with a perceptible non-zero mean is the relative

longitude. Considering that this ROE takes values in the order of 1 · 10−7, which can be seen in Fig. 2, a difference in

the mean of the osculating relative longitude and the modelled one in the order of 1 · 10−9 can be considered negligible.

These results validate the previously presented model for the ROEs’ dynamics under 𝐽2 influence.
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Fig. 2 Relative longitude 𝛿𝜆 temporal evolution.

C. Control matrix

Once the system’s dynamic model has been obtained, the next element for the control problem’s formulation is

the control matrix computation. This control matrix describes how the control actions affect the state variables, the

ROEs in this case. The control variables selected for these problems are three independent accelerations, described in

the deputy’s RTN frame. These accelerations are provided by a set of low-thrust thrusters, such as the electric ones

mentioned in Section I.

To obtain this control matrix, the Gauss’ Variational Equations are used. In particular, the derivation starts from the

matrix in Eq. 16 from [23]. Then, deriving with respect to time the ROEs and considering that control variables act

only on the deputy, which implies that the chief’s orbital elements are constant, it is possible to obtain the control matrix

B shown in Eq. (14). Even though the relative longitude time derivative has a term associated with the difference in the

orbital periods of the chief and the deputy, this term is not related to the control accelerations, and therefore it is not

included in the control matrix.

𝐵 =
1
𝑛 · 𝑎



0 2 0

−2 0 0

sin(𝑢) 2 cos(𝑢) 0

− cos(𝑢) 2 sin(𝑢) 0

0 0 cos(𝑢)

0 0 sin(𝑢)



(14)
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In Eq. (14) the term 𝑛 · 𝑡 has been substituted by the chief’s mean argument of latitude 𝑢, as in [23]. Considering

that the difference between the deputy’s semi-major axis and the chief’s one is negligible for very close formations,

the angular velocity and semi-major axis values included in this expression can be taken as those of the chief. On the

contrary, the term 𝐵1,2 should include the ratio between the semi-major axis 𝑎𝑑
𝑎𝑐

and the angular velocity and semi-major

axis appearing at the denominator should be the deputy’s ones. Another implicit assumption is the fact that the difference

between both inclinations is negligible Δ𝑖 ≪ 1, which is an assumption associated to the ROEs definition in Eq. (1).

This same matrix has been used in other works, such as [6, 31] and can be algebraically obtained from the control matrix

used in [22].

D. Final model formulation

This section gathers the results from the previous ones and provides the final dynamic model for the system, including

both the natural dynamics and the control:

𝜹 ¤𝜶 = 𝐴𝜹𝜶 + 𝐵𝒖 (15)

Where 𝒖 is the control variable including the three accelerations in the RTN frame.

III. Open-loop manoeuvre planning algorithm
Having introduced the relative dynamics’ model, it can be used to formulate the open-loop manoeuvre planning

algorithm, which is based on an optimal control problem’s resolution. There are several possible ways to solve an

optimal control problem. In this work, we select a control strategy based on convex optimisation [32], which has already

been used for trajectory optimisation in [11, 12, 33, 34]. The transformation of the classical optimal control problem

into a convex formulation ensures that the solution is unique. Moreover, thanks to the lower computational effort

with respect to the classical control approaches, it could be implemented on-board the satellites, which have limited

computational capabilities [12, 33]. However, convexification of the safety distance constraint (which is introduced later

in this section) provides an overly conservative solution. This is solved using Sequential Convex Programming (SCP),

reducing the difference between the real problem and the convex one via iterations [11].

A. Classical optimal control problem definition

The first step towards the convex optimal problem modelling is formulating the classical one, meaning, the objective

function for the optimal control problem and all the equality and inequality constraint to which it is subjected. The

main objective of this manoeuvre planning algorithm is to change the deputies’ position in the formation, to go from a

configuration A to another one B. This problem can be solved in two different ways: the first is the minimisation of

the manoeuvre time with a fixed maximum Δ𝑉 , while the second one is minimisation of the fuel used to complete the

manoeuvre in a fixed time interval. Following the process in [12], the problem solved is the minimisation of the fuel
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used during a manoeuvre with a fixed duration. Taking this into account, the objective function for the optimal control

problem is described in Eq. (16).

𝐽 =

𝑗=𝑁∑︁
𝑗=1

∫ 𝑡 𝑓

𝑡0

| |𝒖 𝒋 (𝒕) | |1𝑑𝑡 (16)

Where the subindex · 𝑗 refers to a certain deputy, being 𝑁 the total number of deputies in the formation, and | |𝒖 𝒋 (𝒕) | |1

is the 1-norm of the control action for deputy 𝑗 . This objective function computes the control action’s integral over the

manoeuvre duration and then sums it up for all deputies, meaning that this function minimises the total Δ𝑉 considering

all deputies, and since the total Δ𝑉 budget is directly related to the fuel consumption, this is equivalent to minimising

this same fuel used.

Once the objective function is defined, the next step is the definition of the problem’s constraints. The first one that

needs to be considered is the system’s dynamics, described by Eq. (15). First order linear dynamics is a requirement for

the later convexification of the problem, with which Eq. (15) is compliant. Even though all the terms in Eq. (15) are

time dependant, the (𝑡) notation has been dropped for readability’s sake. A second set of constraints that should be

considered is the initial and final conditions of the state variables.


𝜹𝜶𝒋 (𝑡0) = 𝜹𝜶𝒋 ,0

𝜹𝜶𝒋 (𝑡 𝑓 ) = 𝜹𝜶𝒋 , 𝒇

(17)

Where the subindex ·0 corresponds to the initial conditions and · 𝑓 to the final ones. Usually, the initial and final

configurations are described by relative cartesian positions with respect to the chief, not in terms of the ROEs. This

means that to obtain the initial and final conditions for the state variables, these cartesian coordinates have to be

transformed into ROEs. This is performed inverting the linear relation described in Eq. (2), setting 𝑋 , 𝑌 and 𝑍 as the

initial/final positions in the formation and the relative velocities all equal to zero, while taking into account that 𝑢 = 𝑛 · 𝑡.

This algorithm is developed for continuous thrust manoeuvres, which are usually limited in terms of thrust level

available. This poses a limit in the control action available for the deputies.

| |𝒖 𝒋 (𝑡) | |1 ≤ 𝑎𝑚𝑎𝑥, 𝑗 (18)

Where 𝑎𝑚𝑎𝑥, 𝑗 is the maximum available thrust for deputy 𝑗 . These limits may be different in each direction for the

same spacecraft, but this situation is considered during the problem’s discretisation.

The last of the constraints considered is the inter-satellite distance constraint. This is key to ensure the formation’s

safety during the manoeuvres. In the control problem, the deputies are considered point masses for Eq. (15), however

this assumption cannot be used for this constraint’s formulation. The actual deputies’ diameter should be considered,
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along with a safety margin, to define this distance constraint. In [12], the state variables are the deputies’ relative

cartesian positions, allowing a more straightforward formulation of the safety constraint. On the other hand, the relative

cartesian positions are a function of the ROEs, as in Eq. (2). Calling 𝐿 𝑗 to the first three rows of the matrix in Eq. (2),

which corresponds to the relative cartesian positions, the safety distance constraint can be formulated in the ROEs space

as:

| |𝐿 𝑗 (𝑡)𝜹𝜶𝒋 (𝑡) − 𝐿𝑖 (𝑡)𝜹𝜶𝒊 (𝑡) | |2 ≥ 𝑑𝑡ℎ (19)

Where the subindex ·𝑖 refers to a 𝑖th deputy different from the 𝑗 th one and 𝑑𝑡ℎ is the minimum inter-satellite distance

allowable during the manoeuvre. Once that the objective function and all constraint have been defined, it is possible to

formulate the complete optimal control problem as in Eq. (20).

minimise: 𝐽 =
∑ 𝑗=𝑁

𝑗=1

∫ 𝑡 𝑓
𝑡0

| |𝒖 𝒋 (𝒕) | |1𝑑𝑡

subject to: 𝜹 ¤𝜶𝒋 (𝑡) = 𝐴 𝑗𝜹𝜶𝒋 + 𝐵 𝑗𝒖 𝒋

𝜹𝜶𝒋 (𝑡0) = 𝜹𝜶𝒋 ,0

𝜹𝜶𝒋 (𝑡 𝑓 ) = 𝜹𝜶𝒋 , 𝒇

| |𝒖 𝒋 (𝑡) | |1 ≤ 𝑎𝑚𝑎𝑥, 𝑗

| |𝐿 𝑗 (𝑡)𝜹𝜶𝒋 (𝑡) − 𝐿𝑖 (𝑡)𝜹𝜶𝒊 (𝑡) | |2 ≥ 𝑑𝑡ℎ

(20)

B. Convex optimal control problem formulation

To apply the convex optimal control techniques, the problem described in Eq. (20) has to be reformulated in terms of

the convex formulation requirements. Both the objective function and the inequality constraint must be convex and

the equality constraints must be affine [12]. The first step to formulate the problem in convex form is discretising it

and then, reformulating those equations that are not compliant with the previous requirements. The discretisation

procedure followed in this article is based on the one performed in [12]. The time instants are discretised in terms of a

time step Δ𝑡, forming a vector with size 𝐾, where each time instant is identified by the time index 𝑘 = 1, ..., 𝐾. The

dynamics of each 𝑗 th deputy can be approximated by different discretisation techniques. However, due to its simplicity

and adequate precision as long as the time step Δ𝑡 is sufficiently small, the Forward Euler discretisation procedure is

selected. Considering this, the dynamics of each deputy can be written as:

𝜹𝜶𝒋 [𝑘 + 1] = (𝐼 + 𝐴 𝑗 ,𝑘Δ𝑡)𝜹𝜶𝒋 [𝑘] + Δ𝑡𝐵 𝑗 ,𝑘𝒖 𝑗 [𝑘] (21)

Where 𝐴 𝑗 ,𝑘 is the 𝑗 th deputy’s plant matrix, 𝐵 𝑗 ,𝑘 is its control matrix and 𝒖 𝑗 [k] contains its control variables, all

of them evaluated at time instant 𝑡𝑘 . Recalling how the plant matrix A was obtained, it is possible to name the term

(𝐼 + 𝐴Δ𝑡) as Φ, given that this term represents a first order approximation of the state transition matrix reported in [7].

An alternative expression for equation 21 can be obtained if the STM is used directly to represent the system’s dynamics.
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Both representations are equivalent if the time step Δ𝑡 is sufficiently small, but the STM form should be used in case the

time step has to be increased. As previously mentioned in Section I, one of this work’s objectives is the derivation of

the continuous-time model, which motivates the selection of the formulation presented in equation 21 to describe the

system dynamic’s in the optimal control problem.

Then, the objective function must be also discretised. Assuming that the control actions 𝒖 𝑗 [𝑘] are constant during

the discretised time intervals, the objective function can be written as:

𝐽 =

𝑗=𝑁∑︁
𝑗=1

𝑘=𝐾−1∑︁
𝑘=1

| |𝒖 𝑗 [𝑘] | |1Δ𝑡 (22)

The initial and final conditions are easily discretised, since they only involve the states at individual time instants:

𝜹𝜶𝒋 [1] =𝛿𝛼0, 𝑗 (23)

𝜹𝜶𝒋 [𝐾] =𝛿𝛼 𝑓 , 𝑗 (24)

The thrust level constraint is also easily transformed into discrete form:

| |𝒖 𝑗 [𝑘] | | ≤ 𝑎𝑚𝑎𝑥, 𝑗 (25)

Finally, the safety distance constraint not only requires a discretisation but also a transformation into a suitable

formulation for the convex optimal problem. The transformation performed here is based on the transformation

formulated in [11]. The main idea behind this transformation is restricting the distance between the deputy 𝑗 and a plane

perpendicular to the relative position between satellites 𝑗 and 𝑖. This means that the prohibited zone goes from being an

sphere centred around the deputies to a polygonal volume centred around them, with each of their faces perpendicular to

the relative position vectors between the deputies themselves. This idea is illustrated by Figs. 3a and 3b.

(a) Non-convex prohibited zone. (b) Convex prohibited zone.

Fig. 3 Graphical interpretation to the constraint transformation for safety distance. Inspired by similar figures
in [11].
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The main disadvantage related to this transformation is the fact that a reference or a previous relative position

vector between the deputies is needed to compute all the prohibited zone faces, as explained at the end of this section.

Assuming that a reference or a previous evolution of the ROEs is known, the safety distance constraint can be written as:

(𝐿 [𝑘]𝜹𝜶̄𝒋 [𝑘] − 𝐿 [𝑘]𝜹𝜶̄𝒊 [𝑘])𝑇 (𝐿 [𝑘]𝜹𝜶𝒋 [𝑘] − 𝐿 [𝑘]𝜹𝜶𝒊 [𝑘]) ≥ 𝑑𝑡ℎ | |𝐿 [𝑘]𝜹𝜶̄𝒋 [𝑘] − 𝐿 [𝑘]𝜹𝜶̄𝒊 [𝑘] | |2 (26)

where 𝜹𝜶̄𝒊 and 𝜹𝜶̄𝒋 refer to the previous or the reference trajectory in the ROEs state space. The subindexes of the

matrices 𝐿 have been discarded, since they do not depend on the deputy. Taking this into account, the inequality’s

left-side term corresponds to the scalar product of the current relative vector between deputy 𝑖 and deputy 𝑗 and the

previous or reference one. On the other side, the right-side of the inequality represents the modulus of the previous or

reference relative vector multiplied by the minimum allowed inter-satellite distance. Since the scalar product can be

decomposed as the multiplication of both modulus and the angle between both vectors, the terms corresponding to the

reference or previous vector modulus cancel out from both sides, leaving the inequality as: the current relative vector

between deputies 𝑖 and 𝑗 projection on the previous or reference direction must be bigger than or equal to the minimum

allowed inter-satellite distance.

To solve this problem, all the variables of the optimisation problem must be collected into a single variable vector,

and all the constraints and the objective function expressed as a direct function of this vector variable. The vector 𝒙̂ 𝑗 can

be defined for each deputy 𝑗 , including both the state variables and the control, as:

𝒙̂ 𝑗 =
[
𝜹𝜶𝒋 ,1 , ... , 𝜹𝜶𝒋 ,𝒌 , ... , 𝜹𝜶𝒋 ,𝑲 , 𝒖 𝑗 ,1 , ... , 𝒖 𝑗 ,𝑘 , ... , 𝒖 𝑗 ,𝐾−1

]𝑇
(27)

In 𝒙̂ 𝑗 , each 𝛿𝛼 𝑗 ,𝑘 corresponds to the ROEs of the 𝑗-th deputy at time instant 𝑡𝑘 , and has therefore 6 elements. On

the other hand, each 𝒖 𝑗 ,𝑘 corresponds to the control action in RTN frame for the 𝑗-th deputy at time instant 𝑡𝑘 , and

has three elements. Consequently, the total length of 𝒙̂ 𝑗 is 𝑀 = 6𝐾 + 3(𝐾 − 1). Putting together all the 𝒙̂ 𝑗 for all the

deputies, the vector with all the optimisation variables is created, with a size of (𝑁 · 𝑀 × 1):

𝑿̂ =

[
𝒙̂1 ; ... ; 𝒙̂ 𝑗 ; ... ; 𝒙̂𝑁

]
(28)

Once the total variable vector has been defined, the objective function and all the constrains can be expressed as a

function of it. Starting from the system’s dynamics, Eq. (21) for deputy 𝑗 at time instant 𝑡𝑘 can be written as:

𝜹𝜶𝒋 ,𝒌+1 = (𝐼 + 𝐴𝑘Δ𝑡)𝜹𝜶𝒋 ,𝒌 + Δ𝑡𝐵𝑘𝒖 𝑗 ,𝑘 (29)

The matrices 𝐴 𝑗 ,𝑘 and 𝐵 𝑗 ,𝑘 do not depend on any parameter of the deputies, thus being equal for all of them. This

means that the subscript · 𝑗 can be dropped, only depending on the time instant. It is possible to define a matrix 𝐴𝑠𝑑,𝑘 as
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in Eq. (30), which recovers the necessary state vectors 𝛿𝛼 𝑗 ,𝑘+1, 𝛿𝛼𝑘, 𝑗 and 𝒖 𝑗 ,𝑘 from the corresponding 𝒙̂ 𝑗 vector.

𝐴𝑠𝑑,𝑘 =

[
06×6(𝑘−1) − (𝐼6 + 𝐴𝑘Δ𝑡) 𝐼6 06×3(2𝐾−𝑘−3) − 𝐵𝑘Δ𝑡 06×3(𝐾−𝑘−1)

]
(30)

These matrices 𝐴𝑠𝑑,𝑘 can be arranged in a bigger matrix 𝐴̂𝑠𝑑 to extract the necessary vectors from the total state

vector 𝑿̂:

𝐴̂𝑠𝑑 =



... ... ...

06×𝑀 ( 𝑗−1) 𝐴𝑠𝑑,𝑘−1 06×𝑀 (𝑁− 𝑗 )

06×𝑀 ( 𝑗−1) 𝐴𝑠𝑑,𝑘 06×𝑀 (𝑁− 𝑗 )

06×𝑀 ( 𝑗−1) 𝐴𝑠𝑑,𝑘+1 06×𝑀 (𝑁− 𝑗 )

... ... ...



(31)

Where the index 𝑘 goes from 𝑘 = 1 to 𝑘 = 𝐾 − 1 for all 𝑗 = 1...𝑁 . With this structure, the first 6(𝐾 − 1) rows

correspond to the necessary terms to obtain all the discretised dynamic equations for deputy 1, the second 6(𝐾 − 1)

correspond to the same but for deputy 2 and this is repeated until the last 6(𝐾 − 1) correspond to all the terms necessary

to obtain the discretised equations for deputy 𝑁 . Consequently, the size of matrix 𝐴̂𝑠𝑑 is (6(𝐾 − 1)𝑁 × 𝑀 · 𝑁), and the

system’s dynamics can be written as in Eq. (32).

𝐴̂𝑠𝑑 𝑿̂ = 0 (32)

With a similar approach, also the objective function can be expressed as a function of the total state vector 𝑿̂. A set

of matrices that extract all the control actions from the individual 𝒙̂ 𝑗 were constructed, which were then assembled to

work with 𝑿̂. The matrix that extracts the control actions from the individual 𝒙̂ 𝑗 vectors is defined in equation 33:

𝐻 𝑗 =

[
03(𝐾−1)×6𝐾 𝐼3(𝐾−1)

]
(33)

Once the matrix 𝐻 𝑗 is defined, the total assembly 𝐻̂ can be defined as:

𝐻̂ =



... ... ...

03(𝐾−1)×𝑀 ( 𝑗−1) 𝐻 𝑗 03(𝐾−1)×𝑀 (𝑁− 𝑗 )

... ... ...


(34)

Where the index 𝑗 goes from 𝑗 = 1 to 𝑗 = 𝑁 . As a consequence, the objective function can be written as:
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𝐽 = | |𝐻̂ 𝑿̂Δ𝑡 | |1 (35)

Next, the initial and final conditions must be written as a function of the total variable vector 𝑿̂. To do so, the

matrices 𝐴𝑖𝑐 and 𝐴 𝑓 ,𝑐 are defined as follows:

𝐴𝑖𝑐 =

[
𝐼6 06×𝑀−6

]
, 𝐴 𝑓 𝑐 =

[
06×6𝐾−6 𝐼6 06×3(𝐾−1)

]
(36)

These matrices extract the first six ROEs of 𝒙̂ 𝑗 and the last six respectively, which correspond to the exact values

that must be imposed as initial and final conditions. This process must done for all the deputies, so the matrix 𝐴̂𝑖𝑐 is

assembled as in Eq. (37), while matrix 𝐴̂ 𝑓 𝑐 has exactly the same distribution, changing 𝐴𝑖𝑐 for 𝐴 𝑓 𝑐.

𝐴̂𝑖𝑐 =



... ... ...

06×𝑀 ( 𝑗−1) 𝐴𝑖𝑐 06×𝑀 (𝑁− 𝑗 )

... ... ...


(37)

The initial and final conditions can be written as a function of 𝑿̂ as long as the vectors 𝜹𝜶0, 𝒋 and 𝜹𝜶 𝒇 , 𝒋 are assembled

as two column vectors 𝜹𝜶0 =

[
𝜹𝜶0,1 ... 𝜹𝜶0,𝑵

]𝑇
and 𝜹𝜶 𝒇 =

[
𝜹𝜶 𝒇 ,1 ... 𝜹𝜶 𝒇 ,𝑵

]𝑇
.

𝐴̂𝑖𝑐 𝑿̂ =𝜹𝜶0 (38)

𝐴̂ 𝑓 𝑐 𝑿̂ =𝜹𝜶 𝒇 (39)

The next constraint to be rearranged is the thrust level limitation. In this case, since the control is limited in both

positive and negative values, the required matrix must take not only the control actions but also their negative values

from the variables vector. The matrices 𝐴̃𝑡ℎ and 𝐴𝑡ℎ are defined as:

𝐴̃𝑡ℎ =

[
03(𝐾−1)×6𝐾 𝐼3(𝐾−1)

]
, 𝐴𝑡ℎ =


𝐴̃𝑡ℎ

−𝐴̃𝑡ℎ

 (40)

Where the matrix 𝐴̃𝑡ℎ extracts the control actions from the individual variable vectors, and therefore the matrix 𝐴𝑡ℎ

computes not only the control actions but also their negative counterparts. Again, these matrices can be arranged in a

bigger matrix to take into account not the individual 𝒙̂ 𝑗 but the total one 𝑿̂, as in Eq. (41).
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𝐴̂𝑡ℎ =



... ... ...

06(𝐾−1)×𝑀 ( 𝑗−1) 𝐴𝑡ℎ 06(𝐾−1)×𝑀 (𝑁− 𝑗 )

... ... ...


(41)

Thus, the thruster level limitation can be written as:

𝐴̂𝑡ℎ 𝑿̂ ≤ 𝑎𝑚𝑎𝑥𝐵𝑡ℎ (42)

Where the matrix 𝐵𝑡ℎ takes into account whether all the thrusters are limited to the same level or some of them have

different limitations. An example of a different limitation is the case in which one of the directions has actually no

control available, being in this case the maximum thrust possible 0. The matrices 𝐵𝑡ℎ corresponding to the case in

which all thrusters have the same limitation and the one in which the radial direction cannot provide any thrust are

included in Eq. (43):

𝐵𝑡ℎ =


16𝑁 (𝐾−1)×1[
0 1 1 0 1 1 ... 0 1 1

]𝑇 (43)

Finally, the safety distance constraint was manipulated algebraically. First of all, the matrix 𝐴𝑖, 𝑗
𝐶𝐴

[𝑘] has to be

defined, which computes the relative position vector between deputies 𝑗 and 𝑖 at time instant 𝑡𝑘 :

𝐴
𝑖, 𝑗

𝐶𝐴
[𝑘] =

[
03×𝑀 ( 𝑗−1) 03×6(𝑘−1) 𝐿𝑘 03×6(𝐾−𝑘 ) 03×3(𝐾−1) ...

... 03×𝑀 (𝑖− 𝑗−1) 03×6(𝑘−1) − 𝐿𝑘 03×6(𝐾−𝑘 ) 03×3(𝐾−1) 03×𝑀 (𝑁−𝑖)
]

(44)

In Eq. (44), the first zero matrix is used to enter the individual vector variable 𝒙̂ 𝑗 . The second one is used to arrive

to the ROEs of deputy 𝑗 at time instant 𝑡𝑘 . Then, the matrix 𝐿𝑘 computes the relative cartesian position for the deputy 𝑗

at time instant 𝑡𝑘 , the third zero matrix is used to enter the part of the 𝒙̂ 𝑗 containing the control actions and the matrix

03×3(𝐾−1) is used to avoid that same part. Then the process is repeated but for deputy 𝑖, computing in this case the

negative counterpart of the relative cartesian positions, so that they are subtracted from those belonging to deputy 𝑗 and

their relative position vector is obtained. The product 𝐴𝑖, 𝑗
𝐶𝐴

[𝑘] 𝑿̂ computes the relative position vector between deputies

𝑖 and 𝑗 :
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𝐴
𝑖, 𝑗

𝐶𝐴
[𝑘] 𝑿̂ =



𝑋 𝑗 (𝑡𝑘) − 𝑋𝑖 (𝑡𝑘)

𝑌 𝑗 (𝑡𝑘) − 𝑌𝑖 (𝑡𝑘)

𝑍 𝑗 (𝑡𝑘) − 𝑍𝑖 (𝑡𝑘)


(45)

Taking this into account, the projection of the current relative position vector between deputies 𝑗 and 𝑖 on the

reference or previous relative vector can be computed as:

(𝐿 [𝑘]𝛿𝛼̄ 𝑗 [𝑘] − 𝐿 [𝑘]𝛿𝛼̄𝑖 [𝑘])𝑇 (𝐿 [𝑘]𝛿𝛼 𝑗 [𝑘] − 𝐿 [𝑘]𝛿𝛼𝑖 [𝑘]) = 𝑿̄
𝑇 (𝐴𝑖, 𝑗

𝐶𝐴
)𝑇 [𝑘]𝐴𝑖, 𝑗

𝐶𝐴
[𝑘] 𝑿̂ (46)

Where 𝑿̄ corresponds to a variable vector with the same structure as 𝑿̂ but related to the previous or reference solution.

This projection must be computed once per each time instant and deputy combination, leaving a total computation

number of 𝑛𝑟𝑒𝑝 = 𝑁 !
2!(𝑁−2)!𝐾 . This means that increasing the number of deputies affects the total computational time,

which is related to the matrices’ size. This, in turn, might lead to higher delays between the manoeuvre planning and

the execution, and therefore, reducing the total performance. With this, the matrices 𝑋̄𝑀 and 𝐴̂𝐶𝐴 can be built as in

Eq. (47):

𝑋̄𝑀 =



... ... ...

01×𝑀𝑁 (𝑔𝑔−1) 𝑿̄
𝑇 01×𝑀𝑁 (𝑛𝑟𝑒𝑝−𝑔𝑔)

... ... ...


, 𝐴̂𝐶𝐴 =



...

(𝐴𝑖, 𝑗
𝐶𝐴

[𝑘 − 1])𝑇 𝐴𝑖, 𝑗
𝐶𝐴

[𝑘 − 1]

(𝐴𝑖, 𝑗
𝐶𝐴

[𝑘])𝑇 𝐴𝑖, 𝑗
𝐶𝐴

[𝑘]

(𝐴𝑖, 𝑗
𝐶𝐴

[𝑘 + 1])𝑇 𝐴𝑖, 𝑗
𝐶𝐴

[𝑘 + 1]

...



(47)

Matrix 𝑋̄𝑀 is built in such a way that each row contains the full vector 𝑿̄ transposed and placed in different columns

inside the matrix, so that the product computed is the correct one. The index 𝑔𝑔 in Eq. (47) goes from 𝑔𝑔 = 1 to

𝑔𝑔 = 𝑛𝑟𝑒𝑝, meaning that 𝑋̄𝑀 is a (𝑛𝑟𝑒𝑝 × 𝑀 · 𝑁 · 𝑛𝑟𝑒𝑝) matrix. On the other hand, matrix 𝐴̂𝐶𝐴 simply contains the

matrix products necessary to compute the projection as in Eq. (46). The last remark worth mentioning is the fact that

these matrices also allow computing the modulus of the previous or reference relative vectors, which is necessary for the

safety distance constraint. This is shown in Eq. (48), where the final discretised convex safety distance constraint is

written.

𝑋̄𝑀 𝐴̂𝐶𝐴𝑿̂ ≥ 𝑑𝑡ℎ

√︃
𝑋̄𝑀 𝐴̂𝐶𝐴𝑿̄ (48)

Where the product 𝑋̄𝑀 𝐴̂𝐶𝐴𝑿̄ computes the squared modulus of the reference or previous relative position vector at
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each time instant and for all the deputy combinations. Thus, taking the square root of the individual components of this

column vector provides the necessary modulus at each time instant.

Finally, all the equations involved in the problem have been discretised and transformed in terms of 𝑿̄. The convex

optimal problem is written in Eq. (49) as a summary.

Minimise: 𝐽 = | |𝐻̂ 𝑿̂Δ𝑡 | |1

subject to: 𝐴̂𝑠𝑑 𝑿̂ = 0

𝐴̂𝑖𝑐 𝑿̂ = 𝜹𝜶0

𝐴̂ 𝑓 𝑐 𝑿̂ = 𝜹𝜶 𝒇

𝐴̂𝑡ℎ 𝑿̂ ≤ 𝑎𝑚𝑎𝑥𝐵𝑡ℎ

𝑋̄𝑀 𝐴̂𝐶𝐴𝑿̂ ≥ 𝑑𝑡ℎ

√︁
𝑋̄𝑀 𝐴̂𝐶𝐴𝑿̄

(49)

An important consideration is related to the reference/previous state vector. This is where the SCP formulation comes

into play. Following the approach in [11], the problem is solved in a recursive manner, updating the reference solution

𝑿̄ each iteration with the previous solution 𝑿̂. This iteration is repeated until the new solution 𝑿̂ and the previous one

𝑿̄ are sufficiently close to each other, measured by the infinite norm of their difference | | 𝑿̂ − 𝑿̄ | |∞. The only case where

this is not applicable is the first iteration, in which the problem must be solved without the safety distance constraint to

obtain the first reference solution. This resolution of the first iteration without the distance constraint allows obtaining

more consistent solutions for this problem, that do not depend so heavily in the initial estimated trajectory provided to

the solver [12].

Solving the convex optimal control problem presented in Eq. (49) allows obtaining the necessary control actions

that each deputy has to apply at each time instant 𝑡𝑘 and their corresponding ROEs during the manoeuvre. This means

that this formulation is a centralised one, as the problem is solved for all the deputies involved in the manoeuvre at the

same time. This implies that it suffers of bad scaling with the number of deputies, because the number of inter-satellite

distance constraints that have to be checked increases quadratically with the number of deputies. In order to improve the

resolution time required to solve the problem with an increasing number of deputies, the formulation could be modified

in such a way that each satellite computes their own required control actions and only takes into account those deputies

that might pose a collision threat, as proposed in [11].

IV. Results
In Section III, all the theoretical and mathematical formulations for the control algorithm were presented and

developed. This section presents the results of the numerical simulations performed to test this algorithm, and provides a

small description of the formation geometries considered to test the control algorithms. Then, the results corresponding
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to the open-loop manoeuvre planning algorithm are introduced and described, including an explanation of how these

numerical simulations were performed.

There are several different open-source software that solve convex optimal problems. SeDuMi is the one considered

in this article, developed by F. Sturm [35] and it is included by default among the available solvers for the CVX software,

which is an open-source 𝑀𝐴𝑇𝐿𝐴𝐵©-based modelling system for convex optimisation [36, 37], developed by M. Grant

and S. Boyd. The reason why this particular solver is considered instead of the other options available for CVX is

because it allows obtaining better results in terms of convergence rate and time for most of the cases considered.

Before presenting the results for the first manoeuvre, it is necessary to point out that the formulation reported in

Eq. (49) suffers from numerical bad-conditioning, because of the different equations’ orders of magnitude. In particular,

the safety distance constraint is several orders of magnitude higher than the other equations, mainly due to the presence

of the chief’s semi-major axis squared inside 𝐴̂𝐶𝐴. Two possible ways to handle this problem were identified. First, the

order of magnitude of this constraint can be artificially reduced, thanks to a multiplicative gain. A second approach

consists in reformulating the whole problem in a non-dimensional way.

The first approach is considered in this paper, with a gain of 1 · 10−9 on both sides of the inequality in Eq. (48).

A. Test cases description

This section includes the descriptions of the two test cases considered to evaluate the algorithm’s performances.

1. Test case 1: formation flying for remote sensing (3 satellites)

The first test case scenario is based on the Formation Flying L-Band Aperture Synthesis mission concept under

study by ESA, Airbus and Politecnico di Milano, consisting of a group of three L-band satellites [38], which aims at

increasing the spatial resolution of synthetic aperture instruments. The reference mean orbit for this formation is a

sun-synchronous orbit with the following characteristics [20]: mean altitude of 775 km and mean inclination of 98.5 º.

As described in previous works [20], the formation is shaped as a 13 m side equilateral triangle, with the satellites placed

at the vertex. The chief virtual satellite corresponds to the triangle’s centre. This triangle lies on a plane perpendicular to

the position vector and must be fixed, which means that control actions are required to counteract the natural dynamics

of the formation, which would tend to deform this triangle.

As described in [20], each spacecraft has a total weight of about 1600 kg, meaning that these deputies are not

in the small sized category previously mentioned in Section I. Their radius is 3.5 m, which means that a minimum

inter-satellite distance constraint of at least 𝑑𝑡ℎ = 10 m should be imposed to ensure no collision occurs. They are

equipped with low-thrust propulsion technology in order to perform continuous orbit control. The baseline is the engine

QinetiQ T5, which can provide a maximum thrust of 25 mN. Taking into account that the constraint inside the optimal

control problems is formulated with the acceleration as the control variable, this maximum thrust has to be transformed

into a maximum acceleration, which corresponds to 𝑎𝑚𝑎𝑥 = 1.5625 · 10−5 m/𝑠2. Furthermore, in this analysis the
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spacecraft are assumed to provide thrust only in normal and transversal directions. This limitation comes from the

design itself, as the weight reduction was paramount and no thruster in the radial direction was included. It must be

considered inside the optimal control problem with a suitable 𝐵𝑡ℎ matrix, as in equation Eq. (42). This formation was

selected mainly because it is a tight formation, which poses a bigger challenge for control algorithms, due to the close

distance between the desired relative cartesian position and the prohibited zones due to collision risks.

2. Test case 2: formation flying for space advertisement (5 satellites)

The second test case considered is based on the analysis done in [39], where the preliminary mission analysis and

conceptual design of a reflective balloon mission is performed, studying whether it would be possible to launch a

satellite that could be visible with naked eyes from several different cities across the world. Such satellite could be used

in a formation to perform activities that required direct visual contact from the ground, like advertisement. The chief’s

orbital elements are reported in Table 3, as in Table 5.1 of [39].

Table 3 Chief’s orbital elements for the balloon mission formation [39].

a [m] e [-] i [º] Ω [º] 𝜔 [º] 𝑀0 [º]
7266500 0.001 99 285 0 90

In this case, the formation’s chief virtual satellite corresponds to the formation’s geometrical centre. Its orbital

elements correspond to those of a repeated groundtrack and sun-synchronous orbit. The groundtrack repetition was

a requirement to re-visit the points of interest on Earth’s surface with a high frequency [39]. The sun-synchronicity,

instead, was required to ensure a correct power supply, but most importantly to ensure that the lighting conditions

needed to see the satellites with the naked eye from the ground were always achieved [39].

The mission consists of five deputies, which could have two configurations. The first one is a linear configuration

in the tangential direction with a 25 m inter-satellite separation. The second one is a circular configuration on the

tangential-normal plane with a 20 m radius and with the deputies spread along the circumference with an equal angular

separation. This results in a pentagonal configuration. The corresponding ROEs and relative cartesian positions are

further reported in Section IV.C, where the results for the transition manoeuvre are described.

The numerical values for the thrust limitation and inter-satellite constraints must be changed to match the specifications

included in [39]. Regarding the thrust limitation, the total preliminary mass budget reported for this type of spacecraft is

around 100 kg [39]. Assuming that they are equipped with low-thrust electrical propulsion technology with a maximum

thrust of 25 mN, the new thrust limitation value becomes 𝑎𝑚𝑎𝑥 = 2.5 · 10−4 m/𝑠2. The balloon used in these spacecraft

to reflect light and to allow them to be seen from ground must always point in the radial direction. For this reason, these

spacecraft are considered unable to provide thrust in the radial direction, which is completely occupied by the balloon.

Moreover, the inter-satellite distance constraint should consider the balloon dimensions reported in [39]. The

selected balloon radius in this reference is around 4.4 m, which can be rounded up to 5. A collision between spacecraft
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will occur if both centres are closer than 10 meters. To ensure a safety margin, the minimum allowable inter-satellite

distance for this formation is set to 𝑑𝑡ℎ = 20 m.

B. Test case 1: Payload calibration

The first manoeuvre considered is the so-called payload calibration manoeuvre considered in the FFLAS formation

design. In this manoeuvre, the objective is to switch the positions of the two deputies placed at the top of the triangle (2

and 3) so that their payload can be calibrated [12]. This manoeuvre has to be performed regularly during the mission

period, so achieving a predefined optimal manoeuvre from the fuel consumption point of view is crucial. The chief’s

absolute orbital elements, the deputies’ initial ROEs and their initial relative cartesian positions considered in this

simulation are included in Tables 4 to 6.

Table 4 Chief’s orbital elements

a [m] e [-] i [º] Ω [º] 𝜔 [º] 𝑀0 [º]
7153140 0.001 98.5 34 0 90

Table 5 Initial ROEs for the payload calibration manoeuvre.

Dep. 𝛿𝑎 [-] 𝛿𝜆 [-] 𝛿𝑒𝑥 [-] 𝛿𝑒𝑦 [-] 𝛿𝑖𝑥 [-] 𝛿𝑖𝑦 [-]
1 0 0 0 0 -5.2483·10−7 0
2 0 9.0869·10−7 0 0 1.0491·10−6 0
3 0 -9.0869·10−7 0 0 1.0491·10−6 0

Table 6 Initial and final relative cartesian positions for the payload calibration manoeuvre.

Initial Final
X [m] Y [m] Z [m] X [m] Y [m] Z [m]

Dep. 1 0 0 -3.7542 0 0 -3.7542
Dep. 2 0 6.5 7.5042 0 -6.5 7.5042
Dep. 3 0 -6.5 7.5042 0 6.5 7.5042

Although the chief’s orbit is defined as circular in Section IV.A.1, a small eccentricity is considered in this simulation

to account for a more realistic scenario, in which a completely circular orbit cannot be achieved. It is also worth

mentioning that the right ascension of the ascending node Ω was selected as a generic value, since it does not influence

the manoeuvre at all.

This manoeuvre planning problem is solved using SeDuMi and the desired time to complete the reconfiguration is

set to 3/4 of the chief’s orbital period, considering 𝑑𝑡ℎ = 10 m as the minimum inter-satellite distance constraint. The

discretisation step considered for this manoeuvre is Δ𝑡 = 25 s. The results obtained from the resolution of the problem

described by Eq. (49) with the previously shown initial conditions, the desired reconfiguration and 𝑑𝑡ℎ = 10 m are
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shown in Fig. 4.

In Fig. 4a, each deputy’s initial position is marked with a triangle in their corresponding colours. The optimal

solution for the payload calibration manoeuvre is a symmetric trajectory with respect to the 𝑋 = 0 plane. As shown in

Figs. 4b and 4d, even though deputy 1 is not commanded to change positions, it has to move during the manoeuvre.

This is due to the minimum inter-satellite distance constraint, which would be violated as seen in Fig. 4c if the deputy 1

would not move. The limitation imposed to the deputies’ accelerations is also respected, as seen in Fig. 4b. The radial

component remains equal to zero for the three deputies during the whole manoeuvre and the other two components are

below the 𝑎𝑚𝑎𝑥 = 1.5625 · 10−5 m/𝑠2 limit, both in the positive and in the negative direction.

(a) Deputies’ trajectories in 3D space.
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Fig. 4 Open-loop manoeuvre planning results for payload calibration manoeuvre with 𝑑𝑡ℎ = 10 m.
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On the other hand, the total Δ𝑉 budget for all three deputies needed to perform this manoeuvre is 0.1045 m/s. One

of the apparent advantages of working with ROEs is that they seem to increase the optimisation’s efficiency, thanks to the

better geometrical insight that the ROEs give to the optimisers, which in turn, can obtain better solutions. However, this

should be proven mathematically in future works. Finally, in the acceleration temporal evolution’s normal component in

Fig. 4b, those associated to deputies 2 and 3 are so similar that are almost indistinguishable. The same happens for the

inter-satellite distance between deputies 1 - 2 and 1 - 3 in Fig. 4c.
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Fig. 5 Mass evolution during the payload calibration manoeuvre for each satellite.

Another interesting result is the mass variation of each of the deputies during the manoeuvre, as shown in 5.

Comparing this figure to 4b, it is apparent how the mass decreases each time the thrusters are fired, but also how the

total mass variation during the whole manoeuvre is minute. This is in line with the high total impulse associated with

the electric propulsion considered and the low levels of acceleration required during the manoeuvre.

This solution was obtained in 31 s on a Windows computer with Intel(R) Core(TM) i7-8750H CPU @ 2.20GHz at

2.20 GHz and 16.0 GB of RAM, requiring 5 iterations to fully converge, counting the initial one in which the safety

distance constraint was not taken into account. This means that each iteration, including the computation of 𝑋̄𝑀 , took

around 6 seconds.

C. Test case 2: Line to Circle manoeuvre

The second manoeuvre included in this article is the transition from the linear configuration to the circular one for

the 5 deputy formation described in Section IV.A.2. The ROEs’ values for the initial formation configuration and the

relative cartesian coordinates for the initial and final configurations are reported in Tables 7 and 8. Given that the initial

configuration is along the tangential direction, only the relative longitudes have been reported in Table 7, as the other

ROEs are all zero.
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Table 7 Initial ROEs for the Line to Circle manoeuvre.

Dep. 1 2 3 4 5
𝛿𝜆 · 106 [-] 0 3.4404 6.8809 -3.4404 -6.8809

Table 8 Initial and final relative cartesian positions for the Line to Circle manoeuvre.

Initial Final
X [m] Y [m] Z [m] X [m] Y [m] Z [m]

Dep. 1 0 0 0 0 0 20
Dep. 2 0 25 0 0 11.7557 -16.1803
Dep. 3 0 50 0 0 19.0211 6.1803
Dep. 4 0 -25 0 0 -11.7557 -16.1803
Dep. 5 0 -50 0 0 -19.0211 6.1803

The selected reconfiguration time is left as 3/4 of the chief’s orbital period, with a discretisation step of Δ𝑡 = 25 s.

The results obtained for this manoeuvre with SeDuMi are reported in Fig. 6, where a view change with respect to the

previous case was done to ease the visualisation of all the trajectories. There are several lines overlapped in Fig. 6c,

due to the formation and manoeuvre’s anti-symmetry. This property can also be observed in Figs. 6b and 6d, where

deputies 2 - 4 and 3 5 have the exact same Δ𝑉 budget and an anti-symmetric control action temporal evolution.

The fact that the thrust limitation is almost never reached during the manoeuvre, as seen in Fig. 6b, suggests that

this reconfiguration could be performed with a shorter manoeuvre or with a less powerful engine. This problem’s

scalability issue with the number of deputies can be observed in this case. With 5 deputies and a inter-satellite distance

constraint of 𝑑𝑡ℎ = 20 m the total required time to obtain a solution was 664 s and a total number of 8 iterations to

converge on the same Windows computer described in Section IV.B. This means that each iteration, including the 𝑋̄𝑀

matrix computation, takes around 83 s, more than ten times the previous case. This is due to the higher number of

deputies involved in the manoeuvre. The spacecraft design described in [39] includes the aforementioned reflective

balloon which, due to its big surface, would be affected by the solar radiation pressure, to the point where it could reach

orders of magnitude similar to those of the 𝐽2 perturbation. Because the solar radiation pressure has not been taken

into account in this article, applying this manoeuvre for a formation composed by such spacecraft might lead to slight

discrepancies between the desired final positions and the final ones. Nonetheless, the mission described in [39] and

the manoeuvre here presented could be applied to a formation of small self-illuminated satellites, which achieve the

required level of brightness through a set of LEDs instead of direct reflection [40].
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(a) Deputies’ trajectories in 3D space.
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(c) Inter-satellite distance along the manoeuvre.
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Fig. 6 Open-loop manoeuvre planning results for Line to Circle manoeuvre with 𝑑𝑡ℎ = 20 m.

V. Conclusions
This article presents a new formation flying control problem based on the ROEs as state variables, and implements

an open-loop manoeuvre planning algorithm, which expands the current catalogue of continuous-time and ROEs-based

control algorithms. The ROEs’ dynamics under the effects of Earth’s gravity potential are expressed with a new

continuous-time model, which was obtained thanks to the state transition matrix presented in [7]. Even though in this

article only the Earth’s oblateness effect was considered, this formulation could be generalised to 𝐽𝑛 zonal harmonics.

Considering only the 𝐽2 effect, the chief’s semi-major axis remained unchanged because the zonal harmonics do not

have any influence on it and therefore could be considered as a constant in the problem’s formulation. To generalise
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even more the problem formulation and include orbital perturbations affecting the semi-major axis of the orbit, such as

the atmospheric drag, the equations would have to be revised to account for this semi-major axis change along time.

Working with the ROEs as state variables has several advantages. It allows obtaining fuel-efficient manoeuvres, due

to the good geometrical insight provided by the ROEs. Whether this improvement in fuel consumption is related to this

should be proven mathematically in future works. ROEs also allow obtaining directly information about the relative

orbit geometry. Finally, ROEs’ definition is not limited by the close proximity or chief’s circular orbit assumptions that

other formulations need.

The formulation presented in this article for the optimal control problem suffers from two issues: the first one is

numerical bad-conditioning due to the very wide range of orders of magnitude involved in the equations. This is solved

by artificially decreasing the distance constraint’s order of magnitude, but a second approach from the numerical point

of view would be to formulate the problem in a non-dimensional way. On the other hand, this formulation suffers from

bad scaling with the number of deputies, as the number of inter-satellite distance constraints that have to be checked

increases quadratically with the number of deputies. As already mentioned, a way of tackling this problem could be the

formulation of a decentralised problem, in such a way that each satellite computes its control actions and only takes into

account those deputies that might pose a collision threat, as proposed in [11].

The developed control algorithm is an open-loop manoeuvre planning, which, given an initial condition, a desired

final condition and a manoeuvre duration, provides the required control actions along with the manoeuvre that minimises

the fuel consumption and the associated ROEs. This algorithm has proven to correctly determine the accelerations

required to perform several different manoeuvres, such as a triangular reconfiguration or a linear to circular transition.

Both of these manoeuvres could be solved by the control algorithm because it is formulated for a generic number of

deputies. One way to improve the current precision of the algorithm could be to increase the precision of the dynamic

model discretisation, which right now is performed taking the first term of the 𝑒𝐴Δ𝑡 expression. The implications of

taking more terms or even a completely different method for discretising the dynamics could be an interesting topic for a

future work.

The fact that a continuous-time model was obtained from a discrete formulation of the dynamics to be then discretised

again could seem like a roundabout way to get to the initial condition: a discrete model of the relative dynamics.

However, the derivation of this continuous-time model is one of the objectives of this work, as this continuous-time

formulation can be used to obtain non-linear controllers, such as those based on Lyapunov functions. The reason

why a discrete-time based controller is presented in this work was not only to show the versatility of of this model,

but also because the results obtained with this formulation were more satisfactory than those obtained with different

continuous-time based controllers, which could not guarantee convergence for all the test scenarios, or in the best case

where convergence was achieved, including the safety distance constraint in the problem proved to be challenging.
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