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Abstract
Representations of biometric traits to be used in automatic recognition systems are typically learned with the goal of obtain-
ing significant discriminative capabilities, that is, generating features that are notably different when produced by traits of 
different subjects, while maintaining an appropriate consistency for a given user. Nonetheless, discriminability is not the only 
desirable property of a biometric representation. For instance, the mutual independence of the coefficients in the employed 
templates is a valuable property when designing biometric template protection schemes. In fact, managing representations 
with independent coefficients allows to maximize the achievable security. In this paper we propose different learning strate-
gies to obtain biometric representations with the property of statistical independence among coefficients, while preserving 
discriminability. In order to achieve this goal, different strategies are employed to train convolutional autoencoders. As a 
proof of concept, the effectiveness of the proposed approaches is tested by considering biometric recognition systems using 
both finger-vein and palm-vein patterns.
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Introduction

Representation learning is a discipline concerned with the 
exploitation of machine learning algorithms to automati-
cally obtain, from the analyzed data, a set of coefficients 

to be used for specific purposes, typically not attainable by 
directly exploiting the original raw form of the considered 
signals [2]. For example, a new data representation can be 
used to obtain discriminative characteristics, that is, features 
that can be effectively employed for classification purposes 
[19].

Among the others, a potential field of application of rep-
resentation learning is automatic person recognition using 
biometric identifiers, where it is of paramount importance 
to handle templates that are significantly different when 
extracted from traits of distinct subjects, while as stable 
as possible when obtained from the same subject [3]. This 
allows to automatically recognize a legitimate person and 
grant physical or logical access to specific goods or ser-
vices, as well as to reject potential impostors, by evaluat-
ing the similarity between the templates generated from the 
acquired data and those associated to the claimed identity. It 
is worth to remark that, while discriminability is a remark-
able property needed to operate a biometric system, addi-
tional requirements are needed when addressing template 
security and privacy issues [6]. Actually, the compromise 
of a biometric identifier would imply severe consequences 
for the legitimate owner of the biometric data, such as the 
impossibility to further use the involved template, or the 
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possibility for an attacker to exploit the collected informa-
tion for improper purposes, such as the tracking of the user’s 
activity across multiple applications whose access control 
mechanisms rely on the same biometric trait [16]. In order to 
significantly mitigate such risks, several biometric template 
protection (BTP) approaches have been proposed in litera-
ture. Biometric cryptosystems are among the most effec-
tive BTP solutions. They are based on the combination of 
biometric representations with binary cryptographic keys, 
to generate template representations, namely helper data, 
which do not leak information about neither of the two origi-
nal components [31]. When such methods are implemented, 
their robustness against attacks depends on the mutual sta-
tistical independence of the biometric template coefficients. 
Unfortunately, this aspect is often neglected when designing 
the feature extraction mechanisms, with the consequence 
that the actual security of the proposed applications is com-
monly much lower than the theoretical one [33].

Within this framework, this paper focuses on the design 
of methods to automatically learn biometric representations 
with mutual independent coefficients, while not affecting the 
discriminability of the considered representation. In more 
details, this paper stems from the preliminary work of the 
same authors in [21], where this aspect has been taken into 
account for the first time. Specifically, several metrics have 
been introduced in [21] to provide quantitative evaluations 
on the mutual statistical independence of the coefficients in 
a biometric template, and some attempts have been there 
made to improve such measurements for representations 
derived from finger-vein patterns. The present contribution 
advances the state of the art with respect to what in [21], in 
the following terms:

•	 the effectiveness of the proposed evaluation metrics and 
approaches to extract independent features, applied to 
finger-vein patterns in [21], is applied also to palm-vein 
patterns. Different databases are therefore here taken into 
account;

•	 an additional loss, already employed in literature for 
purposes different from the one here considered, is used 
to train convolutional autoencoders in the performed 
experimental tests;

•	 a novel loss, specifically designed to train autoencoders at 
learning mutually independent features, and based on the 
employed independence evaluation metrics, is here intro-
duced and tested on the considered biometric modalities.

The paper is organized as follows: general information about 
BTP schemes, as well as specific information about the bio-
metric cryptosystem here taken into account, are given in 
Sect. “Biometric Template Protection”, where the impor-
tance of generating biometric representations with mutu-
ally independent coefficients is also highlighted. The metrics 

employed to quantitatively evaluate the independence of a 
representation, introduced in [21], are discussed in Sect. 
“Statistical Independence Metrics”. The approaches here 
employed to generate the desired biometric representations 
are then introduced in Sect. “Biometric Representations”. 
The tests performed to assess the effectiveness of the pro-
posed methods are presented in Sect. “Experimental Tests”, 
while some conclusions derived from the obtained results 
are eventually drawn in Sect. “Conclusions”.

Biometric Template Protection

Along with the several advantages offered by biometric 
data, in comparison with traditional approaches relying on 
passwords or tokens, there are also several concerns that 
should be carefully taken into account when implementing 
an automatic recognition system based on personal traits. 
As already remarked, in case an attacker is able to fraudu-
lently collect a biometric trait, it would be then possible to 
track the activities of its legitimate owner across different 
domains [29]. Moreover, the compromised data cannot be 
used anymore, and since the number of available biometric 
traits is limited, and it is impossible to revoke or reissue 
them, losing control over our own biometric data is a highly 
undesirable event. In addition, biometric traits could be also 
analyzed to reveal sensitive information about their owners, 
and therefore exploited for discriminatory purposes [8].

Actually, the EU General Data Protection Regulation 
(GDPR) states that biometric traits are sensitive and per-
sonal data, and should be therefore processed ensuring ade-
quate levels of security. It is also worth observing that, for an 
attacker, collecting the templates stored in a database could 
be as effective as acquiring the original biometric data. In 
fact, it has been shown for several biometric identifiers that 
the original biometric traits can be adequately reconstructed 
from their representations, namely the templates [28], and 
that such reverse process can be also performed when the 
employed features are obtained through the use of neural 
networks [20].

When designing a biometric recognition system, it is 
therefore of paramount importance to take proper counter-
measures in order to address the aforementioned issues.

A simple solution that could be employed to protect 
the templates stored in a database is to encrypt the data 
using some cryptographic algorithm. The downside of 
such approach is that the employed templates should be 
decrypted during the recognition process, which represents 
a system vulnerability [31]. Homomorphic encryption has 
been exploited to tackle the aforementioned disadvantage, by 
implementing the recognition step in the encrypted domain, 
without exposing the templates. While such solution could 
be effective in protecting the employed biometric data, 
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the computational complexity of the involved processing 
is usually quite demanding, and therefore not suitable for 
many applications. Furthermore, resorting to homomorphic 
encryption commonly involves the availability of secure 
servers which are responsible to manage the data exchange, 
which represent another constraint to be considered in prac-
tical scenarios.

The design of biometric template protection approaches 
have emerged as viable alternatives to the use of homomor-
phic encryption to ensure the secure and private handling 
of biometric traits during the recognition process. In gen-
eral, these methods generate a protected template, that does 
not leak any information about the original data. The rec-
ognition process could be then carried out in such secure 
domain, thus protecting the data during the whole recog-
nition process. The properties that a BTP scheme should 
satisfy, according to the ISO/IEC 24745 standard [15], are 
the following:

•	 Irreversibility: given a protected template, it should not 
be possible to reconstruct the original biometric sample, 
or any unprotected representation derived from it [22];

•	 Renewability: from a given biometric sample or represen-
tation, it should be possible to issue multiple protected 
templates;

•	 Unlinkability: given two protected templates, generated 
form the same biometric sample or representation, and 
stored in different applications, it should not be possible 
to determine that they belong to the same subject;

•	 Performance: using a BTP scheme should not signifi-
cantly affect the system recognition performance [27].

Traditionally, BTP schemes are distinguished into two main 
categories: cancelable biometrics [23] and biometric cryp-
tosystems [22] approaches.

The former class comprises methods applying a trans-
formation to the biometric data or their representations for 
their protection. The use of invertible transformations leads 
to salting approaches, whose security relies on the secret 
storage of the parameters defining the employed transfor-
mation. Conversely, when it is assumed that an attacker can 
gain knowledge about the employed transformation, non-
invertible functions have to be necessarily taken into account 
to properly define a BTP scheme [24]. While cancelable 
biometrics have been defined for several of the most used 
traits, such as fingerprint [34], face [5], and iris [26] among 
others, their irreversibility has been rarely evaluated through 
exhaustive and rigorous proofs, due to the intrinsic diffi-
culties in proving the actual non-invertibility of a function 
against any possible kind of attack.

On the other hand, biometric cryptosystems could be 
distinguished into key-generating approaches, which extract 
cryptographic keys from the considered biometric data [32], 

and key-binding methods, whose aim is to secure a cryp-
tographic key by means of biometric data and vice versa, 
combining the two information sources into a binary tem-
plate commonly indicated as helper data [11]. The former 
approaches commonly fail at providing proper renewability 
and unlinkability, since information different from that of 
biometric data would be required to generate multiple rep-
resentations of the same trait. Key-binding approaches are 
instead undoubtedly the most investigated approach among 
all possible BTP schemes. In more detail, the security of 
key-binding approaches has been the object of several rig-
orous evaluations [29], with in-depth information theoretic 
studies trying to exactly evaluate the amount of knowledge 
about the original secret sources leaked from the templates 
obtained when binding the considered biometric representa-
tions with cryptographic keys [14]. It has to be remarked that 
the robustness against attacks perpetrated against key-bind-
ing BTP schemes has been commonly investigated under 
the assumption that the employed biometric representations 
are made of mutually independent coefficients. Under such 
hypothesys, the binary helper data generated in key bind-
ing scheme have maximum entropy, and the analysis about 
the information leakage from the stored templates can be 
performed considering a single coefficient and extended to 
draw conclusions regarding the whole set of available fea-
tures. Unfortunately, the parametric representations adopted 
in most biometric recognition systems typically consist of 
strongly correlated features, with the consequence of a loss 
in security of the designed cryptosystem the greater the fur-
ther the available data are from the ideal condition of mutual 
independence [33].

For this reason, when designing a key-binding biomet-
ric cryptosystem, the generation of representations having 
mutually statistical independent features is as important as 
having highly-discriminative templates. In this paper we 
rely on a biometric cryptosystem proposed by some of the 
authors in [11] and detailed in the following paragraph, 
where the most important aspects evaluated to assess its 
effectiveness are also summarized.

Considered Biometric Cryptosystem

The key-binding scheme proposed in [11] is a code-offset 
method inspired by the digital modulation paradigm, spe-
cifically designed in order to guarantee, under proper cir-
cumstances, no information leakage about the employed 
cryptographic key from the knowledge of the stored helped 
data. The considered BTP scheme is graphically depicted 
in Fig. 1.

Within this biometric cryptosystem, a secret binary 
key is processed together with a biometric representation 
f ∈ ℝ

m , comprising m coefficients, made available during 
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the enrolment of a legitimate user. The zero-leakage capa-
bility of the scheme is achieved through the use of a point-
wise function t(⋅) , applied to each coefficient of the biom-
etric representation f in order to derive, from each of them, 
a variable with a probability density function following a 
raised cosine distribution, described by a roll-off parameter 
� ∈ [0, 1] . It is actually provable that, under the assumption 
of mutual independence of the features in the employed rep-
resentation f , the use of such transformation guarantees that 
the stored helper data cannot reveal any information about 
the employed cryptographic key, thus implementing a zero-
leakage protection scheme [11].

In order to produce the helper data to be securely stored 
in the system, a string q comprising m symbols belonging 
to a phase-shift keying (PSK) constellation of size R ∈ ℕ

+ , 
with an alphabet {0, 2�∕R, ..., (R − 1)2�∕R} , is obtained 
by encoding the input binary cryptographic key with an 
error correcting code. As reported in Fig. 1, turbo codes 
are exploited toward this aim in the employed implemen-
tation. A quantization index modulation (QIM) process is 
then performed to bind the considered binary key and bio-
metric representation by computing the code-offset helper 
data z =

[
t(f) − q

]
2�

.
When a user wants to be recognized by the system, a 

reverse process is performed. Specifically, an inverse QIM is 
applied to the stored helper data z, using the newly acquired 
biometric representation f̂ . In case the new biometric rep-
resentation is close to the one extracted during the user’s 
registration, the obtained message q̂ is similar to that of the 
enrolment, and could be therefore employed to retrieve the 
original binary key through a soft decoding process with 
decisions based on log-likelihood ratio (LLR) criteria. 
Conversely, if the verification process is carried out by an 
impostor, the original message, and the associated original 
key, cannot be reconstructed. Storing the employed keys in 
a hashed version allows to compare the reconstructed data 
with the original ones without having to reveal them, and 
thus taking decisions regarding the identity of the subjects 
involved in the recognition process.

As already mentioned, the considered scheme does not 
leak any information about the employed cryptographic key 
from the helper data z, in case of biometric representations f 

with mutually independent coefficients. Other aspects which 
have to be taken into account to evaluate the effectiveness of 
the employed key-binding approach include:

•	 the information leakage about the employed biometric 
representation from the knowledge of the stored helper 
data. This aspect, commonly indicated as privacy (P), 
can be evaluated by estimating the minimum recon-
struction error an attacker can commit when trying to 
reconstruct the input biometric representation f , given 
the stored helper data z. As shown in [11], the privacy 
of the proposed scheme improves with the use of larger 
values of the roll-off � of the employed raised cosine 
distribution;

•	 the capacity (C) of the employed biometric representa-
tion. This aspect takes into account the maximum size 
of the cryptographic key which can be bound with the 
employed biometric representation. Obviously, the more 
bits can be embedded into the considered template, the 
higher the robustness of the system against brute-force 
attacks. Large values of the roll-off parameter � nega-
tively influence the achievable capacity.

Since the privacy and the capacity of the proposed scheme 
are in a trade-off relation depending on the choice of � , an 
iterative selection strategy has been proposed in [11], with 
the used parameter determined as the one maximizing the 
achievable capacity while guaranteeing a minimum level of 
acceptable privacy, typically set in the range from 95 to 99%.

Statistical Independence Metrics

The statistical independence metrics proposed in [21] are 
defined according to the framework reported in Fig.  2. 
Specifically, the Hilbert–Schmidt Independence Criterion 
(HSIC) statistical test [10] is employed to compute meas-
ures associated to each pair of available features in the con-
sidered representation. Metrics derived from graph theory 
[4] are then employed to provide the desired quantitative 

Fig. 1   Zero-leakage key-binding 
approach proposed in [11]
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evaluations about the overall level of independence for the 
coefficients in the analyzed representation.

In more detail, to evaluate the independence of a given 
representation, it is assumed that a dataset of biometric tem-
plates, each expressed as a feature vector with length m and 
collected from u subjects, for a total of n samples, is avail-
able. As depicted in Fig. 2, such data can be arranged as an 
n × m matrix, with each row being a biometric template.

Given any pair of two features, represented by the ran-
dom variables X  and Y , an HSIC test estimates the squared 
Hilbert-Schmidt norm of the population of interest, that 
is, HSIC(Pxy,F,G) , where Pxy is the joint distribution of 
Z = (X,Y) , and F  and G are two reproducing kernel Hil-
bert spaces (RKHS). The null and research hypotheses of 
the HSIC test are defined as follows:

that is, in case of two independent random variables X  and 
Y , the null hypothesis cannot be rejected.

Given a sample of observations Z = (X, Y) , the statistics 
employed in the used framework are estimated in a biased 
version as follows:

that is, through an operator that computes the sum of the 
elements on the main diagonal of a square matrix obtained 
as the product of the n × n matrices H = I −

1

n
11

⊤ , K , and 
L , where 1 represents a n × 1 vector of ones, while the other 
two matrices are defined as follows:

 with �2
x
 and �2

y
 representing the variances of the considered 

coefficients.

(1)J(Z) ∶ (X × Y)n ↦ 0, 1,

(2)
H0 ∶ Pxy = PxPy

H1 ∶ Pxy ≠ PxPy,

(3)HSICb (Z) =
1

n2
trace (KHLH),

(4)
K[i, j] ∶= exp (−�−2

x
‖xi − xj‖2)

L[i, j] ∶= exp (−�−2
y
‖yi − yj‖2); i, j = 1,… , n,

Having set a significance level � as upper bound of the 
type I error, the asymptotic distribution of the empirical 
estimate HSICb(Z) is derived under H0 , and the quantile 
1 − � of this distribution, indicated as �(Z) , can be used 
as a threshold to determine the test outcome. The null 
hypothesis H0 cannot be rejected when HSICb(Z) < 𝛿(Z) , 
with the two random variables X  and Y  assumed in this 
case as independent.

Once the HSIC test is performed for every possible 
couple of coefficients in the available m-dimensional bio-
metric representation, an m × m square and symmetrical 
independence matrix IH ∈ ℤ

m×m is obtained as follows:

where Fi and Fj represent any two possible features, 
1 ≤ i, j ≤ m.

The obtained binary independence matrix IH can be 
then interpreted as an adjacency matrix AG , associated 
to an independence undirected graph G = {V ,E} , whose 
edges E connect the nodes V in case the corresponding 
coefficients are mutually independent. With the graph thus 
created, it is possible to define several metrics expressing 
the overall level of independence of a given representa-
tion, by exploiting concepts stemming from graph theory. 
The following metrics have been proposed in [21] and 
are employed in the following discussion to compare the 
approaches here proposed to generate representations with 
independent coefficients:

•	 Normalized edge count: number of edges in the graph G, 
normalized with respect to the maximum number of 
edges in a complete graph with the same number m of 
nodes as G, that is, NECm =

1

m(m−1)

∑
i,j IH[i, j] . The com-

puted value can be interpreted as a percentage of inde-
pendent coefficients. This metric is quite simple to com-
pute, yet it may convey information of little value. For 
instance, a value of NECm = 0.9 does not mean that 90% 
of the features are mutually statistically independent, but 

(5)IH[i, j] =

{
1 if HSICb(Fi,Fj) < 𝛿(Fi,Fj)

0 otherwise,

Fig. 2   Visual depiction of the employed framework for statistical independence evaluation, adapted from [21]
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only that the independence matrix IH contains 90% of 
unitary entries;

•	 Normalized maximum clique size: a clique of G is defined 
as a complete subgraph such that every two distinct nodes 
in it are adjacent. A clique is also said to be maximal 
if it is not a subset of another clique, and maximum if 
it has the largest number of nodes. Given a graph G 
obtained from an independence matrix IH , the size S 
of its maximum clique can be employed as a metric for 
the level of representation independence, once normal-
ized with respect to the largest possible value, that is, 
NMCSm = S∕m . This metric gives an effective measure 
of independence, since the features in the maximum 
clique are actually mutually independent. Nonetheless, 
it may often result in very low values, with consequent 
difficulties in performing comparisons through it among 
different approaches trying to maximize feature inde-
pendence. Moreover, its computation could require sig-
nificant processing time, especially when the number of 
considered features m is large. Furthermore, multiple 
maximum cliques can be derived from a single graph, 
making it hard to understand which of them is the best 
one;

•	 Normalized degree centrality: the degree centrality of a 
node i in a graph G is computed as the number dG(i) of 
edges incident to the node itself. This quantity expresses 
the importance of each node within the graph, and the 
level of independence of each coefficient from the oth-
ers in the considered scenario. It can be computed in a 
normalized form dividing it by the maximum feasible 
degree of the graph, that is, NDCm(i) =

dG(i)

m−1
 . Instead 

of summing the values thus obtained for each node to 
obtain a single overall measure, in the performed tests the 
computed metrics are organized in a descending order to 
form a curve, thus showing the deviation from the ideal 
scenario with only mutually-independent features, whose 
normalized centrality is 1 for all the available nodes. 
Such expression makes it easier to have an indication 
on the number of the more important nodes, that is, the 
features independent of most other coefficients.

Biometric Representations

The scenario taken into account to test the strategies 
designed to generate biometric representations with mutu-
ally independent coefficients involves the use of deep learn-
ing strategies to process hand vein patterns. In more detail, 
as specifically illustrated in Sect. “Experimental Tests”, bio-
metric representations from both finger-vein and palm-vein 
patterns are here generated through the approaches described 
in this section.

Hand-vein-based biometric recognition systems rely on 
the uniqueness of the vessel patterns of our wrists, palms, 
fingers, and hand dorsa [37]. Thanks to the absortion prop-
erties of the haemoglobin, it is in fact possible to acquire 
images depicting subcutaneous vein patterns through non-
invasive and contactless devices, by simply illuminating 
them with near-infrared (NIR) light comprising wavelengths 
between 700 and 900 nm [30]. Capturing devices working in 
either transmission or reflection modality could thus produce 
images where blood vessels appear dark, with the surround-
ing tissue, that let the light passing, being instead brighter 
[25].

The approach proposed to create representations with 
mutually independent coefficients, still maintaining proper 
discriminative capabilities is depicted in Fig. 3, and relies 
on a cascade neural network, composed by the following:

•	 a baseline system, whose aim is to generate representa-
tions suitable to be used for verification tasks in open-set 
conditions;

•	 a densely-connected convolutional autoencoder 
(DCCAE), whose purpose is to estimate an inner rep-
resentation of the features produced by the baseline sys-
tem, while maximizing the mutual independence of the 
derived coefficients.

In more detail, since the baseline system should process 
vein patterns to create discriminative templates to be used 
in a verification application, this component is designed fol-
lowing the approach proposed in [17], that is, using a convo-
lutional neural network (CNN) derived from DenseNet-161 
[12], with the addition of a custom set of layers as reported 
in Table 1, creating a biometric representation v comprising 

Fig. 3   Proposed approach 
based on autoencoders to cre-
ate biometric representations 
with mutually-independent 
coefficient while maintaining 
discriminative capabilities
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1024 features. The baseline system is trained using a cross-
entropy function with additive angular margin penalty 
(AAMP) [9] as objective loss, in order to define representa-
tions with proper discriminative capabilities, that could be 
used also for subjects distinct from those whose traits are 
employed during the training process [17].

Once features capable of discriminating among differ-
ent subjects have been defined, the proposed approach tries 
to estimate an alternative representation with the additional 
characteristic of independence. Autoencoders are employed 
for this task, leveraging on their ability to automatically 
learn efficient encodings of the input data, with the aim of 
guaranteeing that the inner representations have some spe-
cific property, such as sparsity or compactness, while keep-
ing all the informative content of the considered input. Spe-
cifically, the autoencoder employed in the performed tests 
is the DCCAE proposed in [18]. As reported in Table 2, it 
consists of a total of 55 layers, and has an inner encoding f 

Table 1   Backbone CNN embedder derived from Densenet-161

Layers Input size Output size

Convolution 7 × 7 conv, str.2 224 × 224 × Nc 112 × 112 × 96

Pooling 3 × 3 max pool, 
str.2

112 × 112 × 96 56 × 56 × 96

Dense block 1
[
1 × 1 conv

3 × 3 conv

]

 × 6

56 × 56 × 96 56 × 56 × 384

Transition 1 1 × 1 conv 56 × 56 × 384 28 × 28 × 192

2 × 2 avg pool, 
str.2

Dense block 2
[
1 × 1 conv

3 × 3 conv

]

 
× 12

28 × 28 × 192 28 × 28 × 768

Transition 2 1 × 1 conv 28 × 28 × 768 14 × 14 × 384

2 × 2 avg pool, 
str.2

Dense block 3
[
1 × 1 conv

3 × 3 conv

]

 
× 36

14 × 14 × 384 14 × 14 × 2112

Transition 3 1 × 1 conv 14 × 14 × 2112 7 × 7 × 1056

2 × 2 avg pool, 
str.2

Dense block 4
[
1 × 1 conv

3 × 3 conv

]

 
× 24

7 × 7 × 1056 7 × 7 × 2208

 Custom embed-
der

7 × 7 global avg 
pool

7 × 7 × 2208 1 × 2208

Batch normali-
zation

Dropout ( 50%)
Fully connected 

layer
1 × 2208 1 × 1024

Batch normali-
zation

Table 2   Employed DCCAE

h Layer Input size Output size

ENCODER
1 Input layer 1 × 3 Conv 1 × 1024 16 × 1024

2-6 Dense 
block 1

[
Batchnorm, ReLU

1 × 3Conv

]
× 5

16 × 1024 80 × 1024

7 Transi-
tion 1

Batchnorm, ReLU 80 × 1024 32 × 512

1 × 3 Conv, str.2
8-12 Dense 

block 2

[
Batchnorm, ReLU

1 × 3Conv

]
× 5

32 × 512 80 × 512

13 Transi-
tion 2

Batchnorm, ReLU 80 × 512 64 × 512

1 × 3 Conv, str.1
14-18 Dense 

block 3

[
Batchnorm, ReLU

1 × 3Conv

]
× 5

64 × 512 80 × 512

19 Transi-
tion 3

Batchnorm, ReLU 80 × 512 32 × 256

1 × 3 Conv, str.2
20-24 Dense 

block 4

[
Batchnorm, ReLU

1 × 3Conv

]
× 5

32 × 256 80 × 256

25 Transi-
tion 4

Batchnorm, ReLU 80 × 256 16 × 128

1 × 3 Conv str.2
26 Hidden 

encoder
Fully-connected Layer 1 × 2048 1 × 512

Batchnorm, Sigmoid
27 Latent 

encoder
Fully-connected Layer 1 × 512 1 × 256

Batchnorm, Sigmoid
DECODER
28 Latent 

Decoder
Fully-connected Layer 1 × 256 1 × 512

Batchnorm, Sigmoid
29 Hidden 

Decoder
Fully-connected Layer 1 × 512 1 × 2048

Batchnorm, Sigmoid
30 Transi-

tion 1
Batchnorm, ReLU 16 × 128 32 × 256

1 × 3 Tran-conv, str.2
31-35 Dense 

block 1

[
Batchnorm, ReLU

1 × 3Tran-conv

]
× 5

32 × 256 80 × 256

36 Transi-
tion 2

Batchnorm, ReLU 80 × 256 64 × 512

1 × 3 Tran-conv, str.2
37-41 Dense 

block 2

[
Batchnorm, ReLU

1 × 3Tran-conv

]
× 5

64 × 512 80 × 512

42 Transi-
tion 3

Batchnorm, ReLU 80 × 512 32 × 512

1 × 3 Tran-conv, str.1
43-47 Dense 

block 3

[
Batchnorm, ReLU

1 × 3Tran-conv

]
× 5

32 × 512 80 × 512

48 Transi-
tion 4

Batchnorm, ReLU 80 × 512 16 × 1024

1 × 3 Tran-conv, str.2
49-53 Dense 

block 4

[
Batchnorm, ReLU

1 × 3Tran-conv

]
× 5

16 × 1024 80 × 1024

54 Transi-
tion 5

Batchnorm, ReLU 80 × 1024 16 × 1024

1 × 3 Tran-conv, str.2
55 Output 

layer
1 × 3 Tran-conv 16 × 1024 1 × 1024
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consisting of 256 coefficients, derived from the 1024 coef-
ficients of the input v.

The employed DCCAE is trained by trying to minimize 
a loss function defined as L = LR + � ⋅ LS , with � being an 
hyperparameter, and LR representing the reconstruction loss, 
computed through the cosine dissimilarity

being vi the i-th feature representation generated by the base-
line CNN, v̂i its counterpart reconstructed by the autoen-
coder, and B the employed batch size.

The component LS of the autoencoder loss is instead 
defined with the aim of learning inner representations with 
mutually independent coefficients. In the performed tests, 
such purpose is sought through the use of several different 
approaches, relying on the following:

•	 a loss LS based on the Kullback–Leibler divergence 
(KLD), defined as 

 where a(h)
j

 is the j-th activation output of the h-th hidden 
layer of the DCCAE when vi is fed as input to the 
DCCAE, with j = 1,… ,N(h) , being N(h) the number of 
activation units in the h-th hidden layer, and � ∈ [0, 1] is 
the sparsity parameter. The set L represents the layers of 
the DCCAE dedicated to the inner encoder and decoder, 
with L = {26 − 29} for the DCCAE reported in Table 2;

•	 a loss LS based on the L1 distance, defined as 

 where, similarly to LKLD
S

 , only the activation outputs 
of the last two layers in the encoder, and the first two in 
the decoder, are considered to compute the desired loss;

•	 a loss LS based on the spectral restricted isometry prop-
erty (SRIP) [1], computed on the weights of each con-
volutional layer of the proposed DCCAE as 

 where W (h)⊤ is a matrix with the weights of the h-th 
layer, I is the identity matrix and � is the spectral norm, 
defined as the largest singular value of W (h) . Such loss 
forces the weights of the network to be near-orthogonal, 

(6)LR =
1

B

B∑

i=1

[1 − cos(vi, v̂i)],

(7)

LKLD
S

=
∑

h∈L

N(h)∑

j=1

DKL

(
𝜌|𝜌̂(h)

j

)
, 𝜌̂

(h)

j
=

1

B

B∑

i=1

[
a
(h)

j

(
vi

)]
,

(8)LL1
S

=
∑

h∈L

N(h)∑

j=1

|a(h)
j
|,

(9)LSRIP
S

=

55∑

h=1

𝜎(W (h))
(
W (h)⊤W (h) − I

)
,

with the possibility to thus make mutually independent 
the coefficients of the learned encoding;

•	 a loss LS based on DeCov [7] regularization, that is, an 
approach whose aim is to minimize the cross-covari-
ance of hidden activations through a regularization 
operation. Considering the h-th layer of the employed 
DCCAE that generates the inner encodings, and its acti-
vations a(h)

j
 , the interested cross-covariance C is 

obtained by computing, for all the possible pairs of acti-
vations j and k, 

 being �j the sample mean of activation j over the batch, 
that is, 

 The DeCov loss is then computed as 

 where ‖ ⋅ ‖F is the Frobenius norm. This loss should 
allow to learn non-redundant representations, therefore 
possibly improving mutual independence;

•	 a loss LS based on the HSIC statistical test discussed 
in Sect. “Statistical Independence Metrics”. This novel 
loss is here specifically proposed with the aim to gen-
erate representations optimizing the independence 
metrics presented in Sect. “Statistical Independence 
Metrics”, by including them into the employed loss 
functions. For a batch of samples considered during 
network training, the HSIC global statistics in Eq. (3) 
is computed for all possible pair of coefficients in the 
inner encoding created within the autoencoder, and a 
loss is computed as 

 with the inner encodings of the considered DCCAE 
autoencoder corresponding to the activations of the 
27th layer, that is, fj = a

(27)

j
 . In the employed implemen-

tation of this loss, the variances of the coefficients 
required to compute the HSIC statistics as reported in 
Eq. (4) are set as hyperparameters, due to the inaccurate 
estimates that would be otherwise obtained when con-
sidered limited batch sizes during the training of the 
autoencoder.

(10)C[j, k] =
1

B

B∑

i=1

(
a
(h)

j

(
vi

)
− �j

)(
a
(h)

k

(
vi

)
− �k

)
,

(11)�j =
1

B

B∑

i=1

a
(h)

j

(
vi

)
.

(12)LDeCov
S

=
1

2
(‖C‖2

F
− ‖diag(C)‖2

2
),

(13)LHSIC =

256∑

j=1

256∑

k=1,k≠j

HSICb(fj, fk),
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Experimental Tests

As already remarked, the approaches here proposed for 
the generation of biometric representations with mutually 
independent features have been tested considering recogni-
tion systems relying on hand vein patterns. In more details, 
both palm-vein and finger-vein traits have been taken into 
account, exploiting, respectively, the palm vein samples 
from the PolyU-P multispectral dataset [36] and the finger 
vein data from the SDUMLA dataset [35]. The PolyU-P 
database contains left and right palm vein images collected 
from 250 subjects, with 6 samples collected during each of 
2 recording sessions for each user. The SDUMLA database 
contains finger-vein images of 636 fingers from 106 sub-
jects. Six images have been acquired during a single session 
from each of the left and right hand’s index, middle and ring 
fingers in gray level BMP format with a resolution of 320×
240 pixels. For each database, different fingers and differ-
ent hands of the users are treated as distinct classes. The 
available data have been divided into two disjoint datasets 
of equal size, one used to train the considered architectures 
and the other one to perform the required evaluations, with 
20% of the training data reserved for validation in all data-
sets. Recognition results have been computed considering 
an open-set verification scenario, using half of the avail-
able classes during training, and the remaining half for test-
ing. Since the PolyU-P database contains data collected in 
multiple sessions, data for enrolment and verification have 
been taken from different sessions to avoid the bias effect. 
A summary of the characteristics of the employed databases 

is reported in Table 3, together with details on the applied 
experimental protocols. Examples of samples taken from the 
two datasets are depicted in Fig. 4.

When applying the performed processing, all the con-
sidered samples have been re-sized into 224 × 224 pixels 
before being fed to the employed networks, whose first stage 
is given by a Densenet-161 architecture, and normalized to 
zero mean and unit variance. The employed networks have 
been trained using stochastic gradient descent with momen-
tum (SGDM) and a batch size of 64. Tests have been per-
formed using PyTorch 1.1.0, with a system configuration 
of 32Gb RAM, two NVIDIATM Titan V graphics cards, 
i7-3.4GHz processors, WindowsTM 10 OS.

The results of a comparative analysis among the methods 
presented in Sect. “Biometric Representations”, in terms of 
capability to create templates with independent coefficients 
expressed through the NECm and NMCSm metrics, are 
reported in Tables 4 and 5, respectively for tests performed 
on the SDUMLA and the PolyU-P databases. The metrics 

Table 3   Used vein databases and corresponding experimental protocols

Benchmark database Vein modality Database statistics Capturing conditions Capturing parts Summary of the 
experimental protocol

SDUMLA [35] Finger # of Subjects 106 Grayscale single chan-
nel

Index-, middle- and 
ring-fingers from left 
and right hand

Available classes 
divided into two 
equal-size sub-
sets, respectively 
employed for training 
and testing

# of Classes 636
# of Sessions 1
Samples per session 6
Total samples 3.816

 PolyU-P [36] Pam # of Subjects 250  4 different spectral 
channels

Left and right hand 
palm

Available classes 
divided into two 
equal-size sub-
sets, respectively 
employed for training 
and testing. Enrol-
ment performed on 
session-1 data, veri-
fication on session-2 
data. Samples in the 
NIR channel used in 
the experiments

# of Classes 500
# of Sessions 2
# per Session 6
Total Samples 24.000

Fig. 4   Examples of considered vein images. a Finger-vein sample 
from SDUMLA; b Palm-vein sample from PolyU-P
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NDCm are instead reported in Fig. 5, which shows the behav-
iors obtained for all the considered nodes (coefficients), in 
order to better illustrate the deviation from the ideal condi-
tions with all values set to 1.

All the aforementioned results have been obtained by 
choosing the hyperparameters of the employed DCCAE 
autoencorders, for each considered loss LS , with the aim of 
guaranteeing the best achievable performance in terms of 
independence of the generated representations. A signifi-
cance level � = 2.5% has been employed when performing 
the HSIC tests required to compute the independence met-
rics described in Sect. “Statistical Independence Metrics”. 
The employed independence metrics have been evaluated 
also for templates obtained applying independent compo-
nent analysis (ICA) [13] to the features v generated from the 
used backbone CNN embedder, with a standard approach 
such as ICA considered as an alternative to the proposed 

autoencoder-based method for the creation of biometric rep-
resentations with independent coefficients. In more detail, 
the FastICA approach, which applies an orthogonal rotation 
to prewhitened data in order to maximize a measure of non-
Gaussianity, is employed in the performed tests.

It is possible to observe that the proposed approaches 
relying on KLD, SRIP, and HSIC losses are able to pro-
vide an improvement in terms of NECm , NDCm , and 
NMCSm with respect to the use of representations obtained 
through the baseline networks, for both SDUMLA and 
PolyU-P. Nonetheless, an ICA transformation still guaran-
tees a slightly better independency. Yet, the use of DeCov 
or L1 losses within the proposed DCCAE-based feature 
generation approach allows to reach even further improve-
ments over ICA, with the method relying on DeCov rep-
resenting by far the best solution to create templates with 

Table 4   Comparative analysis 
of the statistical independence 
for biometric representations 
created from finger-vein 
samples of the SDUMLA 
database

Best results reported in bold

Metric Baseline ICA DCCAE ( f)

(v) KLD L1 SRIP DeCov HSIC

NECm 0.152 0.407 0.378 0.418 0.385 0.777 0.165
NMCSm 6 9 9 10 9 26 6

Table 5   Comparative analysis 
of the statistical independence 
for biometric representations 
created from palm-vein samples 
of the PolyU-P database

Best results reported in bold

Metric Baseline ICA DCCAE ( f)

(v) KLD L1 SRIP DeCov HSIC

NECm 0.161 0.322 0.238 0.610 0.181 0.604 0.330
NMCSm 7 9 7 15 6 16 8

Fig. 5   Normalized degree centrality (NDCm ) computed for the considered representations. a SDMULA; b PolyU-P
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independent coefficients for SDUMLA, and on par with 
L1 on PolyU-P.

In addition to the analysis of the proposed template 
generation methods in terms of achievable feature inde-
pendence, other aspects relevant to the design of biometric 
cryptosystems are also evaluated. The recognition perfor-
mance, expressed in terms of false rejection rate (FRR) 
and false acceptance rate (FAR), attainable exploiting the 
biometric representations generated through the proposed 
approaches, are shown by the detection error trade-offs 
(DET) curves of Fig. 6. It can be noticed that the use of 
SRIP, KLD, and HSIC losses in the proposed DCCAE 
guarantees results similar to those of the baseline network, 
while resorting to DeCov and L1 losses, and even to an 
ICA transformation, may notably affect the achievable 
recognition rates. It is worth remarking that the reported 
results have been obtained when training the proposed 
DCCAE-based architectures with the aim of maximizing 
the feature independence of the created representations, 
with the attainable performance therefore not involved 
when learning the parameters of the employed DCCAE. 
The observed behavior confirms the trade-off commonly 
present in a biometric cryptosystem, where an improve-
ment in terms of security (here expressed through the 
achieved independence) can be achieved at the cost of a 
worsening in terms of recognition performance.

It is worth remarking that, in case the produced represen-
tations are employed within a biometric recognition system 
such as the one here considered and summarized in Sect. 
“Considered Biometric Cryptosystem”, the zero-leakage 
requirements necessarily sets the system at the ZeroFAR, 
that is, the operative condition at which FAR = 0%. Given 
the plots in 6, and the independence results in Fig. 5 and in 

Tables 4 and 5, the DeCov loss can be held as the most reli-
able choice to create templates with independent coefficients 
while guaranteeing acceptable FRR values when FAR = 0%.

The achievable system security can be also evaluated by 
estimating the capacities of the employed representations, 
reported in Fig. 7 in terms of the average number of bits of 
the binary string that can be embedded within each coeffi-
cient of the generated representation. As detailed in [11] and 
mentioned in Sect. “Considered Biometric Cryptosystem”, 
the achievable capacity depends on the roll-off parameter 
� of the raised cosine distribution employed in the consid-
ered biometric cryptosystem. A trade-off between different 
aspects can be also seen in the graphs, with the methods 
providing the best performance in terms of achievable inde-
pendence having the lower capacity values. Such relation-
ship can be clearly exposed by plotting in Fig. 8 the average 
capacity measured for � = 0 (highest possible capacity val-
ues) against the achievable independence, expressed in terms 
of NECm , for all the proposed DCCAE-based approaches for 
representation learning. As can be seen, there is a monotone 
decreasing trend for the achievable capacity as long as the 
independence of the generated features increases.

Conclusions

In this paper, an analysis on the possibility of generating 
biometric representations with independent coefficients 
has been conducted. To this aim, an approach relying on 
autoencoders, which could be trained according to differ-
ent loss functions, has been proposed. The performance 
of the proposed methods have been evaluated according 

Fig. 6   DET curves reporting the recognition performance achievable with the considered representations. a SDUMLA; b PolyU-P
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to metrics specifically defined to evaluate the achievable 
feature independence. Experimental tests conducted over 
two distinct biometric databases, containing samples 
of finger-vein and palm-vein patterns, have highlighted 
that the proposed approaches are actually able to notably 
increase the independence of the employed representations 
while maintaining proper discriminative capabilities. In 
more detail, two of the considered loss functions allow to 
generate biometric representation with higher independ-
ence than what could be achieved when resorting to ICA 
transformations. It has yet been observed that the sought 
feature independence is typically in a trade-off relationship 
with both the attainable recognition rates and the average 
embedding capacity.
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