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Abstract— Template protection is an issue of paramount impor-
tance for the design of secure and privacy-compliant biomet-
ric recognition systems. Template unlinkability, together with
template irreversibility, is an essential requirement to properly
guarantee template protection. In fact, it ensures that templates
generated from the same trait, but used in different applications,
cannot be linked to the same identity. This paper deals with the
design of a system satisfying the unlinkability requirement. The
robustness of the proposed solution is evaluated by exploiting
methods stemming from the theory of stochastic optimization,
as well as by using quantitative measures specifically proposed
to characterize the unlinkability of biometric protection schemes.
A case study using finger-vein biometrics is considered to test the
proposed cryptosystem on non-ideal data. The proposed scheme
guarantees 128 bits of security with acceptable false recognition
rates in real-life conditions. Moreover, we provide guidelines to
determine the parameters of the transformations to be applied to
real biometric traits so as to ensure proper recognition, security,
and unlinkability performance.

Index Terms— Biometrics, template protection, privacy, vein
patterns.

I. INTRODUCTION

THE use of biometric traits in automatic recognition sys-
tems offers several advantages over traditional approaches

relying on passwords or tokens since biometric characteristics
cannot be lost or forgotten, and, in general, they allow a
much easier and more natural human-machine interaction.
Nonetheless, the usage and storage of biometric data also pose
several threats [1], [2]. For instance, if a biometric identi-
fier is compromised, an attacker could exploit the collected
information to impersonate its owner, and fraudulently gain
access to specific resources. Therefore, the need to revoke
biometric credentials could arise, posing an issue given the
limited number of available traits. Furthermore, biometric data,
when used as universal identifiers, could be used to track the
users’ activities across different domains, thus posing privacy
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concerns. Biometric data can also reveal sensitive information
about their owners, that might be exploited for discrimina-
tory purposes [3]. Not surprisingly, biometric information is
retained as strictly confidential by the EU General Data Protec-
tion Regulation (GDPR), which recommends its management
with adequate levels of security. Therefore, the aforemen-
tioned concerns have to be carefully taken into account and
properly addressed when designing a biometric recognition
system. In more details, the templates generated from the raw
biometric data should be protected as effectively as the traits
themselves, since it is often possible to adequately reconstruct
the original data from their representations [4]. However, even
if a template is not reversible, it must be considered sensitive
data.1

Unfortunately, standard cryptographic algorithms cannot be
effectively used to protect a biometric template, since com-
parison in the encrypted domain is not feasible due to the
noisy nature of biometric data [1]. Homomorphic encryption
has been exploited to tackle the aforementioned disadvantage,
designing pipelines where the recognition step is performed in
the encrypted domain [5]. However, the related computational
complexity is relatively high, and trusted servers are needed
to manage the exchange of the involved data, making this
solution impractical for many applications.

Several biometric template protection (BTP) schemes have
been proposed to design a secure and privacy-compliant bio-
metric system. BTP methods generally modify the available
biometric representations to generate alternative templates not
leaking information about the original data. According to the
ISO/IEC 24745 standard [6], a proper BTP method should
satisfy the following properties:
• irreversibility: given a protected template, it should not

be possible to reconstruct its unprotected version;
• renewability: from a given biometric sample, it should be

possible to issue multiple protected templates;
• unlinkability: given two protected templates, generated

from the same biometric sample and stored in different
datasets, it should not be possible to determine that they
belong to the same subject;

• performance: the use of a BTP scheme should not sig-
nificantly affect the system recognition performance.

BTP schemes are typically implemented by means of
two distinct methodologies, namely cancelable biometrics [7]

1See reasoning in the Decision of the Hellenic Data Protection Authority
N◦31/2010.
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and biometric cryptosystems [8]. Cancelable biometrics refers
to methods applying either invertible or non-invertible
transformations to the biometric data. While non-invertible
tranformation-based approaches have been proposed for sev-
eral of the most used biometric traits [9], [10], their irre-
versibility has been rarely evaluated through rigorous proofs,
due to the intrinsic difficulties in proving the non-invertibility
of a function against any possible kind of attack.

On the other hand, biometric cryptosystems [11] can be
classified into key-generation and key-binding approaches. The
first extracts cryptographic keys from the considered biometric
data. The latter aims at securing a cryptographic key by means
of biometric data and vice versa: the key and the biometric
data are combined into a template that can be split into a
pseudonymous identifier (PI) and auxiliary data (AD) [6].
The key-generation approaches commonly lack in renewability
and unlinkability since, by definition, the key is generated
by exploiting the biometric trait only. On the other hand,
detailed evaluations have been performed on the information
about the original secrets leaked from templates protected
with key-binding approaches [12]. Fundamental trade-offs
among recognition performance, irreversibility, and security
have been, for instance, discussed in [13] and [14]. In this
regard, it has been demonstrated that both security, measured
as the mutual information between the employed secret key
and the stored AD, and irreversibility, intended as the difficulty
of retrieving the original biometric information from the AD,
could be improved only at the cost of worsening the achievable
recognition performance.

This paper stems from our previous work [15], where we
have proposed a zero-leakage key binding approach based
on the use of quantization index modulation (QIM), with the
goal to embed a secret key within a biometric representation.
The approach in [15] guarantees that the generated AD does
not reveal any information regarding either the employed
secret binary key or the associated PI, thus achieving perfect
security. Nonetheless, as it will be detailed in the following, the
scheme proposed in [15] is vulnerable to linkability attacks.
In this paper we overcome this issue, by designing a novel
approach that enforces the desired template unlinkability, thus
obtaining a zero-leakage biometric cryptosystems satisfying
all the properties required by the ISO/IEC 24745 standard.

The effectiveness of the proposed approach is evaluated by
testing its robustness against different linkage attacks, consid-
ering both methods stemming from the theory of stochastic
optimization, as well as quantitative measures specifically
designed to characterize the unlinkability of biometric pro-
tection schemes. The influence of the parameters employed
in the proposed approach on the security and unlinkability
of the templates created from non-ideal biometric data is also
investigated. Furthermore, in order to apply the proposed BTP
scheme to real-life biometric data, finger vein patterns are
considered as case study.

The paper is organized as follows. Section II briefly out-
lines the zero-leakage cryptosystem introduced in [15], here
analyzed with respect to the unlinkability requirement, and
then further developed. In Section III, the approach proposed
to generate unlinkable templates is described. Its effectiveness

Fig. 1. Zero-leakage biometric cryptosystem [15].

against different attacks is tested in Section IV. Specifically,
attacks aimed at linking templates generated from the same
original biometrics, and protected using different keys, are
taken into account, considering biometric data with ideal
distributions. In Section V, the issues to be faced when dealing
with non-ideal data are discussed, and guidelines to define the
parameters employed in the proposed approach are provided.
The experimental tests conducted to verify the effectiveness
of the proposed method in practical scenarios are described in
Section VI, while conclusions are given in Section VII.

II. A ZERO-LEAKAGE CRYPTOSYSTEM

In this Section, the zero-leakage biometric cryptosystem
presented in [15], and sketched in Figure 1, is briefly sum-
marized. More in detail, in the enrolment stage, a fixed-length
biometric representation w ∈ RL and a secret key with K bits
are used to generate the couple (PI, AD), where the PI is a
hashed version of the employed key, whereas a transformed
version of w and an encoded version of the key are used to
generate the AD using QIM.

Specifically, the K bits of the key are encoded into a string
of N bits through an error correcting code (ECC), to handle
the intra-class variability of the considered biometric data.
The use of highly efficient ECC such as turbo codes, and the
representation of the employed biometric templates with con-
tinuous variables, instead of binary ones as in the fuzzy com-
mitment [16], is recommended for biometric cryptosystems
in order to approach the Shannon limit during the decoding
process, thus allowing to achieve the best possible recognition
performance in terms of false rejection rate (FRR) [17]. The N
encoded bits are divided into L symbols, each corresponding
to a, potentially different, number B of bits. Each symbol is
embedded into a coefficient w of the representation w as:

z = [8(w)− s]2π (1)

which represents the AD, where
• s ∈

{
2πm

M : m ∈ ZM

}
, with M = 2B , is a sym-

bol belonging to an alphabet with M elements and
associated to the B bits to embed2;

2In the actual implementation, M varies for each coefficient, but, for the
sake of notation simplicity, we here represent M as coefficient-independent.
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• 8(·) is a point-wise function defined as follows:

x = 8(w) = C DF−1
X [C DFW (w)] , (2)

where C DFW (w) and C DFX (x) are, respectively, the
cumulative density functions of the original biometric
coefficient W and of the target variable X .

As mentioned in [18], a zero-leakage biometric cryptosys-
tem should guarantee that an auxiliary data Z leaks only a neg-
ligible amount of information about the associated secret key S
and the biometric trait X . Information-theoretic analysis [14]
has proved that the mutual information between the employed
biometric representation and the stored AD cannot be null.
In fact, the assumption that I (X, Z) = 0 implies that Z would
not retain any information about the employed biometric trait
X , with the consequence that the only achievable operating
condition would be the one with FRR = 100% [14]. It is
therefore possible to design cryptosystems with only close-to-
zero leakage about the biometric data [19].

On the other hand, the zero-leakage property is achievable
for the employed secret key, assuring a null mutual information
between the secret key and the AD [20], [21], i.e., I (S, Z) =

0. Within the considered framework, this latter requirement
can be obtained by choosing the function 8(·) is such a way
that the characteristic function C F of the target variable X ,
i.e., the Fourier transform of its probability density function
(PDF), satisfies [15]:

C FX (l) = 0, ∀l ∈ Z− {0}. (3)

A family of random variables X , fulfilling the requirement
in Eq. (3), is the one whose PDF has a raised cosine shape [15],
that is:

rc2π
γ (x) =



1
2π

, |x | ≤ π(1− γ )

1
4π

(
1−sin

|x |−π

2γ

)
, π(1− γ ) < |x |

≤ π(1+ γ )

0, otherwise.

(4)

with γ ∈ [0, 1]. As shown in Eq. (15), the choice of the
parameter γ is responsible for both the irreversibility and
the capacity of the resulting coefficient x . Specifically, in the
considered framework, the irreversibility can be evaluated by
measuring, for each coefficient of the employed biometric
representation, the mean root square error between the actual
value x and its best estimate x̂(z) obtained by exploiting the
knowledge of the associated AD z, that is:

P =
EX,Z {[x − x̂(z)]2}

EX {x2}
∈ [0, 1). (5)

The irreversibility P , evaluated according to Eq. (5) as a
function of the parameter γ , parameterized wrt an increasing
number of bits B embedded into x , is shown in Figure 2.
Higher values of irreversibility, corresponding to a negligible
leakage about the original biometric information, are achieved
for increasing values of γ . As suggested in [15], in the pro-
posed scheme the γ value used in the employed transformation
is determined with the goal of minimizing the information

Fig. 2. Irreversibility measure P vs γ .

Fig. 3. Capacity C vs γ , adapted from [15].

leakage about the used biometric data, thus achieving close-
to-zero leakage about X , by guaranteeing that P ≈ 1.

On the other hand, in [15] it has also been shown that
the capacity of each coefficient x , i.e., the upper bound of
the number of bits B that can be embedded in the enrolment
stage and reliably retrieved during verification using an ECC,
decreases when increasing the value of γ . In Figure 3, the
capacity C vs γ , for a synthetic biometric coefficient x
characterized by a signal-to-noise (SNR) ratio equal to 4.7dB,
as in [22], is depicted. It is evident that the use of larger values
of γ improves the irreversibility of the created templates and
yet affects the capacity of the obtained representations. This
behavior makes the coefficient capable of hosting a smaller
number of bits, and results in a greater vulnerability to brute
force attacks since the usable secret keys must be shorter. This
confirms a trade-off between security and irreversibility [14].

As shown in the following sections, the parameter γ also
influences the unlinkability of the proposed enhanced system
to properly generate multiple protected templates from the
same biometric representation.

III. PROPOSED APPROACH: GENERATION OF
UNLINKABLE TEMPLATES

In this Section, we show the limits of the system we have
proposed in [15] (see Section II) in terms of unlinkability, and
we propose a possible solution for their mitigation.
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Fig. 4. Distributions of [z1 − z2]2π for linkability attacks targeting
(a): mated AD; (b): non-mated AD.

Algorithm 1 Key Embedding Process

input : w ∈ RL
; k ∈ {0, 1}K ;

A ∈ RL×L
: A⊺ A = I

output: z ∈ [0, 2π)L

c← Encode(k, N
K ) ; // c ∈ {0, 1}N

s← Map(c, M) ; // s ∈
{

2πm
M : m ∈ ZM

}L

x ← g
[

A · f (w)
]
;

z← [x − s]2π ;

The method we have proposed in [15] appears not to be
robust wrt the unlinkability of protected templates generated
from the same biometric data. In fact, as shown in [23], given
a biometric trait x and a pair of keys k1 and k2 encoded
into s1 and s2, the corresponding AD are obtained as zi =

[x − si ]2π , i = 1, 2. We observe that:

[z1 − z2]2π = [x − s1]2π − [x − s2]2π =

= [s2 − s1]2π ∈

{
2πm

M
: m ∈ ZM

}L

, (6)

meaning that the difference between two AD generated from
the same biometric data x is bound to a discrete set of values.
On the other hand, when the AD are created from different
biometric representations x1 and x2, [z1− z2]2π is uniformly
distributed in [0, 2π)L . It is worth observing that even when
the two biometric representations are not identical, but they
differ because of the intra-class variability of the considered
trait, [z1− z2]2π would be still close to [s2− s1]2π , as shown
in Figure 4. Therefore, a linkability attack would be able to
relate the two identifiers, thus posing privacy concerns.

In order to overcome the limitations of the method in [15],
we propose the following approach. With reference to Figure 5
and to the pseudo-code in Algorithm 1, the generic coefficient
xi of the template x is obtained as follows3:

ui = f (wi ),

vi =

L∑
j=1

Ai, j u j ,

xi = g(vi ), i = 1, . . . , L . (7)

3For the sake of simplicity, we will denote with the same symbols f (·)

both scalar ( f (w) : R→ R) and vector ( f : RL
→ RL ) functions, depending

on the argument. Hence, f (w) = ( f (w1), f (w2), . . . , f (wL ))⊺. The same
convention applies to g(·).

Fig. 5. Enrolment phase of the proposed unlinkable zero-leakage biometric
cryptosystem.

In details, f (·) is a point-wise function:

f (·) = erf−1 [C DFW (·)] , (8)

designed such that the coefficients ui = f (wi ) have a nor-
mal distribution N (0, 1). Assuming that the template coeffi-
cients wi are statistically independent, as commonly assumed
in the analysis of biometric cryptosystems [14], u =

(u1, u2, . . . , uL)⊺ will be normally distributed with an iden-
tity covariance matrix, namely u ∼ N (0, I). Therefore, u is a
realization of a rotational-symmetric distribution. The vector
v = Au, being A a record-specific L× L orthonormal matrix,
is therefore a realization of the same processN (0, I). Roughly
speaking, given a properly designed A matrix, it is not
possible to distinguish two independent realizations (u, u⋆) ∼

N (0, I) × N (0, I) from the couple (u, Au). This is a key
factor for the unlinkability of AD instances.

The template x, with coefficients distributed as in Eq. (4),
is finally obtained by applying a proper point-wise transfor-
mation g(·):

g(·) = C DF−1
X [erf(·)] (9)

to v. Then, the couple (PI, AD) is obtained as summarized in
Section II, with the AD given by (z, A).

It can be noted that, when A = I , the proposed scheme is
equivalent to the one in [15]:

C DF−1
X

[
erf
[
erf−1 [C DFW (w)]

]]
= C DF−1

X [C DFW (w)] .

(10)

This suggests that not all orthonormal matrices A ∈ RL×L are
eligible for the proposed system. This aspect will be further
explained in Section V.

In summary, the key embedding process can be expressed by
the pseudo-code given in Algorithm 1. The inverse procedure,
i.e., the key retrieval, is summarized by the pseudo-code given
in Algorithm 2. Further implementation details are provided
in Section VI-D.

It is worth mentioning that a similar approach, yet relying
on permutation matrices, has been proposed in [24] to improve
the unlinkability of the fuzzy commitment BTP scheme [16].
A permutation matrix 5 ∈ {0, 1}L is a special kind of
orthonormal matrix, with all zeros but only a 1 for each row
and column. However, the use of a permutation matrix would
be ineffective to obtain the desired unlinkability property for
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Algorithm 2 Key Retrieval Process

input : w̃ ∈ RL
; z ∈ [0, 2π)L

;

A ∈ RL×L
: A⊺ A = I

output: k̂ ∈ {0, 1}K

x̃ ← g
[

A · f (w̃)
]
;

s̃←
[
x̃ − z

]
2π

; // s̃ ∈ [0, 2π)L

ĉ← LogLikelihoodDemod(s̃, M); // ĉ ∈ RN

k̂← Decode(ĉ, N
K );

the considered zero-leakage biometric cryptosystem. In fact,
if a permutation matrix 5 is used instead of a generic
orthonormal matrix A, we obtain that g (5u) = 5g(u).
Hence, given a pair of AD z1 and z2, derived from the same
biometric trait w, we have:

zi =
[
g (5i u)− si

]
2π
=
[
5i g(u)− si

]
2π

, i = 1, 2, (11)

and

5
⊺
i zi =

[
g(u)−5

⊺
i si
]

2π
, (12)

from which[
5

⊺
1 z1 −5

⊺
2 z2

]
2π
=
[
5

⊺
2 s2 −5

⊺
1 s1

]
2π
=
[
s′2 − s′1

]
2π

(13)

where the last step exploits the fact that the permuta-
tion of a string comprising a set of discrete symbols
produces another string with coefficients belonging to the
same alphabet. Therefore, this approach leads to the same
scenario in Eq. (6) and Fig. 4(a), thus failing to provide
unlinkability.

IV. UNLINKABILITY ANALYSIS

As it has been shown in [14], no helper data scheme can
guarantee, from an information-theoretic perspective, a null
mutual information between the original biometric data and the
stored AD, and consequently a perfect unlinkability. In fact,
a certain amount of template information should be retained
in the AD to absorb the intra-class variability of the biometric
trait and guarantee reliable recognition performance. Never-
theless, the linkability attack can be made computationally
unfeasible. In this regard, the unlinkability property of the
proposed approach is here investigated.

Specifically, we analyze the system robustness against two
different attacks. The attack described in Section IV-A relies
on the assumption that the space discretization carried out
by the QIM module should match in case of mated biomet-
ric traits. We show that the verification of such hypothesis
reduces to a Boolean Satisfiability (SAT) problem, hence it
can be only solved with brute force. The attack described
in Section IV-B attempts to link distinct AD by matching
the best estimates of the biometric templates the attacker
can achieve from the AD themselves. We show that the
system can be set in a way that the mated estimates are
indistinguishable from non-mated ones, thus making the attack
ineffective.

A. Space Discretization Attack

The first attack we consider is an extension of the one
proposed in [23], described by Eq. (6) and Figure 4. The
direct application of such attack is not effective against the
proposed system since each coefficient of z is not dependent
on a single element of w, as in [15], being instead obtained
as a non-linear function of the entire original template. The
domain of z is still quantized as a function of u, but in a
convoluted manner.

We try to retrieve u from z = [g(Au)− s]2π as follows:

[z + s]2π = [g(Au)]2π . (14)

Given that the co-domain of g(·) is limited to [−2π,+2π),
we can write:

[g(Au)]2π = g(Au)− 2πξ (15)

where ξ ∈ {0, 1}L represents the information lost by the
modulo operation. We can now express u as:

u = A⊺g−1([z + s]2π − 2πξ). (16)

Considering now two AD sets {z1, A1} and {z2, A2},
generated respectively by the inputs {w1, k1} and {w2, k2},
and assuming the same biometric trait w1 = w2 = w, we have:

u1 = u2

A⊺
1 g−1([z1 + s1]2π − 2πξ1) = A⊺

2 g−1([z2 + s2]2π − 2πξ2),

from which:

g
{

A2 A⊺
1 g−1 (

[z1 + s1]2π − 2πξ1
)}
= [z2 + s2]2π − 2πξ2[

g
{

A2 A⊺
1 g−1 (

[z1 + s1]2π − 2πξ1
)}]

2π
= [z2 + s2]2π[

g
{

A2 A⊺
1 g−1([z1 + s1]2π − 2πξ1)

}
− z2

]
2π
=[s2]2π = s2,

thus obtaining:[
g
{

A2 A⊺
1 g−1([z1 + s1]2π − 2πξ1)

}
− z2

]
2π
M

= 0. (17)

Eq. (17) represents a system of non-linear equations whose
unknowns are the coefficients of s1 and ξ1, and whose solution
would allow demonstrating that z1 and z2 are linked to the
same identity.

We claim that there is no algorithm that can solve this
problem in polynomial time. Let’s redefine the problem as
a minimization problem. We rely on a stochastic optimization
algorithm, e.g., a genetic algorithm (GA), whose objective is
to find:

min
(s,ξ)

t (s, ξ), (18)

with the fitness function t (s, ξ) defined as:

t (s, ξ) = min
(

t ′(s, ξ),
2π

M
− t ′(s, ξ)

)
, where

t ′(s, ξ) =
[
g
(

A2 A⊺
1 g−1([z1+s]2π−2πξ)

)
−z2

]
2π
M

. (19)

The mixture of modulo, rotation/reflection, and non-linear
operators makes the system of equations strongly non-smooth
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Fig. 6. Average fitness-distance correlation r vs γ .

and therefore hard to solve by iterative algorithms. The diffi-
culty of finding the minimum in Eq. (18) can be assessed using
the so-called fitness-distance correlation [25], a simple method
employed to evaluate the complexity of a genetic algorithm.
In more detail, assuming the solution of the optimization
problem in Eq. (18) is known, the distance d between such
global optimum and values computed for the fitness function
t can be evaluated. Given a set of T values T = {ti : i =
1, 2, . . . , T } computed during an iterative process, and the
corresponding set of distances D = {di : i = 1, 2, . . . T },
a fitness-distance correlation can be obtained as:

r =
1
T

1
σtσd

T∑
i

(ti − t)(di − d), (20)

where t , d, σt , and σd are respectively the means and standard
deviations of the fitness function t and the distance to the
optimum d . Such correlation reaches the value r = 1 in
case the global optimum is found during the optimization
process [25]. Since

g(A u) = [z + s]2π − 2πξ , (21)

the following expression can be used for the distance d:

d(s⋆, ξ⋆) = ||g(Au)−
[
z + s⋆

]
2π
− 2πξ⋆

||, (22)

being || · || the norm operator. Figure 6 shows an estimation
of the average fitness-distance correlation r , obtained with a
Monte-Carlo simulation for different γ values, with B = 1,
L = 24,4 and orthonormal matrices randomly generated as
described in [26]. It is evident that r rapidly decreases for
increasing γ , and approximately reaches r = 0 when γ ≥ 0.3,
suggesting that querying the fitness function in Eq. (18) would
not give any useful feedback to find the solution of Eq. (17).

To get more insights into the complexity of the optimization
problem, we can inspect the scatter plots of the fitness as a
function of the considered distance. Examples of such plots
are reported in Figures 7 and 8, for systems using γ = 0 and
γ = 1, respectively. For illustrative purposes, these figures

4Simulations with larger templates were computationally unfeasible with
the available computing node: 2 Xeon 16-Core 2.3Ghz processors, 8×16 GB
RAM, 4 NVIDIA Tesla V100 32GB.

Fig. 7. Fitness t vs distance d @ γ = 0.

Fig. 8. Fitness t vs distance d @ γ = 1.

are referred to a simple scenario with a simulated biometric
template with L = 8 coefficients and B = 1 bit embedded
into each element of x. For γ = 0, the significant correlation
between distance and fitness suggests that a hill-climbing-
based algorithm can solve the optimization problem. If γ = 1,
there is instead no correlation between the two values.

The analysis based on the fitness-distance correlation sug-
gests that solving the problem in Eq. (18) is unfeasible for
high values of γ . Under such conditions, the solution of
Eq. (17) can be only guessed. Formally, the existence of
such a solution is a Boolean Satisfiability (SAT) problem,
which is an NP-complete problem. Guessing the optimum pair
(s, ξ) would have a computational cost that is exponentially
proportional to the entropy of the two strings:

H(S, 4|AD) = H(S)+ H(4|S, AD). (23)

The entropy of S is the key-length K , while the equivoca-
tion of 4 given S and AD is given by the uncertainty of
g(Au) given [g(Au)]2π = [z + s]2π , hence, H(4|S, AD) =

H(X|X2π ).
The equivocation of each coefficient X is given by:

H(X |X2π = x) = −P(x)log2P(x)

− (1− P(x))log2(1− P(x)), (24)
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Fig. 9. Average information lost by the modulo-2π operation.

Fig. 10. Modulo-2π applied to the raised cosine distributions.

with P(x) = 2π rc2π
γ (x). On average, the equivocation

expected value is then:

H(X |X2π ) = Ex {H(X |X2π = x)}

=

∫ 2π

0
H(X |X2π = x)pX2π

(x)dx

=

∫ 2π

0
H(X |X2π = x)

1
2π

dx . (25)

Interestingly, by solving the integral numerically, it turns out
that the average equivocation grows roughly linearly with
γ , as shown in Fig. 9. It is worth mentioning that such
equivocation is zero with γ = 0. In fact, with reference
to Figure 10, when γ = 0 no information is lost after the
modulo operator, since x ∈ [−π, π), and, in this case, the
modulo operator is a bijective function. Summarizing, solving
the linkability problem in Eq. (17) is equivalent to randomly
guessing approximately K + L × H(X |X2π ) bits.

B. Template Estimation-Based Attack

Other linkability attacks can be attempted by performing the
best estimates of the biometric representations that generate
different AD. From Eq. (16), given the AD, namely {z, A},
the original template u can be estimated as:

û = E
[

A⊺g−1 ([z + s]2π − 2πξ)
]
, (26)

being E[·] the expected value over all (s, ξ) couples. There-
fore, given two sets AD1 = {z1, A1} and AD2 = {z2, A2},
an attacker can first estimate the corresponding representations
û1 and û2 and then compute their similarity through a linkage
function l = L(û1, û2). The effectiveness of such linkage
function can be assessed using metrics specifically designed
to evaluate template unlinkability, such as those proposed
in [27] or [28]. In more detail, we here consider the linkability
measure Dsys

↔ defined in [27] as:

Dsys
↔ =

∫
p(l|Hm)D↔(l)dl (27)

Fig. 11. Linkability measure Dsys
↔ vs γ .

where

D↔ (l) =

 0 , if R (l) · ω ≤ 1,

2
R (l) · ω

1+R (l) · ω
− 1 , if R (l) · ω > 1

(28)

is the score-specific linkability, and

R (l) =
p (l|Hm)

p (l|Hnm)
(29)

is the likelihood ratio between mated (Hm) and non-mated
(Hnm) distributions, and ω = p(Hm)/p(Hnm) denotes the
ratio between the unknown prior probabilities of the mated
and non-mated score distributions. The measure Dsys

↔ is bound
within [0, 1], with Dsys

↔ = 1 obtained for fully distinguishable
mated and non-mated distributions, therefore corresponding to
fully linkable AD. On the other hand, Dsys

↔ = 0 is achieved for
fully overlapped distributions, meaning that two AD derived
from the same biometric trait cannot be linked using the
considered linkage function.

As shown in [15] and mentioned in Section II, high values
of γ in Eq. (4) make the estimate û, in Eq. (26), arbitrar-
ily unreliable, and therefore the described linkability attack
ineffective. The behavior of the linkability measure Dsys

↔ as
a function of γ , obtained using the Euclidean distance as
linkage function, is shown in Figure 11. As it can be seen,
Dsys
↔ is roughly equal to 1 for γ = 0, i.e., two AD generated

from the same trait are fully linkable. As γ grows, two AD
related to the same identity get as unlinkable as templates
obtained from distinct users. Examples of mated and non-
mated distributions, together with the corresponding linkability
measures, are shown in Figures 12 and 13, for γ = 0 and
γ = 1 respectively.

V. DEALING WITH NON-IDEAL DATA

The system described in Section III and the analysis of
its effectiveness reported in Section IV refer to the ideal
assumption of biometric templates with i.i.d. coefficients. The
i.i.d. hypothesis is commonly assumed for security evaluation
assessment of most biometric cryptosystems [19], [21], as well
as in the analysis of the requirements ensuring the zero-leakage
conditions [14], [20]. However, biometric representations with
i.i.d. coefficients are hardly encountered in real life. In more



HINE et al.: UNLINKABLE ZERO-LEAKAGE BIOMETRIC CRYPTOSYSTEM 3499

Fig. 12. Linkability measures for γ = 0.

Fig. 13. Linkability measures for γ = 1.

detail, templates usually employed in biometric recognition
systems include strongly correlated elements. Moreover, coef-
ficients’ distributions can be significantly different, with some
features characterized by much greater discriminative capa-
bilities than others. Therefore, the design of a protection
mechanism applicable to real biometric data needs to take
into account many issues not addressed when considering
ideal conditions in order to avoid significant security losses,
which become increasingly severe the more the biometric data
deviate from ideal assumptions [29].

In order to approximate the i.i.d. condition, whitening
methods, such as principal component analysis (PCA) or inde-
pendent component analysis (ICA), could be employed. These
methods have the side effect of generating representations with
coefficients having uneven SNRs, i.e., most of the meaningful
information is concentrated in a few components [15]. Dealing
with data having the aforementioned characteristics has a
major impact on the selection of the orthonormal matrices
employed in the proposed cryptosystem.

In order to gain a deeper understanding, we consider a toy
model where the template u is made of two coefficients, i.e.,
u1 and u2, with Gaussian distributions and unitary covariance
matrix. Let us assume that both coefficients are affected by
additive Gaussian noise, having respectively variance σ 2

1 and

Fig. 14. Overall capacity of a two-coefficient template vs SNR balance.

σ 2
2 , with σ 2

1 + σ 2
2 = 1. The Shannon’s capacity of the system

is given by:

C = log2

(
1
σ 2

1

)
+ log2

(
1
σ 2

2

)
. (30)

Such capacity tends to infinity as |σ 2
1 − σ 2

2 | → 1, that is,
when one of the two coefficients is noiseless. On the other
hand, the overall capacity is minimum when the noise is
evenly distributed between the two coefficients, as depicted
in Figure 14. Therefore, in order to guarantee high capacity,
it is desirable to describe the coefficients in a vector basis that
concentrates the noise in few coefficients, leaving the remain-
ing ones noiseless, which is what the PCA tries to achieve.
Unfortunately, the application of a random orthonormal matrix
to a given representation tends to distribute the noise more
evenly across the coefficients. In fact, considering a generic
transformation:(

v1
v2

)
←

(
cos φ − sin φ

sin φ cos φ

)(
u1
u2

)
, (31)

we have σ 2
V1
− σ 2

V2
← (σ 2

U1
− σ 2

U2
)(2 cos2 φ − 1), where

|2 cos2 φ − 1| < 1, meaning that the operating point on
Figure 14 moves left and the overall capacity decreases. The
capacity loss becomes more prominent the more the original
coefficients have uneven SNRs. In the extreme case, even a
noiseless element would be mapped into a noisy term, leading
to an infinite capacity loss. On the other hand, no capacity is
lost when combining features having the same SNR.

Given these observations, specific care needs to be taken
when dealing with real biometric traits, in order to generate
templates with features having high SNR, and thus preserve
the original capacity. Specifically, each template coefficient
should be combined only with features having similar SNRs.
This goal can be achieved by rearranging the vector u so
as to be sorted with respect to the SNR, and designing
the matrix A as a banded matrix. The matrix A bandwidth
Q ∈ {1, 2, . . . , L} controls the capacity-unlinkability trade-
off. Note that in the extreme case of Q = 1, the orthonormal
matrix is diagonal and the proposed approach collapses to
the original one described in [15], providing no unlinkability
at all. Clearly, Q controls the trade-off existing between
capacity and unlinkability. This approach can be implemented
by initializing A as a diagonal matrix R whose elements
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Fig. 15. Example of a matrix A created as in Eq. (33) with L = 24 and
Q = 6 (absolute values; white = 0, black = 1).

are randomly chosen as {−1, +1}, i.e., a random reflection
matrix. Then we iteratively rotate randomly chosen coefficients
(i, j), such that |i − j | ≤ Q, by a random angle 0 ≤ θi j ≤

π/20. This can be formalized by the use of Givens rotation
matrices [30]. Specifically, from a set of Gi j matrix operators,
each performing a rotation on the (i, j) plane:

Gi j =



i j
1 · · · 0 · · · 0 · · · · · · 0
... 1

...
...

...

i 0 · · · c · · · −s · · · · · · 0
...

...
. . .

...
...

j 0 · · · s · · · c · · · · · · 0
...

...
...

. . .
...

...
...

... 1
...

0 · · · 0 · · · 0 · · · 1


, (32)

with Gi j (k, k) = 1 for k ̸= i, j , Gi j (i, i) = Gi j ( j, j) = c =
cos θi j , and Gi j ( j, i) = −Gi j (i, j) = s = sin θi j , with θi j
randomly sampled in (0, π/20), we design the orthonormal
matrix A as:

A =

 ∏
(i, j)∈S

Gi j

 R (33)

with S ∈ {(i, j) : |i − j | < Q)}. A visual example of a matrix
A obtained as in Eq. (33) is shown in Figure 15. It can be
noticed that such matrix is not banded in a strict sense, because
the many consecutive rotations may produce combinations of
coefficients for which |i − j | ≥ Q. Nevertheless, since the
weights of the combinations decrease with |i− j |, the resulting
matrix can be assumed to be banded in a fuzzy meaning.

The effects of the Q parameter on the properties of the
resulting templates can be illustrated through an example
relying on a synthetic template w made of L = 24 coefficients,
whose capacities are not evenly distributed as shown in
Figure 16, mimicking the behavior of biometric data whitened
using, for example, a PCA or ICA method. The overall
capacity of the template x generated through the proposed
approach is shown in Figure 17. As it can be seen, the
number of bits that can be embedded in x rapidly decreases
for increasing values of Q, till a plateau is reached when the
effective bandwidth of the rotation matrix A is saturated.

Fig. 16. Capacities of the L=24 coefficients of the synthetic template.

Fig. 17. Overall capacity Ctot vs Q, for a synthetic template with L=24
coefficients.

Template unlinkability with respect to the employed param-
eter Q is evaluated by considering the attacks described in
Section IV. The fitness-to-distance correlation r is shown
in Figure 18, considering synthetic templates made of L =
24 coefficients and one bit embedded into each coefficient.
The behavior of the linkability measure Dsys

↔ is instead shown
in Figure 19, for different values of γ . As expected, templates
generated from the same original representations get less
linkable as both parameters Q and γ increases.

VI. EXPERIMENTAL VALIDATION ON
REAL BIOMETRIC DATA

The proposed zero-leakage unlinkable cryptosystem,
depicted in Figure 20, is tested using real biometric data.
Specifically, in Section VI-A we introduce the biometric
database exploited in the tests. The feature extraction
approach is described in Section VI-B. The preprocessing
applied to the extracted features to generate a template w with
independent coefficients, and the estimation of the point-wise
function f (·), are given in Section VI-C. Details about both
the employed ECC and the QIM are given in Section VI-D.
The obtained results are finally discussed in Section VI-E.

A. Finger Vein Biometrics

Without any loss of generality, in our experiments we
have considered finger-vein biometrics, and specifically the



HINE et al.: UNLINKABLE ZERO-LEAKAGE BIOMETRIC CRYPTOSYSTEM 3501

Fig. 18. Average and standard deviation of the fitness-distance correlation
r vs Q.

Fig. 19. Linkability measure Dsys
↔ vs Q.

SDUMLA database [31], containing images of the index-,
middle- and ring-fingers captured from the left and right hands
of 106 subjects. Six gray-scale samples of 320 × 240 pixels
are available for each finger.

Assuming an open-set scenario, the employed database
has been split into two equal-size subsets, with data from
53 subjects employed for training, and samples from the
remaining ones for testing. The employed feature extractor
has been trained using each available finger as an independent
class. Then, the template used in the experimental tests is
obtained by concatenating the features obtained from the three
fingers of a user’s hand, in order to handle identifiers with a
larger number of coefficients. Therefore, the considered testing
dataset comprises 6 samples for each of 53× 2 classes.

B. Feature Extraction

A fixed-length feature vector, with the desirable discrimina-
tive capabilities described in Section II, is obtained by using
the approach proposed in [32], where representations of vein
patterns suitable for verification systems have been obtained
using deep learning techniques.

In more detail, a Densenet-161 [33] convolutional neural
network (CNN), modified with the addition of a custom

embedder layer producing 2048 features in the final output
layer, has been trained using an additive angular margin
penalty (AAMP) [34] as loss function. Such approach allows
training the employed network in a standard modality for
classification purposes, while achieving the additional goal of
generating representations having the largest possible inter-
class variance, as well as the smallest possible intra-class
variance.

The employed network has been trained by initializing
Densenet-161 with weights pre-trained on the ImageNet
dataset for object recognition purposes, while a Glorot uniform
distribution has been used to initialize the fully-connected
layers of the custom embedder. Stochastic gradient descent
(SGD) with a batch size of 64, a learning rate of 0.01 divided
by 10 after every 30 epochs, a momentum of 0.9, and a
maximum number of 120 epochs have been considered during
training. As for the hyper-parameters of the employed AAMP
loss function, the penalty margin has been selected in the range
m ∈ [0.3, 0.7], with a step size of 0.05, as the one providing
the best results, while the associated scale parameter has been
selected in the range s ∈ [16, 96], with a step size of 16.

In [32], an equal error rate (EER) at 0.02% on SDUMLA,
using identifiers derived from a single finger, has been
reported. The concatenation of the features associated to
three fingers allows to further improve the performance of
an unprotected system, with the FRR and the false acceptance
rate (FAR) reported in Figure 21, when using the Euclidean
distance to compare the considered identifiers. Given the size
of the employed database, the obtained FRR and FAR curves
do not Intersect each other, being therefore only possible to
report that EER < 0.06%, the lowest measured FRR, for an
unprotected system.

C. Preprocessing
As remarked in Section V, in order to enforce the

security requirement, the employed biometric representations
should have independent features. Unfortunately, the features
extracted through a CNN are not independent and therefore
they should be further processed to generate an appropriate
representation, namely w in our approach, as input of the
proposed protection scheme.

To this goal, we have here exploited the Reconstruction
Independent Component Analysis (RICA) [35], differently
from [15] where the PCA has been employed. RICA is
an unsupervised feature learning approach, which possesses
some advantages wrt ICA. In fact, ICA requires a whitening
stage, commonly performed through PCA, which makes its
application difficult when dealing with high-dimensional input
data and limited training sets. These conditions apply to the
considered scenario, since the CNN described in Section VI-B
extracts 2048-long templates, while the available training set
only comprises 53 × 6 unique fingers, 6 instances each.
Therefore, the total number of samples is slightly smaller than
the size of the input space. Furthermore, since the samples
of each user are strongly correlated, the number of reliable
components that a PCA can learn is limited by the number of
available classes. Therefore, while the use of classical PCA or
ICA is inappropriate in the considered framework, RICA can
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Fig. 20. High-level representation of training and testing phases for the proposed system.

Fig. 21. Recognition rates for an unprotected system.

be instead effectively applied in such over-complete scenarios
since it does not need an initial whitening stage.

We set the RICA algorithm to extract 128 features from
the original 2048 coefficients. As mentioned in Section VI-A,
the proposed cryptosystem is tested on biometric representa-
tions obtained by combining the features extracted from three
fingers of a user’s hand, thus obtaining a template w with
L = 384 coefficients.

During the training stage, the templates obtained applying a
RICA to the representations generated through the employed
CNN are also examined in order to estimate the PDFs of
each feature, required to define the functions f (·) introduced
in Eq. (8). Since the treated coefficients can be assumed
independent, the distribution estimates can be easily computed

through the marginal variables. For each feature, the following
seven different distributions are fit to the available data:
• Extreme Value Distribution;
• Generalized Extreme Value Distribution;
• Logistic Distribution;
• Normal Distribution;
• Rayleigh Distribution;
• Stable Distribution;
• t Location Scale Distribution.

The function f (·) associated with each coefficient is chosen
by selecting the best fitting distribution by means of the
Anderson-Darling test [36].

In summary, the proposed preprocessing allows creating
representations x, after having set γ , with i.i.d. coefficients.
These templates are used as input of the proposed QIM-based
protection scheme.

D. System Configuration

The implementation of the proposed biometric cryptosystem
needs the design of the function g(·), the required ECC, and
the allocation of the bits within the template coefficients.

As outlined in Sections II and III, the function g(·) can be
specified by selecting the roll-off parameter γ of the employed
raised-cosine distribution. As discussed in Sections IV and V,
the unlinkability of the proposed system improves for increas-
ing values of γ , just like the irreversibility shown in Figure 2,
with no significant improvements for γ > 0.7. Since the
overall capacity is instead negatively affected by high γ values,
in the performed tests we have opted to select a g(·) function
with γ = 0.7 for all the coefficients. The N encoded bits c
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Fig. 22. Overall capacity vs rotation bandwidth Q, for different γ values.

are distributed among the coefficients of x as a function of
their capacity:

B = ⌊
N
K

αC⌋, (34)

being ⌊·⌋ the floor function, K the size of the secret key, C
the capacity of the considered coefficient, and α a parameter,
same for all the L features, chosen in such a way that the sum
of all the bits assigned to each coefficient equals the size N
of the encoded secret key.

As for ECC, we have used Turbo Codes with a rate
N/K = 7. Specifically, we have used codes specified in
the Long Term Evolution (LTE) standard. Turbo codes are
particularly powerful because they can rely on log-likelihood-
based receivers to perform soft decoding, so to approach
Shannon’s capacity minimizing the FRR.

As mentioned in Section II, the possibility of using
likelihood-based decoders is the main advantage of real-valued
auxiliary-data schemes over binary ones. In fact, the hard
quantization needed in classical schemes, such as in the
fuzzy commitment, leads to huge information losses with a
significant impact on the probability of correct recognition.

E. Obtained Results

The overall capacity Ctot of the representations obtained
following the described approach is reported in Figure 22,
where the influence of the bandwidth of the orthonormal
matrix A on the system characteristics is shown. As already
outlined in Section V, an increase in the values of Q and
γ negatively affects the attainable capacity. Choosing a value
γ = 0.7 for the employed raised cosine distribution allows
achieving capacities around 250 bits for Q ≤ 16, while secret
keys with 128 bits can be obtained also for large values of Q.

The recognition performance achievable by applying the
proposed protection method to finger-vein traits, as a case
study and without any loss of generality, is reported in
Figure 23. While the system is inherently designed to work
at FAR = 2−K , the achievable F R R depends both on the
length of the employed secret key and on the value Q
adopted for the orthonormal matrix A. A system with Q = 1,

Fig. 23. FRR (in %) vs secret key length K and rotation bandwidth Q.

as in [15], achieves the best possible recognition performance,
with FRR = 0.1% for K = 80, yet it is not able to provide any
unlinkability. On the other hand, the approach here proposed
guarantees unlinkability with a FRR lower than 5% when
using secret keys with K = 128 bits. This makes the con-
sidered system secure against any brute-force attacks carried
out with the technology currently conceivable.5 Embedding
keys with 256 bits would imply a FRR at about 10% for
Q ≤ 16, while worse recognition performances are achieved
when using orthonormal matrices with larger bandwidths due
to associated reduction in the available capacity. To the best
of our knowledge, no other biometric cryptosystems able to
embed secret keys with lengths in the order of hundreds of
bits, and able to properly meet, at a satisfactory recognition
rate, both the required security and renewability constraints,
has been proposed in the literature.

It is worth remarking that conditions at FAR = 2−K are
achievable in the proposed system under the assumption of
i.i.d representations x. However, since both RICA projections
and the PDFs of each feature in w are estimated over a
training dataset, and then applied to a different one, realistic
applications of the proposed method would result in non-ideal
characteristics for the biometric templates x adopted in test-
ing conditions. This is due to the inaccurate estimates of
the involved coefficients distributions, and it is typically the
more significant the smaller the size of the training dataset.
The influence of such discrepancies on the achievable secu-
rity has been analyzed by evaluating the security bound K DoF

N
described in [29], with DoF representing the degrees of
freedom of the best binomial distribution fitting the inter-class
Hamming distance distribution obtained when comparing the
binarized templates x of a subject with those associated to
possible impostors. In case of independent coefficients, the
estimated DoF would correspond to N , with the achievable
security therefore corresponding to the length of the secret
keys employed in the proposed scheme, that is, K DoF

N ≈ K .
Figure 24 shows the results obtained when considering

Q = 1 in the employed rotation matrix (A = I), in order

5https://www.simms.co.uk/tech-talk/understanding-the-levels-of-
encryption/
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Fig. 24. Effective security as in [29].

Fig. 25. Linkability measure Dsys
↔ vs K on real data.

to avoid any other source of fluctuation in addition to the
inter-class variability. For the training dataset, a behavior close
to the ideal one (K DoF

N ≈ K ) is achieved. However, the
mismatch between the distributions characterizing the training
and the testing datasets causes a performance worsening on
the testing dataset. Nevertheless, the consequent amount of
degradation is limited, thus allowing high values of K DoF

N to
be reached. Therefore, the carried out analysis confirms that
the proposed protection scheme, which applies transformations
to the original templates to make the coefficients of the
representations w independent, is effective to guarantee high
levels of security in practical scenarios.

Eventually, Figure 25 reports the linkability measure Dsys
↔

computed on real data, for different values of K , when
considering Q = 16. The obtained results show that the
evaluated Dsys

↔ is weakly correlated with the length K of the
employed secret key, yet with a decreasing slope. In addition,
as already shown in Figures. 11 and 19 for ideal and synthetic
data, our analysis shows that very low linkability rates can be
achieved also in real-world conditions.

VII. CONCLUSION

In this paper, the biometric cryptosystem system proposed
by the authors in [15] has been improved in order to make

it immune to linkability attacks. In contrast with other meth-
ods proposed in the literature, unlinkability is here achieved
using parameters that can be considered as public, with no
requirements for their secret storage.

The effectiveness of the proposed solution is tested against
two different kinds of attacks. The first one, based on stochas-
tic optimization, is shown to be unfeasible due to the compu-
tational complexity required to solve a system of non-linear
equations. The second one relies on estimates of the employed
biometric representations, and it is evaluated using quantitative
measures, showing that templates stemming from the same
identity cannot be linked if the parameters of the proposed
scheme are properly selected.

In addition, real-world scenario data have been considered
as a case study, and guidelines to properly design the compo-
nents of the proposed scheme are given. The proposed cryp-
tosystem has been applied to biometric templates derived from
finger-vein patterns, using CNNs to generate the employed
representations, and processing the obtained data to achieve
feature independence, irreversibility, and unlinkability. The
performed tests have shown that it is possible to perform pro-
tected biometric recognition while guaranteeing user-friendly
recognition performance in terms of FRR at FAR ≈ 0, and a
level of security comparable with the one achieved in current
cryptographic protocols relying on keys with at least 128 bits.
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