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Abstract—A building’s window-to-wall ratio (WWR) plays a
critical role in estimating heat loss, solar gain and daylighting
levels, and is therefore essential for building energy modeling ap-
plications. Typically, an accurate WWR estimation corresponds
to an accurate window segmentation result, which requires high
quality rectified and annotated façade images. In this paper, we
propose a novel end-to-end regression model that directly predicts
the invisible building attribute, the WWR, from façade imagery.
For comparison, we have adopted the latest proposed semantic
segmentation of windows from façade images and calculate the
WWR based on the result of the semantic segmentation. These
two approaches are performed and compared on three public
façade benchmarks. The experimental results demonstrate that
the direct prediction of invisible building attributes is feasible.
Furthermore, the regression-based approach can achieve similar
WWR accuracy as the segmentation-based method when they
use the same backbone.

Index Terms—Deep learning, semantic segmentation, regres-
sion, window-to-wall ratio (WWR), urban building energy mod-
eling (UBEM).

I. INTRODUCTION

Urban Building Energy Modeling (UBEM) considers im-
pacts of neighborhoods and estimates energy demands at an
urban level, it is used in urban planning, energetic refur-
bishment of neighborhoods and in the planning of energy
infrastructures [1]. Accurate UBEM requires various input
parameters for dynamic thermal simulation of buildings, an
important parameter for the thermal simulation is the window-
to-wall ratio (WWR). If the models are textured with ter-
restrial or oblique aerial imagery, these could be used to
determine the WWR. A straightforward approach of image
based WWR estimation consists of two steps, firstly the façade
segmentation and window segmentation need to be done to
obtain pixelwise prediction of windows and walls, secondly
the WWR is calculated from the pixel number of windows
and walls. However, this approach has some drawbacks. First,
the accuracy of estimated WWR is influenced by the accu-
racy of both façade segmentation and window segmentation.
Besides, the segmentation model is restricted by the type of
façade imagery and window shape, for example, the model
Deepfacade [2] is only applicable for rectified façade imagery.
Furthermore, the applicability of the method is restricted by
the availability of training data, which has to be pixelwise
annotations of windows and walls. On the contrary, direct

prediction of WWR from images has less requirements on
images quality. And in some cases the WWR data can be
obtained from other ways, for example the Commercial Build-
ing Energy Consumption Survey (CBECS) [3]. Therefore, we
are motivated to investigate into the possibility of directly
predicting WWR from images using a regression model.

To tackle this problem, we propose in this paper a novel
end-to-end regression model that directly predicts the invisible
building attribute, the WWR, from façade imagery. More
specifically, the network first extracts deep image features
through a convolutional neural network (CNN), and then
passes the features onto a regression module, producing the
required parameter as output.

This paper is organized as follows: we give an overview of
related research work in Section II, and explain in depth the
two WWR estimation approaches in Sections III. Experimental
results are shown and discussed in Section IV. We conclude
the paper in Section V.

II. LITERATURE REVIEW

A. Segmentation-based WWR estimation

Recent advances in deep neural networks have contributed
to the applications of deep learning-based approaches in WWR
estimation. But existing WWR estimation methods generally
rely on semantic segmentation of windows and the WWR is
calculated in a post-processing step. For example, Touzani et
al. [4] propose a deep learning-based approach to segment
windows from drone images and then compute the WWR.
Similarly, Szcześniak et al. [5] propose a pipeline to extract
building layouts from street view images and compute the
WWR based on the semantic information. Tarkhan et al. [6]
utilize a CNN-based workflow to detect window key-points
and group them to form discrete window geometries, and then
the dominant outer edges of the façade are cropped to form a
polygon. The WWR value is calculated based on the polygonal
areas of wall and windows. Thus, the WWR estimation accu-
racy greatly relies on the quality of the semantic segmentation.

B. Direct numerical prediction

In recent years, deep neural networks have been successfully
applied in direct numeric prediction. For example, Amirkolaee
and Arefi [7] apply a UNet structure for elevation estimation

20
23

 Jo
in

t U
rb

an
 R

em
ot

e 
Se

ns
in

g 
Ev

en
t (

JU
R

SE
) |

 9
78

-1
-6

65
4-

93
73

-4
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
JU

R
SE

57
34

6.
20

23
.1

01
44

16
2

Authorized licensed use limited to: Deutsches Zentrum fuer Luft- und Raumfahrt. Downloaded on November 02,2023 at 15:46:41 UTC from IEEE Xplore.  Restrictions apply. 



from single aerial image. Ptak et al. [8] employ DeepLabV3+
[9], UNet and UNet++ for density estimation from drone
images. Islam et al. [10] use a 3D UNet architecture with
attention module to estimate the survival duration of patients.

Instead of predicting visible image features like window
segments, we propose in this paper to employ a deep neural
network to directly predict the invisible building attribute,
namely the WWR value, from façade imagery. In compar-
ison with the traditional segmentation-based method where
the WWR value is estimated as a post-processing step, the
regression-based network is trained end-to-end, thus improving
the training efficiency.

III. METHODS

A. Regression-based WWR prediction

The regression network takes a façade image as input and
deep features are extracted from the input image by a UNet
[11]. Then the feature maps are passed on to a fully connected
layer and a regression layer, resulting in the final WWR
prediction.

Figure 1 illustrates the architecture of the proposed regres-
sion network for WWR estimation. It can be seen that the
main structure is a UNet whose output layer is replaced by a
fully connected layer and a regression layer.

In order to train the regression network, we use the mean
absolute error (MAE) as the loss function, as it is the default
loss to use for regression problems and more robust to outliers
than other loss functions. The MAE loss is defined as:

L(y,ŷ) =
1

N

N∑
i=1

|yi − ŷi| (1)

Where N is the number of images, y denotes the predicted
value and ŷi denotes the ground-truth.

In implementation, the ground-truth WWR is calculated
from the image annotations of the façade datasets. We em-
ploy a UNet that is pretrained on ImageNet dataset [12]
as backbone. The Adam (adaptive moment estimation) [13]
optimization algorithm is used with an initial learning rate of
0.0001, the exponential decay rate of the first moment is set to
0.9 and the second moment 0.999. The learning rate is decayed
every 20 epochs by a factor of two.

Fig. 1: Architecture of the proposed regression network.

B. Segmentation-based WWR calculation

1) Window segmentation: In our previous work [14] on
window vectorization, we proposed a two-fold approach to

improve the prediction accuracy of window corners. The work-
flow is illustrated in Figure 2. First, façade imagery is passed
to the U-ResNet101 segmentation network that is integrated
with a cross-field and augmented by a self-attention module
to improve the segmentation performance, resulting in pixel-
wise window segmentation. Second, the segmentation results
and the original façade imagery are passed to a regression
neural network that is augmented by Squeeze-and-Excitation
(SE) attention blocks, resulting in the coordinates of window
corners.

Fig. 2: Workflow of the two-fold method.

2) WWR calculation: Given a rectified façade image C with
the size of HC ×WC , for each rectangular window Si on the
image, the two-fold segmentation and vectorization network
outputs the pixel coordinates of the top left corner (xi

1, y
i
1)

and the bottom right corner (xi
2, y

i
2) of the window. Then

the WWR of the façade image C with a total amount of N
windows can be calculated by:

WWRC =

∑N
i=1((x

i
2 − xi

1)(y
i
2 − yi1))

HC ×WC
(2)

In Equation 2, it is assumed that the images contain only
façades. Though there are a few exceptions, we still use the
the pixel number of the image to approximate the total pixel
number of the façade.

IV. EXPERIMENT

A. Dataset
We evaluate and compare these two approaches on three

benchmark datasets, including ECP dataset [15], CMP dataset
[16] and Graz50 dataset [17]. As original images in each
dataset have different shapes, we resize all images as well as
masks into patches of 300× 300. For each dataset, we follow
the same design proposed in [18], i.e., data is randomly split
into 80% for training and 20% for testing. The comparison
experiments are carried out on each dataset.

Table I lists a few WWR-related statistics on these datasets.
More specifically, Image number refers to the number of test
images in each dataset, Wall pixel number refers to the pixel
number of building walls, GT window pixel number refers
to the total pixel number of all windows in the ground-truth
data. It can be seen that the WWR predicted by the regression
network is very close to the ground-truth value, proving the
effectiveness of the regression approach.

The ground-truth data for the regression network is created
from the pixelwise window masks provided in the datasets.
Given a set of window masks S, the WWR of each individual
image Si is defined as follows:

WWRi =
area windowsi
area imagei

(3)
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CMP ECP Graz50
Image number 122 20 10
Wall pixel number 10980000 1800000 900000
GT window pixel number 1558242 259021 152909

TABLE I: WWR-related statistics on CMP dataset, ECP
dataset and Graz50 dataset.

where, WWRi denotes the WWR of image Si,
area windowi denotes the total pixel number of all
windows in Si, and area imagei denotes the number of
image pixels, namely the pixel number of wall, in image Si.

B. Metrics

Most recent work about numerical regression like the person
density estimation is based on the standard evaluation strategy
[19]–[21]. Two most commonly used metrics are Mean Abso-
lute Error (MAE) and Mean Square Error (RMSE), which are
defined as follows:

RMSE =

√√√√ 1

N

N∑
i=1

(Rpred
Ii

−Rgt
Ii
)2 (4)

MAE =
1

N

N∑
i=1

|Rpred
Ii

−Rgt
Ii
| (5)

where N is the number of images, Rgt
Ii

is the ground-
truth for the image number i and Rpred

Ii
denotes the predicted

value. Roughly speaking, MAE determines the accuracy of
the estimates, while RMSE indicates the robustness of the
estimation.

C. Results

In order to validate the effectiveness of the proposed
method, we compare the regression results with previous
works of Touzani et al. [4] and Zhuo et al. [14]. For the sake of
fair comparison, we use the UNet as the backbone for baseline
and the proposed networks. We test the proposed approach
and the baseline approach on three datasets and evaluate the
results using RMSE and MAE as the metric. Table II lists the
comparison of the RMSE value on ECP, CMP and Graz50
datasets, where the row Seg refers to the segmentation-based
WWR calculation approach proposed in [4]; the row Two-fold
refers to the two-fold window prediction approach proposed
in [14], which combines a segmentation network and a post-
processing vectorization network and achieves significantly
higher accuracy than single segmentation network; the row
Reg refers to the regression-based approach proposed in our
paper. Table II lists the comparison of the three approaches
on test datasets in terms of the RMSE and MAE value. From
this table, it can be seen that accuracy of the regression-
based method is higher than the segmentation-based method
[4] on all datasets in terms of both the RMSE score and the
MAE score. In addition, the accuracy in terms of RMSE of
the regression-based method is no less than that of the two-
fold method [14] on CMP dataset and Graz50 dataset, and the

RMSE MAE
ECP CMP Graz50 ECP CMP Graz50

Seg [4] 0.032 0.048 0.089 0.016 0.030 0.052
Two-fold [14] 0.027 0.042 0.082 0.013 0.026 0.047
Reg 0.029 0.042 0.080 0.012 0.028 0.048

TABLE II: Comparison of RMSE value and MAE value on
ECP, CMP and Graz50 datasets

accuracy in terms of MAE of the regression-based method is
higher than the two-fold method [14] on ECP dataset. Overall,
the prediction accuracy of the regression-based method and the
two-fold method [14] are balanced. As for the training time,
the training of the two-fold approach [14] on CMP dataset
takes c.a. 1.5 hours per epoch on 4 1080Ti GPUs, while the
training of the segmentation-based method and the regression-
based method both take around 1 hour. Besides, the regression
network can be trained end-to-end while the two-fold method
has to be implemented in two separate steps. Therefore the
regression network is more easy to implement and efficient
than the two-fold approach.

Figure 3 illustrates the WWR calculated from the two-fold
method [14] and that predicted by the proposed regression-
based method on three sample images. The numbers in blue
show the WWR that is calculated by the two-fold approach
proposed in [14], numbers in red shows the WWR that is
predicted by the regression-based network, and numbers in
green shows the ground-truth WWR. It can be seen that the
accuracy of regression-based method is slightly lower, that is
because the two-fold method has significantly higher segmen-
tation accuracy due to its complicated network architecture.

V. CONCLUSION

Traditionally, WWR is estimated by calculating the number
of pixels of windows and walls from the result of façade
segmentation as a post-processing step. In this paper, we
propose a novel end-to-end WWR prediction method using
a regression-based deep neural network and demonstrate the
feasibility of directly predicting the invisible WWR value
from façade imagery. In order to validate the effectiveness
of the proposed method, we compare the performance with
the traditional segmentation-based method. In the case study
applied to three public building façade datasets, the proposed
method has achieved higher accuracy on all datasets compared
to the segmentation-based method, which calculates the WWR
value based on the semantic segmentation of the building
façades. Moreover, the regression-based method has achieved
balanced performance as the two-fold method proposed in
[14]. However, the regression-based method can be trained
end-to-end and is more efficient than the two-fold method.
In addition, the regression-based method has the potential
to improve when using a larger backbone (e.g. DeepLabV3
[22]). In has to be mentioned that the two-fold method relies
greatly on the image quality and window types, as it requires
accurate pixelwise annotations of windows and walls, and the
images have to be rectified whereas the windows have to be
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(a) Two-fold: 0.140 Reg: 0.139 GT: 0.172 (b) Two-fold: 0.179 Reg: 0.181 GT: 0.150 (c) Two-fold: 0.231 Reg: 0.229 GT: 0.200

Fig. 3: WWR of three sample images. The numbers in blue show the WWR that is calculated by the two-fold approach
proposed in [14], numbers in red shows the WWR that is predicted by the proposed regression-based network, numbers in
green shows the ground-truth WWR.

rectangular. By contrast, the regression-based method can be
applied on any types of façade imagery and window types as
long as corresponding training data is provided. Furthermore,
the proposed regression model has also potential to predict
other invisible building information, such as building age,
storey number and storey height, if proper training data are
provided. In the future, we plan to extend the applicability
of the proposed method to unrectified images such as street
view imagery and oblique aerial imagery in different global
cities, and update the WWR prediction method accordingly.
In addition, we aim to test correlations with other building
attributes like building age, construction materials, etc.
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