
This is the accepted version of xx.xxxx/xxxxxxxxxx.xxxx.xxxxx. © 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all
other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale
or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Automatic Deployment of Embedded Real-time
Software Systems to Hypervisor-managed Platforms

Florian Schade∗, Tobias Dörr∗, Alexander Ahlbrecht†, Vincent Janson†, Umut Durak†, Juergen Becker∗
∗Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
Email: {florian.schade, tobias.doerr, juergen.becker}@kit.edu

†German Aerospace Center (DLR), Institute of Flight Systems, Braunschweig, Germany
Email: {alexander.ahlbrecht, vincent.janson, umut.durak}@dlr.de

Abstract—The deterministic integration of concurrent func-
tions on shared multicore platforms is a challenging yet important
task. Especially in safety-critical environments, hypervisors can
be used to achieve time and space partitioning, but their sole
application is often insufficient to guarantee deterministic timing
and data flow behavior. Considering the growing complexity of
modern embedded systems, for example in terms of functionality
and mixed-criticality requirements, model-based approaches are
a promising starting point to tackle this issue. In this work,
we bridge the gap between a model-based behavior specification
methodology based on the Logical Execution Time (LET) concept
and target platforms running a commercially available bare-
metal hypervisor. Therefore, this paper describes a runtime
environment that implements LET semantics at the level of
hypervisor partitions and a tool-supported design methodology
that deploys software to this runtime environment. From a be-
havior specification provided as a system model with annotated C
code, the presented deployment tool generates binary images
with guaranteed timing and data-flow behavior for the XtratuM
hypervisor. The approach is finally validated by applying it to
a Flight Assistance System (FAS) from the avionics domain.

Index Terms—Model-based design, real-time systems, embed-
ded software, Logical Execution Time (LET), hypervisors.

I. INTRODUCTION

Modern embedded systems are often characterized by a high
degree of concurrency. The operation of autonomous aerial
vehicles, for example, is based on the continuous interaction
of numerous sensing, computation, and actuation processes.
Especially in safety-critical environments, this concurrency
must often be implemented in a deterministic manner.

At the same time, there is a trend to integrate functions with
different criticality levels on shared hardware platforms, for
example in future avionics architectures [1]. To address the re-
sulting mixed-criticality requirements, bare-metal hypervisors
are important building blocks [2], since they provide time and
space partitioning of shared hardware platforms. Since the sole
application of a hypervisor is insufficient to guarantee deter-
ministic timing and data flow behavior, achieving deterministic
concurrency on such platforms remains a time-consuming
and error-prone task. Model-based design methodologies that
automate the deployment process can help to achieve a correct
implementation in a timely manner.

This work targets the time- and value-predictable deploy-
ment of software components to hardware platforms running
a bare-metal hypervisor. Therefore, we build up on the model-

based behavior specification methodology from [3], which
uses the Logical Execution Time (LET) paradigm [4] to
achieve a platform-independent description of timing proper-
ties in concurrent software systems. Based on a timing-aware
model of the envisaged software architecture and a code-driven
programming model, the methodology from [3] performs de-
terministic model-in-the-loop simulations of specified system
behavior. However, its focus lies on the specification and the
simulation aspect. It comes without a runtime environment and
provides no automatic deployment support. The goal of this
paper is to close this gap.

More specifically, the contributions of this work can be
summarized as follows:

1) An extension of both the software architecture metamodel
and the code-driven programming model from [3] to
capture deployment-specific inputs.

2) A runtime environment implementing LET semantics at
the level of time-triggered hypervisor partitions.

3) A tool-supported strategy to deploy model-based behavior
specifications to the proposed runtime environment.

The remainder of this paper is structured as follows: After a
survey of related work in Section II, a high-level overview of
the proposed design methodology is presented in Section III,
which also covers the underlying metamodel. Section IV
covers both the developed runtime environment and the tool-
supported deployment strategy, before Section V presents
the application of the presented approach in the form of a
case study. Section VI closes the paper with conclusions and
remarks on future research directions.

II. BACKGROUND AND RELATED WORK

The LET paradigm was introduced in the time-triggered
language Giotto [5], where functions are modeled in the form
of periodically executed tasks. The behavior of each task is
given as a sequential program that has the opportunity to read
from the input ports and write to the output ports of its task.
Logically, such reads and writes are required to take place at
exactly the start and the end of a period, respectively, while
the program’s data processing logic can be executed anytime
in between. This property decouples the real-time behavior
of Giotto programs from a particular hardware platform or
simultaneously executed software workloads [4].
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Listing 1
HOOKS FROM THE ORIGINAL SWC API

void swc_init(void) {
// SWC initialization logic

}

void swc_trigger(activation_id activation, const swc_port_map *port) {
// SWC activation logic

}

Runtime systems such as the E machine [6] allow for a
time- and value-predictable execution of Giotto programs.

The aforementioned concept to associate each task with a
logical duration (from reading input ports to writing output
ports) forms the basis of many other LET manifestations.
Examples of such approaches are xGiotto for event-driven
systems [7], the Timing Definition Language (TDL), which
provides an improved syntax and simplified mode switching
semantics [8], or the system-level LET concept [9], which is
specifically optimized for distributed applications.

To achieve deterministic concurrency, especially under hard
real-time requirements, various programming models apart
from LET have been proposed. Examples include synchronous
languages such as Lustre [10] and Blech [11], timed multi-
tasking [12], or the reactor concept described in [13]. Such
approaches are more expressive than LET-based concepts, but
their compilation can be associated with additional challenges.
Due to the underlying zero-delay abstraction of synchronous
languages, for example, compiling them to target platforms
can be complicated by causality issues [14].

Therefore, the LET concept is increasingly applied to the
design of embedded systems. It has been integrated into the
timing extensions of the AUTOSAR software architecture [15]
and deployed to time-predictable multicore processors such as
the Patmos [16] architecture, for instance.

III. MODEL-DRIVEN DEVELOPMENT METHODOLOGY

The entry point into the proposed development methodol-
ogy is a model-based behavior specification. The approach
from [3], which forms the basis of this work, expects the
developer to describe the software architecture as a network
of software components (SWCs), which are periodically trig-
gered and communicate according to the LET paradigm. It
further presents a programming model that allows developers
to specify the functional behavior of a SWC using sequential
code. The interface developers use to do so in a particular
programming language is referred to as the SWC API; it
was initially provided in the C programming language. As
a sample excerpt from this API, Listing 1 shows two hooks
that the developer is expected to populate with initialization
and periodically triggered C code, respectively.

For the purposes of this paper, the methodology from [3]
was selected due to a combination of properties that facilitate
a time- and value-predictable hypervisor deployment. Most
importantly, its usage of LET provides a deterministic abstrac-
tion from the target runtime, its channel-based communication

model is compatible with industrial bare-metal hypervisors
such as XtratuM [17], and its simulation framework can be
used for verification and validation activities.

A. Key Design Decisions

The proposed methodology makes use of these properties
to support the requirements of inherently concurrent systems,
particularly with mixed-criticality and real-time requirements.
This is reflected in the following key design decisions:

• SWCs run on dedicated hypervisor partitions. As
introduced in Section I, sufficient isolation between soft-
ware components needs to be ensured to prevent fault
propagation among components of mixed criticality. Em-
bedded hypervisors provide a certain degree of isolation
by partitioning processing resources among guest soft-
ware and enforcing resource limits. Thus, the proposed
development mechanism isolates SWCs by implementing
a one-to-one mapping of SWCs and hypervisor partitions,
allowing for fine-grained resource access control.

• The LET paradigm is applied on the level of SWCs. To
meet the aforementioned need for deterministic behavior
of critical software in the context of a highly-concurrent
system, a deployment runtime is used to enforce SWC ex-
ecution and communication following the LET paradigm.

• Environment interaction follows LET timing. Inter-
action between the system under development and its
environment shall be enabled by allowing SWC access to
peripheral hardware components to control sensors, actu-
ators, and external communication interfaces. To achieve
a sufficient degree of determinism and thus maintain
compatibility with simulation approaches such as [3], a
runtime software is used to ensure that these interactions
are in accordance with the specified LET timing.

B. Deployment Flow

The tool-supported strategy proposed in this paper is shown
in Fig. 1. Its starting point is a system model 1 created by the
developer. The model has to be compliant with the extended
software architecture metamodel, which will be presented
in Section III-C. Thus, it specifies the system as a set of SWCs,
defines communication interfaces between SWCs and towards
the environment, and specifies LET parameters.

In addition to the system model, the developer needs to
provide a functional implementation of each modeled SWC in
the form of sequential code 2 . The extended programming
model (including the SWC API written in C) goes beyond
the scope of [3] in the sense that it has full support for
low-level driver accesses, e.g., to interact with sensors and
actuators (see Section III-C and Section IV-D).

Using this system model, the deployment tool T derives
key deployment artifacts, such as the system schedule, memory
map, and configuration parameters of the hypervisor partitions
and deployment runtime. It then generates the corresponding
configuration and build files. For each hypervisor partition, it
creates a partition and runtime configuration 3 as well as
a build configuration 4 in form of a Makefile that defines
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Fig. 1. Structure of the proposed deployment flow

the compilation process to generate the partition binary 5
from the SWC code, runtime configuration, and deployment
runtime R . In addition, it generates the hypervisor configura-
tion 6 and the corresponding build configuration 7 . Based on
this configuration, all partition binaries are then linked with the
hypervisor binaries and the hypervisor H configuration as well
as partition configurations to form the system image 8 , which
is ready for deployment on the embedded target platform.

If required by the system under development, the approach
allows for the extension or modification of the generated
artifacts at various points in the deployment flow. This can be
helpful to include components that are not natively supported
by the proposed deployment tool, e.g., to implement a SWC
that wraps a Linux distribution. In this case, the developer
has to consider the resulting implications on the system LET
behavior and implement appropriate measures as required.

C. System Metamodel and Programming Model

The proposed deployment approach is based on a model
that specifies key properties of the system under develop-
ment. Figure 2 shows the corresponding metamodel, which is
adopted from [3], extended to cover deployment information,
and slightly modified regarding the modeling of the SWC
execution timing. These changes, however, do not limit com-
patibility with simulation approaches as presented in [3].

The system architecture is modeled as a set of SWCs, each
represented by a SoftwareComponent instance. SWCs
represent sequential application code executed in a periodical
pattern. The corresponding period is annotated as a property of
the SoftwareComponent instance. The execution pattern
within each period consists of one or more activations. An
activation represents a single execution of the associated code
and is modeled as an Activation instance.

To ensure deterministic timing and data flow, SWC code
execution adheres to the LET paradigm. Thus, each activation
is characterized by its logical runtime and its offset within
the SWC period. These parameters define the LET frame of the
activation, i.e., the time window within which the associated
code is executed.

Inspired by the ARINC 653 standard [18], communication
between SWCs is organized using ports and channels. A
port (SwcPort) represents a communication interface of
a SWC and implements a specific communication mode.
Compatible ports can be connected via channels (Channel)
and represent unidirectional data flow between two SWCs.

Two communication modes are supported: sampling and
queuing behavior. Sampling ports allow for one-to-many com-
munication. Thus, a sampling output port can be connected to
multiple input ports via multiple channels. Sampling commu-
nication follows last-is-best semantics. Receivers will always
read the latest value that was written by the sender. Senders
can write values to these ports or perform a clear operation
to indicate that no valid data is available. In contrast, queuing
ports implement one-to-one communication following the first-
in-first-out (FIFO) concept. Messages written to a queuing
output port can be read at the corresponding input port in
the same order. To bound memory usage, each queuing port
has a defined capacity of messages that can be buffered.

Following the LET paradigm, data forwarding across ports
happens in a time-triggered manner that is defined by the
activation schedule. SWC code executed during an LET frame
can access ports at any time via the SWC API. The underlying
runtime has to ensure that inputs to the activation are read at
the beginning of the LET frame and are not updated during the
LET frame. Likewise, it needs to ensure that outputs written
by SWC code do not come into effect until the end of the
LET frame. Regarding writing operations to queuing ports, it
is further defined that messages exceeding the port capacity
are discarded. Likewise, when queuing channel inputs are read
into an input port, messages exceeding the input port’s capacity
are discarded as well. This ensures that the channel buffer is
cleared after reading by an activation, which simplifies the
dimensioning of buffer capacities.

To further enhance the flexibility in regard to data flow
specifications, port access can be defined on a per-activation
basis using the readFrom and the writeTo property of
an activation. Only ports explicitly referenced using these
properties are updated during the corresponding activation.

Communication between SWCs and the system environ-
ment, such as sensors and actuators of the target embedded
systems, is represented by ports as well. These ports have
their scope attribute set to EXTERNAL and are referred
to as environment ports. During deployment, the runtime
forwards environment port data to target-specific low-level
interfacing code as described in Section IV-D.

To cover deployment-specific information, we extended
the original software architecture metamodel with a dedi-
cated model annotation as highlighted in Fig. 2. It com-
prises a DeploymentConfiguration instance defin-
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Fig. 2. Excerpt of the software architecture metamodel (with deployment-specific annotations in yellow)

ing target-specific information and one SwcDeployment
instance per SWC to model SWC-specific information.
Similarly, activation-specific information is modeled in
one ActivationDeployment instance referring to the
corresponding Activation instance.

IV. DEPLOYMENT MECHANISM

In this section, we present the proposed deployment mech-
anism, which can be structured into the three layers shown
in Figure 3.

• The runtime environment (RTE) layer encompasses all
management and OS-level software on the target plat-
form, i.e., all software that is not part of the SWC code
provided by the developer. This includes the hypervisor
and the deployment runtime.

• The tooling layer encompasses the development tools
that support the system developer to generate target
configurations from the system model.

• The modeling layer encompasses the model-based de-
scription of the system. In the context of the deployment
mechanism, it comprises the base metamodel presented
in Section III-C as well as its extensions that enable the
developer to annotate properties and constraints required
by the deployment tool to generate the aforementioned
configuration.

In the following, the central concepts of the proposed
deployment mechanism are presented with respect to their
manifestation in the three layers. These concepts are the
mapping of SWCs to hypervisor partitions, the mapping of
SWC activations to hypervisor time windows, and the imple-
mentation of LET-based communication using RTE-provided
mechanisms. They are depicted in Fig. 3, references to this
figure are denoted as n .

A. Mapping of SWCs to Hypervisor Partitions

Embedded hypervisors provide a means to partition process-
ing resources of computation platforms among guest software.
This is achieved by creating logical partitions that contain
the guest software. These partitions have limited access to
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the platform’s resources, such as CPU time, memory, and pe-
ripherals, and are connected via well-defined communication
channels. Within a partition, hypervisors typically allow for
the execution of both OS-level and application-level software.
Thus, embedded hypervisors are a common component to sup-
port isolated execution of software on shared platforms. The
proposed deployment mechanism makes use of this feature.
Therefore, in step 1c , isolation between SWCs is achieved by
deploying each SWC to a dedicated hypervisor partition.

The proposed deployment mechanism was implemented for
the XtratuM [17] hypervisor. Its concepts, however, are trans-
ferable to other hypervisors that follow the concepts described
in the ARINC 653 standard [18], such as PikeOS [19]. These
hypervisors implement CPU sharing based on a fixed periodic
schedule and provide channel-based inter-partition commu-
nication mechanisms that are compatible with the system
metamodel from Figure 2.

To enable and control the execution of a SWC in a hy-
pervisor partition, a deployment runtime is developed. The
deployment runtime is system software that lies between the
SWC code and the hypervisor. Based on the functionality
provided by the underlying hypervisor, it implements the
abstractions presented in Section III-C, such as LET-based
SWC execution and inter-SWC communication.

To provide the necessary information for the configu-



ration of hypervisor partitions, the metamodel deployment
annotation 1a comprises partition-specific information for
each SWC. This includes the assigned memory range, par-
tition name, and stack size of the hypervisor-provided in-
partition RTE. In addition, peripherals that shall be accessible
to a SWC partition are listed, such as gpio and uart0. This
information is used by the deployment tool 1b during the
generation of partition-specific configuration files. In doing
so, the deployment tool resolves the device list entries into
platform resource access configurations that are added to the
hypervisor configuration.

B. Mapping of Activations to Time Windows

As described in Section III-C, SWC execution timing is
specified by a periodic activation pattern. To implement this
behavior on the target platform, we exploit the scheduling
mechanism used on ARINC-653-oriented hypervisors. Here,
schedules are defined in the form of a fixed-duration major
frame (MAF), which is repeated cyclically. For each CPU core,
the MAF defines a sequence of time windows, each of which
has a fixed duration, an offset relative to the beginning of the
MAF, and a reference to a partition. Thereby, it specifies the
execution time window of the corresponding partition on the
CPU core. Since SWC activation also follows fixed, periodic
activation patterns, they can be mapped to time windows.

The system model 2a contains the required activation tim-
ing information in the form of LET parameters and the period
of the corresponding SWC. To derive a hypervisor schedule,
the number of available CPU cores needs to be specified
as part of the DeploymentConfiguration instance, as
depicted in Fig. 2.

Based on this information, the deployment tool 2b derives
the hypervisor schedule in a three-step process. First, it
determines the hyperperiod of all SWCs by calculating the
least common multiple of the SWC periods. The hyperpe-
riod equals the duration of the MAF. Secondly, it performs
a periodic extension of all SWC activation patterns up to
the determined hyperperiod by adding activations following
the SWC’s periodic activation pattern. Finally, it attempts to
construct the hypervisor schedule by allocating one time win-
dow for each SWC activation, so that the following scheduling
conditions are met:
S1 The time window offset and duration equal the corre-

sponding activation offset and runtime.
S2 There is no overlap of time partitions mapped to the

same CPU core.
S3 The maximum number of cores used equals the config-

ured number of available cores.
The schedule generation mechanism processes SWC activa-
tions sequentially. For each activation, it attempts to add a
corresponding time window to the schedule without violating
the aforementioned constraints. In case that no solution is
found, the process aborts and the developer is requested to
adjust the SWC timing or assign more CPU cores.

At the RTE layer 2c , the resulting hypervisor schedule
ensures that each SWC partition is executed during its time

t
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Fig. 4. Planned and sample on-target timing of activation execution phases

windows. The invocation of user-provided SWC code, how-
ever, needs to be controlled on a more fine-grained level
and therefore is managed by the deployment runtime. The
deployment runtime comprises an event-list-based scheduler
to process actions within the SWC partition in a time-triggered
way. The event list specifies events in combination with their
temporal offset to the beginning of the MAF. Thus, the event
list scheduler synchronizes with the hypervisor scheduler using
hypervisor-issued interrupts at the beginning of the first time
window assigned to an SWC in each MAF. The event list
for each SWC is derived from the generated schedule by the
deployment tool 2b and contains one activation event at the
beginning of each time window, which leads to the execution
of the swc_trigger hook (cf. Listing 1).

C. Enforcing LET Communication

The system model defines communication channels for
inter-SWC communication, which either following sampling
or queuing semantics. On the target platform, these chan-
nels are mapped to communication mechanisms provided
by the hypervisor. ARINC-653-oriented hypervisors provide
both queuing- and sampling communication channels between
partitions, which are widely compatible with the mechanisms
defined in Section III-C. Thus, modeled sampling and queuing
ports can be mapped to their hypervisor-provided equivalent
with few adaptions concerning port functionality.

Realizing LET-based communication on the deployment
target poses a more complex challenge. As described in [4],
LET program execution is correct “if the program reads input,
in zero time, then executes, and finally writes output, again in
zero time, exactly when the LET has elapsed since reading
input.” Thus, there are two main requirements in regard to the
correct execution of an SWC activation: (I) Inputs to the SWC
activation shall be read at the beginning of the activation’s
LET frame. When new input data becomes available after
the beginning of an activation’s LET frame, it shall not be
visible to the running activation until the start of the next
execution. Similarly, outputs shall come into effect not before
the activation’s logical runtime has elapsed. (II) Input reading
and output writing shall be logically instantaneous.

The proposed deployment mechanism fulfills (I) by buffer-
ing port data between the SWC code and the hypervisor
channels. This buffering mechanism is implemented as part
of the RTE 3c . The buffer itself is provided by a target-
independent part of the deployment runtime and is interfaced
to hypervisor channels by a target-specific part. As depicted in
Fig. 4, each time window representing an LET frame is split



into three phases: At the beginning of the time window, inputs
to the SWC partition are read into local port buffers. During
the subsequent execution phase, the SWC code is executed by
calling the swc_trigger function. During this phase, port
access is available via the SWC API provided by the runtime,
resulting in read and write accesses to the local port buffer.
At the end of the time window, outputs are forwarded from
the port buffers to the SWC partition’s output ports and thus
written to hypervisor channels. To adhere to the programming
model, the deployment runtime only reads inputs and writes
outputs that are specified in the access lists of the activation
and handles messages exceeding buffer capacities as described
in Section III-C.

As communication across hypervisor channels cannot be
done in zero time, (II) is not by itself fulfilled in real-world
systems. To circumvent this issue and retain the guarantees
given by the LET concept, the deployment mechanism requires
the specification of the maximum executing times for each
activation’s input reading and output writing phase. Based on
this information, it prevents the generation of schedules in
which overlapping input reading and output writing phases
can lead to nondeterministic system behavior. This timing
information can be annotated in the system model 3a by defin-
ing an ActivationDeployment instance that references
the corresponding activation. The maxReadDelay attribute
represents the maximum duration of the input reading phase
(t0 to t2 in Fig. 4). Analogously, maxWriteDelay represents
the maximum duration of the output writing phase, i.e., t4 to
t6 in Fig. 4. It is the responsibility of the developer to provide
correct parameters, e.g., by conducting a worst-case execution
time (WCET) analysis of the corresponding input reading and
output writing logic as well as the activation logic.

Note that in practice this will lead to an overestimation of
each phase’s execution time, resulting in idle phases during the
execution of an activation on the target platform (cf. Fig. 4).
This is considered acceptable given the determinism guaran-
tees that are obtained by the proposed approach. While idle
phases caused by the overestimation of execution time cannot
be avoided in a static, pre-determined schedule, idle phases in
the SWC execution phase that result from an LET that exceeds
the activation logic’s WCET could be used to schedule other
SWCs in parallel on the same core. In this case, it needs to
be guaranteed that the execution time assigned to each SWC
execution section equals at least the SWC code WCET and
that input and output phases can be scheduled precisely at
the specified time. Note that due to the buffering of inputs
and outputs, the SWC code execution can start as soon as all
inputs have been read (at t1) as indicated in Fig. 4.

In the RTE layer 3c , the aforementioned phase concept is
implemented using the event-list-based scheduler introduced
in Section IV-B. Two additional event types are defined that
trigger the input reading and output writing logic, forwarding
data between internal port buffers and the hypervisor channels.
The input reading event is scheduled as the first event at the
start of the LET frame, followed by the activation event. The
output writing event is scheduled at the beginning of the output

writing phase to ensure that all outputs are written if the output
writing logic requires the maximum configured execution
time. Consequently, the deployment tool 3b generates the
respective events during the generation of the deployment
runtime configuration.

To ensure deterministic data flow within the system, an
additional scheduling constraint is defined and adhered to by
the scheduling logic implemented in the deployment tool:

S4 For any two SWC activations as and ar, among which
there is a sender-receiver dependency, the output writing
phase of the sender must not overlap the input reading
phase of the receiver. A sender-receiver dependency is
given if as writes to a channel that is read by ar.

The necessity of this constraint becomes clear when consid-
ering that the data transfer between hypervisor channels and
the local port buffers is not atomic. Thus, parallel accesses
to the set of channels read/written by an SWC can lead to
indeterministic behavior. At the same time, the exact instant
at which this data transfer occurs is not known and is expected
to vary between execution iterations, which motivates the
definition of sufficiently long read and write intervals.

D. Enabling Environment Interaction

Conceptually, environment ports represent the interface
between the software system and its environment. In real-
world systems, this interface is implemented by peripheral
devices integrated with the processing hardware that are used
to control on-board and external components, such as sensors,
actuators, and communication interfaces. Due to the variety of
peripheral hardware and connected devices, the integration of
the corresponding driver code is left to the developer.

To facilitate the use of ports to represent environment inter-
action, the developer is required to provide code that forwards
data between port structures and the corresponding peripherals.
To integrate this code, the SWC API is extended by additional
entry points named environment access functions. At runtime,
these functions are called by the deployment runtime during
the input reading and output writing phases of activations
that access the corresponding environment ports. For input
ports, the access functions are called during the input reading
phase after all internal ports have been read. For output ports,
they are called at the beginning of the output writing phase,
i.e., before writing internal ports. This approach increases
the overall schedulability of the system, since the scheduling
constraint S4 only applies to inter-SWC communication.

As an example, Listing 2 shows the definition of an envi-
ronment input port to read a button state, Listing 3 presents the
generated environment access function, manually populated by
code reading the corresponding hardware register.

V. APPLICATION IN AN AVIONICS USE CASE

In the following, a practical application from the avionics
domain will be used to demonstrate and evaluate the proposed
deployment mechanism.



Listing 2
SYSTEM MODEL INCLUDING ENVIRONMENT PORTS

swc_controller: {
// SWC period, activations, system ports, ...
env_ports: {

button_in: { data_type: "u8", mode: "sampling", direction: "in" }
}

}

Listing 3
EXEMPLARY ENVIRONMENT PORT ACCESS FUNCTION

void swc_env_access_button_in(const port_access_u8_s_out *port) {
uint32_t button_state =

((*gpio_bank1_data_reg) >> PB1_BIT) & 1UL;
port−>write(button_state);

}

A. Case Study Overview and Context

The development of improved traffic avoidance functionality
due to continuously growing air traffic is a topic of increas-
ing importance in the aviation domain [20]. Its relevance is
underlined by the recent efforts to introduce a new Airborne
Collision Avoidance System (ACAS) [21]. Accordingly, the
selected use case for this study is the development and deploy-
ment of a Collision Avoidance System (CAS). The machine-
learning-based (ML-based) implementation introduced in [22]
serves as baseline for the demonstration. For the practical
integration of such a ML-based SWC into an avionics system,
sufficient isolation from other SWCs will be required. Hence,
a hypervisor-based implementation is considered a suitable
mechanism for deploying the CAS on an avionics computing
module.

For the purposes of this case study, we consider the sim-
plified Flight Assistance System (FAS) architecture shown
in Fig. 5. A Sensor Unit receives transponder information,
including the position, heading, and speed of the own aircraft
as well as nearby aircraft (intruders). It is connected to
a Flight Assistance Computer (FAC), which hosts the CAS
software system and is the target of the presented deployment
approach. Its software architecture consists of three SWCs.
A preprocessing SWC (preproc) interfaces the Sensor Unit,
prepares the incoming data, and forwards it to the cas SWC
via channels (AircraftState and IntruderState). The cas SWC
evaluates the situation and provides a TrafficAdvisory to in-
dicate the recommended pilot action. Due to the ML-based
nature of the CAS algorithm, the generated TrafficAdvisory is
then checked for consistency by the postproc SWC and finally
forwarded to the Pilot HMI to notify the pilot. To ensure that a
potential failure of the preproc or cas SWC does not affect this
consistency check, each SWC is required to run on a dedicated
hypervisor partition.

In a safety-critical avionics system, the adherence of the
deployed software architecture to the specification is essential
for certification [23]. A central aspect is that critical properties
such as the specified timing requirements are met. For the

system at hand, the timing of the software architecture is spec-
ified as follows, resulting in the schedule depicted in Fig. 6.
Within an overall period of 200ms, each SWC is assigned
a logical runtime of 90ms, including 5ms input reading and
output writing phases. The preproc and postproc components
are scheduled at the start of the period on separate CPU cores,
while the cas component is scheduled with a 100ms offset on
the first core.

B. Case Study Setup and Execution
In this case study, only the FAC shown in Fig. 5 will be

considered. The case study’s main goal is to deploy and test
the specified software architecture on the embedded hardware
and to evaluate the resulting system’s consistency with the
specification. As the target FAC platform, the Zynq-7000 SoC
was selected, which is supported by the XtratuM hypervisor.

To obtain the required artifacts for deployment, the system
was modeled in the JSON format that serves as an input to the
deployment tool. Implementations of all SWCs were provided,
adhering to the programming model and API described above.
Based on these inputs, the deployment tool was executed to
generate the deployment configuration and files. The fully
automated generation process resulted in all artifacts that were
required to compile and then deploy the elaborated software
architecture to the embedded hardware.

To verify the correct timing of inter-partition communica-
tion, and thus the correct functionality of the LET implementa-
tion, the runtime was amended by a logging functionality that
records timestamps when hypervisor ports are accessed. This
mechanism was used to evaluate the accuracy of the runtime
in meeting the specified read and write phases.

C. Case Study Results and Discussion
Given test input from a flight simulator, the execution of the

generated deployment image on the target platform produced
the expected advisories. The result of the timing evaluation is
depicted in Fig. 6, where the execution of read and write events
is shown in the form of red markers. Our measurement results
show that all recorded port accesses are carried out within the
specified read and write phases, confirming the correct timing
of the LET implementation in this case study. Note that all
recorded events lie within 434 µs to 763 µs from the start of the
corresponding read/write phase, indicating that the specified
read/write phase duration could be significantly reduced.

For safety-critical applications, compliance of the system
with the specification is essential. Therefore, an automated
generation of deployment artifacts is very valuable to reduce
the development effort, avoid potential mistakes, and ensure
consistency between the specification and the implementation.
In addition, the model-based nature of the proposed deploy-
ment process is expected to be helpful in handling complex
architectures. However, the current evaluation did not focus
on complexity, but rather on the feasibility of the process.

VI. CONCLUSION

To integrate highly concurrent mixed-criticality systems on
powerful processing platforms, we presented a model-driven



Fig. 5. Overview of the flight assistance system’s architecture
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Fig. 6. FAC schedule and measured communication timing

mechanism that automates the generation of deployment arti-
facts and generates deployable system images. Our approach
combines the Logical Execution Time (LET) paradigm with
hypervisor technology to ensure deterministic timing and
communication behavior on a system level as well as isolation
between system elements on shared execution platforms. To
achieve this, we presented an automated tool that derives
configurations for the hypervisor and a hypervisor-based de-
ployment LET runtime, along with the required metamodel
for system specification. Promising directions for future work
are the extension of the proposed mechanism to support
distributed hardware architectures, tool support for SWC code
that depends on complex operating systems, such as Linux, as
well as optimized scheduling approaches to reduce idle periods
and thus increase system efficiency.
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