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Abstract
Heat exchangers (HEX) are one of the most crucial components in the thermal management system of future electrified air-
craft. To precisely model the convective heat transfer, high-fidelity Computational Fluid Dynamics (CFD) simulations are
commonly carried out. However, due to their complexity, employing them in a design optimization loop is computationally
expensive. This might lead to sub-optimal designs. One possible solution to solve this problem is to develop surrogate
models to replace simulations with predictions. In recent trends, Convolutional Neural Networks (CNN) have shown large
potential in modeling external aerodynamic flows. By employing this approach for heat exchangers, a geometry-adaptive
U-net is developed to predict the velocity, pressure and temperature distribution of the air flow over various HEX fin
configurations directly from geometry and boundary conditions. The model is trained on the steady state results obtained
from solving unsteady Navier-Stokes equations using the open-source simulation toolkit Phiflow. The trained model is
able to predict the flow fields for unseen fin configurations with an accuracy of 95 %. Moreover, it estimates the scalar
pressure drop and temperature difference with an error of only 4 %. Due to the notably reduced computational cost
compared to CFD simulations, the surrogate model can prove useful in performing rapid heat exchanger optimization to
minimize pressure drop and maximize heat transfer.
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NOMENCLATURE

Symbols

α angle of attack rad

D thermal diffusion coefficient m2/s

d() distance function

∂Ω boundary

· dot product

δ fin pitch m

∆ Laplacian operator

lf length of the fins m

min() minimum function

∇ gradient operator

nf number of fins

ν kinematic viscosity m2/s

Nx number of grid points in X-direction

Ny number of grid points in Y-direction

Ω computational domain

p pressure Pa

Pr Prandtl number

Re Reynolds number

ρ density kg/m3

T temperature K

ū velocity vector m/s

wf width of the fins cross-section m

X length of the domain

Y width of the domain

Abbreviations

BC Boundary Condition

CFD Computational Fluid Dynamics

CNN Convolutional Neural Network

HEX Heat Exchanger

RANS Reynolds-Averaged Navier Stokes

SDF Signed Distance Function

SLS Semi-Lagrangian Scheme

1

Deutscher Luft- und Raumfahrtkongress 2023
DocumentID: 610419

©2023 doi: 10.25967/610419

https://doi.org/10.25967/610419


FIG 1. Surrogate model based optimization workflow

1. INTRODUCTION

Electric systems in every application are susceptible to high
temperatures and require adequate cooling. Introducing
electric drives as a safe propulsion system in an aircraft will
thus require a powerful and efficient thermal management
system. Predominantly, the heat generated by hydrogen fuel
cells and batteries has to be effectively dissipated. Hence,
the design and analysis of heat exchangers needs to be pre-
cise. Typical system architectures for electric propulsion
involve the HEX to be placed in the nacelle downstream
of the propellers (see, for example, [1]). A duct directs the
incoming cold air towards the HEX and thus cools down the
working fluid. Various HEX topologies such as the plate-
fin, tube-fin, offset strip-fin and other types are available for
this purpose. To simulate the convective heat flow, high-
fidelity CFD simulations are commonly performed to obtain
accurate field information. Additionally, during the design
phase, 1D analytical models are used to compute the heat
transfer, pressure drop, and overall performance of HEXs.
After careful analysis and optimization, the final topology
and dimensions are selected based on the system require-
ments. Although the final design can be indeed effective, it
may not be optimal. That is because 1Dmodels are far from
reality. The effect of turbulence and thermal boundary lay-
ers on the performance cannot be easily approximated via
1D models. Thus, one needs an accurate and fast 2D/3D
surrogate model in the optimization process. The surrogate
models can then be included in the optimization process as
shown in Fig 1.
Alongside established surrogate and reduced order model-
ing methods, CNNs have recently proved their capabilities
in learning the latent geometry representations and spa-
tial features. Ribeiro et al. [2] used an Autoencoder-type
CNN architecture for image-to-image translation. They
trained the network to predict the velocity and pressure
distribution in a 2D fluid flow over arbitrary objects using
the SDF representation of the computational domain and
a boundary condition (BC) mask as inputs. Their model
was trained on results from OpenFOAM [3] simulations
using the SIMPLE algorithm [4]. Similarly, Thuerey et
al. [5] trained a U-net [6] model to predict the velocity and
pressure fields for flow over various airfoil shapes [7] us-
ing free stream BCs and a binary mask. Their network was
trained on results obtained fromRANS simulations with the
Spalart-Allmaras [8] turbulence closure model. A different
approach was used by Guo et al. [9], who generated simu-
lation data of flow over 100,000 random shapes using the
2D and 3DLattice-Boltzmann-Method (LBM).A common-

encoder separate-decoder model was trained on this data to
predict the velocity components from the respective SDF
representation of the geometry. They also compared the
effect of using SDF representation and a binary representa-
tion of the geometry as an input on the model performance.
According to their conclusions, the CNN model with SDF
as an input was more generalizable than a simple binary
mask as it provided more geometric and boundary informa-
tion. Portal-Porras et al. [10] used the CNN approach to
predict the flow field quantities and the scalar aerodynamic
coefficients for different flow control devices on an airfoil
Most of the literature on deep learningmethods as surrogate
models for flow prediction deal with external aerodynamics.
In addition to the above mentioned literature, the capabili-
ties of different CNN architectures to predict the flow over
arbitrary geometries, vehicle shapes and airfoils from geo-
metric data have also been recently studied [11–14]. Com-
pared to reduced order modeling methods like the Proper
Orthogonal Decomposition (POD), the CNN models have
been observed to perform as good as POD with 70 basic
modes [15]. Recently, these approaches are being adapted
for convective flow applications. Seo et al. [16] trained a
CNN encoder-decoder model to predict the velocity, pres-
sure and temperature flowfields for flowover variousNACA
airfoils. Wang et al. [17] performed a comparison study
between the conventional Radial Basis Function (RBF) re-
gression, Gaussian Processes Regression (GPR), and dense
Artificial Neural Networks (ANN) with CNN architectures
for predicting the convective heat transfer in a U-bend chan-
nel. Their observations revealed that the novel CNN-based
architectures perform better. As opposed to flow field pre-
diction, Keramati andHamdullahpur [18] developed a CNN
surrogate to predict the scalar heat transfer from geometry
images for 2D flow over arbitrary shapes. However, in the
case ofHEXdesign and optimization, the use ofCNNsurro-
gatemodels is yet to be extensively explored. Consequently,
this research presents a preliminary study of the capability
of a geometry-adaptive CNN surrogate model in learning
the convective flow over heat exchangers. It should be noted
that accurate physical modeling was not the primary focus
of this study.

2. PROBLEM DEFINITION

For investigating the CNN-based approach, an air-cooled
plate-fin heat exchanger is selected in this study. A 2D
plane between the fins is considered for simulation. Fig 2
displays the 2D computational domain and the HEX geom-
etry parameters.
The domain length was set to L = 2 m and height W =
1 m. To simulate the air flow over fins in the channel
between the plates, the governing equations to be solved
in the domain (Ω) are the unsteady incompressible Navier-
Stokes equations in Eq. (1) with the energy equation in
Eq. (2) and the continuity equation in Eq. (3) as

(1)
∂ū

∂t
+ (ū · ∇)ū = −1

ρ
∇p+ ν∆ū in Ω,

(2)
∂T

∂t
+ (ū · ∇)T = D∆T in Ω,
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FIG 2. Problem definition

(3) ∇ · ū = 0̄ in Ω.

In these equations, p is the pressure, ū is the velocity vector,
ρ is the density of the fluid andD is the thermal diffusivity.
The constants in the simulation are ν = 1e − 4, Pr =
1, Re ≈ 550, and

(4) D =
1

Re Pr
,

where ν is the kinematic viscosity,Pr is the Prandtl number
and Re is the Reynolds number. The Reynolds number
changes as the length of the fin is changed for generating
different geometries. The governing equations were solved
using the open-source differentiable solver Phiflow [19].
The following boundary conditions were applied:

(5) ū = (0.5, 0.0) on ∂Ωinlet,

(6) ū = (0.0, 0.0) on ∂Ωhex,

(7) T = 220K on ∂Ωinlet,

(8) T = 420K on ∂Ωhex and

(9)
∂P

∂x
=
∂u

∂x
=
∂v

∂x
=
∂T

∂x
= 0 on ∂Ωoutlet.

The computational domain was discretized in a uniform
structured grid of resolution (Nx, Ny), where Nx = 256
and Ny = 128. The advection terms in Eq. (1) and
Eq. (2) were treated using the Semi-Lagrangian Scheme
(SLS) [20]. The diffusion terms in Eq. (1) and Eq. (2)
were treated using an explicit scheme with four sub-steps.
Finally, the incompressibility constraint in Eq. (3) was ap-
plied using the Chorin-Temam projection [21] to compute
pressure.

3. DATA GENERATION

To train a CNN model, a training dataset needs to be gen-
erated. In the current study, the fin geometry was param-
eterized into number of fins (nf ), length of the fins (lf ),
fin pitch (δ), and angle of attack (α) as shown in Fig 2.
The width of the fins (wf ) was kept constant. To generate

Parameter Lower bound Upper bound

nf 2 8

lf
10
Ny

20
Ny

δ 4
Ny

14
Ny

α −π4
π
4

TAB 1. Range of geometry parameters

FIG 3. Layers in the U-net

various geometries, these variable design parameters were
randomly sampled from chosen respective ranges as shown
in Tab. 1.
By randomly sampling the geometry parameters, 850 dif-
ferent HEX configurations were created. Transient simula-
tions were carried out for all the geometries. The velocity
and temperature boundary condition fields were saved at
the simulation start. Along with the BC mask, the SDF
field was also generated and saved. The SDF is defined as
the shortest distance of each point x in the domain from the
obstacle boundary according to

(10) fsdf = min(d(x, ∂Ω)) for x ∈ Ω.

Simulations were assumed to have reached steady-state
when the time-derivatives were below the tolerance of 1e-
5. Then, the velocity components (Ux, Uy), pressure (p)
and temperature (T ) fields were saved. For better train-
ing performance, the SDF field was normalized between
0 and 1. Since the pressure is computed up to a constant
for incompressible flows, the actual value of the pressure
has little importance. The pressure drop is more important.
Thus, the pressure values are also normalized for training
and given as P .

4. SURROGATE MODELING

To develop a CNN model, the U-net [6] architecture was
chosen. U-nets are popularly used in image segmentation
and are known to be able to extract complex features. More-
over, the "skip connections" allow the flow of high-level and
low-level information in the encoding and decoding parts
of the model to be connected and carried forward. The U-
net architecture was constructed using a [3,3] filter size for
convolution/de-convolution layers and Leaky-ReLU activa-
tion layer. By stacking these layers in an alternate fashion
with max pooling and upsampling layers of [2,2] filter size
at the last, encoding and decoding blocks were created re-
spectively. The compression and expansion consisted of
[16,32,64,128,64,32,16] number of filters each.
The encoding blocks compress the inputs to a latent space
and decoding blocks expand these latent features into flow
fields. The skip connections basically concatenate the out-
puts of the decoding block and a corresponding encoding
block and send them to the next decoding block. A single
U-net model was created using the above blocks, as shown
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FIG 4. U-net architecture

FIG 5. U-net model inputs

FIG 6. U-net model outputs

in Fig 4. The U-net received three inputs namely veloc-
ity BC, temperature BC and the SDF representation at 256
×128 resolution, as shown in Fig 5. The network generates
four outputs namely x- and y-components of the velocity as
well as the pressure and temperature at the same resolution
shown in Fig 6. The model was built using the TensorFlow
2.11.0 library [22] in Python 3.7.4. Out of a total of 850
samples, 50 samples were separated for testing. The model
contained approximately 1.8 million trainable parameters
and was trained for 200 epochs using the Adam [23] opti-
mizer. The L1-norm was chosen as the loss function as it
is more robust against outliers. A validation split of 0.1, an
initial learning rate of 1e-3 and a batch size of 10 was used
during training. The learning rate was reduced as a function
of training loss using the ReduceLRonPlateau scheduling.

5. RESULTS

At the end of training, the model achieved a total Mean
Squared Error (MSE) of 4e-6 on the training data and 4e-4
on the validation data as shown in Fig 7. On the unseen
50 test samples, individually, the MSE was 2e-3 for x- and
y-components of the velocity, 1e-3 for pressure and 2e-3
for temperature. To qualitatively measure the accuracy of
the predictions, the Symmetric Mean Absolute Percentage
Error (SMAPE) was selected as an appropriate criterion as
it does not suffer from exploding error for zero magnitudes
like the relative percentage error. It is defined as

(11) SMAPE = 100

∑n
i=1|xi − yi|∑n
i=1 xi + yi

%.

The overall mean SMAPE was observed to be 2 % on the
training set and 4%on the test set. Individually, the SMAPE
was 1 % for the x-component of the velocity, 1 % for the

FIG 7. Training history for the U-net model

y-component of the velocity, 2 % for pressure and 4 % for
temperature on the training set. Similarly, the SMAPE was
2 % for the x-component of the velocity, 3 % for the y-
component of the velocity, 5 % for pressure and 8 % for
temperature on the test set. The proposed U-net architec-
ture was able to predict the flow fields with only 1.1 million
parameters and 800 training samples. To achieve the same
accuracy on the same grid resolution in a similar applica-
tion, the U-net model by Matthias et al. [12] required 53
million parameters, the U-net by Thuerey et al. [5] required
2-30 million parameters and the common-encoder sepa-
rate decoder model by Guo et al. [9] required more than
10 million parameters. From this preliminary study it can
thus be inferred that the proposed U-net architecture would
also require less parameters for higher resolutions and more
complex flows.
Fig 8 shows the comparison between the model prediction
and the reference CFD result for four different test geome-
tries. At the first glance, the CNN prediction matches well
with the CFD results and is visibly indistinguishable. It can
be observed in Fig 8a that the model predicts the average
Ux velocity flow correctly along with the oscillations oc-
curring in the wake of the fins. Similarly, minor pressure
fluctuations and periodic Uy oscillations are predicted with
negligible errors. Due to less fluctuations in temperature,
the predictions were even more accurate. For the configu-
ration in Fig 8b, two fins with certain angle of attack are
placed. As a result, the fins act like a bluff body and lead
to the von Kármán vortex shedding phenomenon. In this
case, the model was able to correctly predict the periodic
nature of the flow quantities and flow separation at the fin
boundaries. Considering more fins with different orienta-
tions shown in Fig 8c and Fig 8d, the predicted pressure and
temperature fields are in agreement with the CFD results.
In Fig 8d, the large eddies occurring due to the pressure dif-
ferences in the wake were predicted with a slight artificial
averaging or diffusion. Considering the model was trained
on a very few geometries, it performs quite well on unseen
geometries. However, it is susceptible to non-physical pre-
dictions andminor averaging phenomena in case of vortices.
More examples of the comparison between the prediction
and simulation can be found in the Appendix. When using
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(a) Parameters: nf = 6, lf = 0.123, δ = 0.045, α = 5deg

(b) Parameters: nf = 2, lf = 0.1, δ = 0.05, α = −35 deg

FIG 8. Comparison between CNN prediction and CFD results (1)
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(c) Parameters: nf = 4, lf = 0.99, δ = 0.047, α = 21deg

(d) Parameters: nf = 6, lf = 0.137, δ = 0.086, α = 45deg

FIG 8. Comparison between CNN prediction and CFD results (2)
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this surrogatemodel for optimization, the objective function
will depend on the scalar characteristics like the temperature
difference and pressure drop. To further inspect the model
accuracy, the temperature difference∆T = Toutlet−Tinlet
and the pressure drop ∆P = Phex−Poutlet was computed
from the predictions and compared with the CFD results in
Fig 9.

FIG 9. Comparison between CNN and CFD for ∆T and ∆P

On the test geometries, the temperature difference was
mostly accurate with a Mean Absolute Percentage Error
(MAPE) of 5 %. In case of the pressure drop, the error was
approximately 8 %.

6. CONCLUSION AND OUTLOOK

Simulating flow over heat exchangers is challenging due to
the combination of turbulence and heat transfer. Expen-
sive CFD simulations are thus not suitable for geometry
optimization. In recent trends, replacing CFD with deep
learning models is being explored. The goal of this re-
search was to test the capability of Convolutional Neural
Networks (CNNs) in approximating the HEX simulation
results. To this end, a geometry-adaptive CNN model was
developed in the current study, which was able to predict
the flow fields, namely the x- and y-components of the ve-
locity, the pressure and temperature, directly from a Signed
Distance Function (SDF) representation and boundary con-
ditions (BC) on the domain. The trained model performed
with an accuracy of 95 % on unseen test geometries. Ad-
ditionally, due to the instantaneous prediction, the com-
putational speed-up compared to the CFD simulation was
roughly 1000 times. Since the model was trained purely
on data, the predictions are not necessarily compliant with
the Navier-Stokes equations. Hence, the predictions may
appear averaged or diffused at the locations of vortices. In
general, the CNN surrogate modeling approach displays
high potential towards learning convective flow over heat
exchangers.
Efforts are currently being made to circumvent the above
mentioned drawback of this model. The immediate goal is
to apply physics-informed constraints on the CNN model.

Enforcing the governing equations and boundary conditions
will ensure that the predictions are physical and not mere
approximations. Thus, the residual of the Navier-Stokes
equations and incompressibility condition would be added
to the loss during training. This is challenging especially for
CNN-based approaches since the gradients of the field can-
not be as easily computed as in the case of Physics-Informed
Neural Networks (PINNs). To capture the multi-scale ef-
fects, simulations with finer grid resolution and methods
like LES and DNS are sought. Deeper networks for better
feature extraction need to be tested. It is expected that by
this approach the model will be able to predict the intricate
turbulent structures in the flow. Other CNN architectures
like the Generative Adversarial Network (GAN), Echo State
Network (ESN) and Variational Autoencoders (VAE) will
also be investigated. Since the proposed model is able to
predict the scalar pressure drop and temperature difference,
the future work will also employ this model for geometry
optimization to maximize heat transfer, minimize pressure
drop and thus improve the overall efficiency of heat ex-
changers in an electric aircraft.
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(a) Parameters: nf = 6, lf = 0.3, δ = 0.088, α = 9deg

(b) Parameters: nf = 2, lf = 0.11, δ = 0.074, α = −17 deg

FIG 10. Additional comparison between CNN prediction and CFD results (1)
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(c) Parameters: nf = 6, lf = 0.13, δ = 0.096, α = −10 deg

(d) Parameters: nf = 4, lf = 0.119, δ = 0.077, α = −18 deg

FIG 10. Additional comparison between CNN prediction and CFD results (2)
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