# SHIP WAKE DETECTABILITY IN TERRASAR-X IMAGERY – SUMMARY AND APPLICATIONS FOR WAKE DETECTION

TerraSAR-X / TanDEM-X Science Team Meeting 2023 Björn Tings, DLR – Remote Sensing Technology Institute, 19.10.2023



## **Detectability of wakes**





## Wake components in SAR





Wake detectability modelling Wake component dataset

- ~3000 TerraSAR-X wake samples in the dataset
- Vessel information retrieved from AIS
- Wake components manually retraced
- Proportion of main wake components in the used dataset:

| Wake component            | Proportion<br>(rounded to integer) |
|---------------------------|------------------------------------|
| Near-hull turbulence (nt) | 59%                                |
| Turbulent wake (tw)       | 61%                                |
| Kelvin wake arm (kw)      | 21%                                |
| V-narrow wake arm (vw)    | 27%                                |



## Wake detectability modelling Influencing parameters



#### • Nine Influencing parameters affecting the detectability:

| Symbol with index <i>x</i> <sub>i</sub> | Influencing Parameter Name  | Description                                                                                                                                            |
|-----------------------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| <i>x</i> <sub>1</sub>                   | AIS-Vessel-Velocity         | Velocity of the vessel derived from AIS messages interpolated to the image acquisition time                                                            |
| <i>x</i> <sub>2</sub>                   | SAR-Wind-Speed              | Wind speed estimated from the SAR background around the vessel using the CMOD-5h or XMOD-2 geophysical model function                                  |
| <i>x</i> <sub>3</sub>                   | Incidence-Angle             | Incidence angle of the radar cropped full performance value range                                                                                      |
| <i>x</i> <sub>4</sub>                   | AIS-Length                  | Length of the corresponding vessel based on AIS information                                                                                            |
| <i>x</i> <sub>5</sub>                   | AIS-CoG                     | The course over ground based on AIS information relative to the radar looking direction (0° means parallel to range and 90° mean parallel to Azimuth). |
| <i>x</i> <sub>6</sub>                   | SAR-Significant-Wave-Height | Significant wave height estimated from the SAR background around the vessel using the SAR-SeaStaR algorithm                                            |
| <i>x</i> <sub>7</sub>                   | SAR-Significant-Wave-Length | Wave length estimated from the SAR background around the vessel using the SAR-<br>SeaStaR algorithm                                                    |
| <i>x</i> <sub>8</sub>                   | AIS-CoG-SAR-Wave-Direction  | Absolute angular difference between AIS-CoG and wave direction estimated from the SAR background around the vessel using the SAR-SeaStaR algorithm     |
| <i>X</i> 9                              | AIS-CoG-WRF-Wind-Direction  | Absolute angular difference between AIS-CoG and wind direction estimated by the Weather Research and Forecasting Model (WRF) nearby the vessel.        |
|                                         |                             |                                                                                                                                                        |

## Wake detectability modelling Procedure for analysis of detectability

- Localizing moving vessels by AIS data collocated with SAR images
- Filtering of SAR-artifacts not related to ship movements
- Manual inspection
- Extracting influencing parameters
- Modelling of detectability
- Estimation of uncertainty
- Plotting and Interpretation



![](_page_5_Picture_9.jpeg)

## Wake detectability modelling Visualization of feature space

![](_page_6_Figure_1.jpeg)

![](_page_6_Figure_2.jpeg)

![](_page_6_Figure_3.jpeg)

## Wake detectability modelling Modelling the wake component detectability

![](_page_7_Figure_1.jpeg)

- Wake component length  $l_w$  is used as indicator for wake component detectability
- Training a Support Vector Regression model f<sub>w</sub> for mapping wake component length l<sub>w</sub> to the influencing parameters x<sub>i</sub>:

 $l_w = f_w(X^{9D})$ , with  $X^{9D} = \{x_1; x_2; x_3; x_4; x_5; x_6; x_7; x_8; x_9\}$  and w denotes wake component

• Detectable Length Metric (DLM, figure of merit for detectability) is calculated by normalizing  $l_w$  linearly between a minimum and maximum boundary:

$$DLM_{w} = g_{w}(l_{w}) = \frac{l_{w} - l_{w}^{min}}{|l_{w}^{max} - l_{w}^{min}|},$$

| hyperparameter settings are:  |            |  |  |
|-------------------------------|------------|--|--|
| hyperparameter name           | value      |  |  |
| Kernel type                   | polynomial |  |  |
| Kernel degree d               | 2          |  |  |
| error tolerance $\varepsilon$ | 0,001      |  |  |
| error weighting C             | 1,0        |  |  |
| gradient $\gamma$             | 0,0        |  |  |
| offset $\beta$                | 0          |  |  |

## Wake detectability modelling Visualization of feature space with detectability model

- Gray hyperplane represents the detectability model
- Soo Aogog QQ As Turbulent wake's length o Internet as 17then as 18th 2 12 0 0 x starset endth of the starset of

![](_page_8_Figure_4.jpeg)

![](_page_8_Picture_5.jpeg)

## Applications of wake detectability models Dissection of 9D non-linear model for turbulent wakes

![](_page_9_Picture_1.jpeg)

![](_page_9_Figure_2.jpeg)

- View into the models provide insight on dependency between influencing parameters and detectability of wake components (here turbulent wakes)
  - The vertical axis is labelled with [DLM] due to figure of merit for detectability being
    Detectable Length Metric

Björn Tings, DLR – Remote Sensing Technology Institute, 19.10.2023

## Applications of wake detectability models Characteristics of influences

![](_page_10_Picture_1.jpeg)

| Influencing parameter          | Summary on characteristics of influences on detectability of wake components<br>"↑": Wake components better detectable<br>"≈": Detectability of wake components hardly influenced<br>"n.a.": No statement available in scientific publication |                                                                                                       |                                                          |                                                            |  |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------|--|
|                                | Near hull turbulences±                                                                                                                                                                                                                        | Turbulent wakes                                                                                       | Kelvin wake arms                                         | V-narrow wake                                              |  |
| Vessel's velocity              | ↑ for faster ships <sup>n</sup>                                                                                                                                                                                                               | ↑ for faster ships <sup>n</sup>                                                                       | ↑ for faster ships <sup>b</sup>                          | ↑ for faster ships <sup>b</sup>                            |  |
| Vessel's length                | ↑ for larger ships <sup>n</sup>                                                                                                                                                                                                               | ↑ for larger ships <sup>n</sup>                                                                       | ↑ for larger ships <sup>b</sup>                          | ↑ for larger ships <sup>n</sup>                            |  |
| Vessel's course over<br>ground | ↑ for CoGs parallel to range<br>direction, when vessel's velocities<br>are at most moderate <sup>n</sup>                                                                                                                                      | ~                                                                                                     | ↑ for CoGs parallel to Azimuth<br>direction <sup>b</sup> | ↑ for CoGs parallel to Azimuth direction <sup>b</sup>      |  |
| Incidence angle                | ↑ for larger incidence angles,<br>when vessel's velocities are at<br>least moderate <sup>n</sup>                                                                                                                                              | ↑ for smaller incidence angles                                                                        | ↑ for smaller incidence angles <sup>b</sup>              | ↑ for smaller incidence angles <sup>b</sup>                |  |
| Wind speed                     | ↑ for lower wind speeds <sup>n</sup>                                                                                                                                                                                                          | ↑ for lower wind speeds <sup>b</sup>                                                                  | ↑ for lower wind speeds <sup>b</sup>                     | ↑ for lower wind speeds <sup>b</sup>                       |  |
| Sea state's wave<br>height     | ≈ <sup>n</sup>                                                                                                                                                                                                                                | ≈ <sup>t</sup>                                                                                        | ≈ <sup>t</sup>                                           | ≈ <sup>t</sup>                                             |  |
| Sea state's wave<br>length     | ↑ for higher wave lengths, when<br>wind speeds are at least<br>moderate <sup>n</sup>                                                                                                                                                          | ↑ for lower wave lengths,<br>when wind speeds are at least<br>moderate <sup>n</sup>                   | ≈ <sup>n</sup>                                           | ≈ <sup>n</sup>                                             |  |
| Sea state's wave direction     | ≈ <sup>n</sup>                                                                                                                                                                                                                                | ↑ for wave directions parallel<br>to CoG, when wave lengths<br>correspond to swell waves <sup>n</sup> | ↑ for wave directions parallel to CoG $^{n}$             | ≈ <sup>n</sup>                                             |  |
| Wind direction                 | ≈ <sup>n</sup>                                                                                                                                                                                                                                | ↑ for wind directions<br>perpendicular to CoG <sup>n</sup>                                            | ~                                                        | ↑ for wind directions<br>perpendicular to CoG <sup>n</sup> |  |

## Applications of wake detectability models Tuning of wake detectors

![](_page_11_Picture_1.jpeg)

### Wake detector based on YOLOv4:

| Precision | Recall | True-Negative-Rate | Accuracy | F1-Wert |
|-----------|--------|--------------------|----------|---------|
| 0,759     | 0,506  | 0,000              | 0,373    | 0,607   |

#### • YOLOv4 wake detector with static threshold for filtering of false alarms:

| Precision | Recall | True-Negative-Rate | Accuracy | F1-Wert |
|-----------|--------|--------------------|----------|---------|
| 0,742     | 0,264  | 0,429              | 0,247    | 0,390   |

• YOLOv4 wake detector with dynamic threshold for filtering of false alarms (based on  $l_{wX} = f_w(x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{pol})$ ):

| Precision | Recall | True-Negative-Rate | Accuracy | F1-Wert |
|-----------|--------|--------------------|----------|---------|
| 0,824     | 0,483  | 0,357              | 0,399    | 0,609   |

Applications of wake detectability models Estimation of vessel's velocity

![](_page_12_Figure_1.jpeg)

• Inversion of  $f_w(X^{9D})$  with respect to vessel's velocity  $x_1$ :

 $f_{w}^{x_{1}-1}(l_{w}', x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}, x_{9}, x_{pol}) = x_{1}$ where  $l_{w}' = DLM_{w} |l_{w}^{max} - l_{w}^{min}| + l_{w}^{min}$ 

• Method estimates vessel's velocity required as a minimum so that the respective wake component appears at least with length  $l'_w$  in a SAR image

|               | Near-hull<br>turbulences | Turbulentwakes | Kelvin wake arms | V-narrow wakes | Highest confidence value |
|---------------|--------------------------|----------------|------------------|----------------|--------------------------|
| RMSE<br>(m/s) | 4,60                     | 2,45           | 1,17             | 4,86           | 2,71                     |

## Applications of wake detectability models Wake detectability comparison between sensors

![](_page_13_Figure_1.jpeg)

![](_page_13_Picture_2.jpeg)

- In case the bars are not visible in the plots, this means  $\overline{DLM_{w,s}} = 0$ .
- Detectability difference  $\overline{\Delta DLM_{w,s_1,s_2}}$  are indicated by colored symbols
- Uncertainties RMSE<sub>w,s</sub> are visualized for each sensor by error bar.
- X-Band better for detection of Kelvin wake arm and Vnarrow wakes

## **Summary & Conclusion**

![](_page_14_Figure_1.jpeg)

- Detectability of ship wakes is influenced by ship properties, image acquisition settings and environmental conditions (influencing parameters)
- Characteristics of influences are reproduced by detectability models
- > Determined characteristics are in good agreement with literature
- Ability of SAR missions to detect ship wakes can be compared
- X-Band is better suited for detection of Kelvin wake arms and V-narrow wakes than C-Band

> Precision of wake detectors can be improved by dynamic thresholds

New method for estimation of vessel's velocity by model inversion suggested, performance can keep up with state-of-the-art methods

![](_page_15_Figure_1.jpeg)

- B. Tings, C. Bentes, D. Velotto, S. Voinov, "Modelling ship detectability depending on TerraSAR-X-derived metocean parameters". *CEAS Space Journal*, 2019, 81–94
- B. Tings, "Non-Linear Modeling of Detectability of Ship Wake Components in Dependency to Influencing Parameters Using Spaceborne X-Band SAR", *Remote Sensing*, 2021, 165
- B. Tings, A. Pleskachevsky, S. Wiehle, "Comparison of detectability of ship wake components between C-Band and X-Band synthetic aperture radar sensors operating under different slant ranges", *ISPRS Journal of Photogrammetry and Remote Sensing*, 2023, 306-324

About

![](_page_16_Picture_1.jpeg)

Subject:Ship Wake Detectability in TerraSAR-X Imagery – Summary and<br/>Applications for Wake Detection<br/>TerraSAR-X / TanDEM-X Science Team Meeting 2023Date:19.10.2023

Author: Björn Tings

Institute: DLR – Remote Sensing Technology Institute

Credits: All Images "DLR (CC BY-NC-ND 3.0)"

Acknowledgments:

- Data provided by the European Space Agency.
- Produced using COSMO-SkyMed satellite image © ASI (2018 2019), provided by e-GEOS under ESA's TPM scheme.
- RADARSAT is an official mark of the Canadian Space Agency.

![](_page_17_Picture_0.jpeg)

# Thank you! Questions? Critics?