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Abstract

In this study, thermal models of solar tower power plant components for the purpose of model-based
control are set up and �t to operational data of the solar tower in Jülich, Germany. Solar tower
power plants provide renewable energy by concentrating solar radiance and converting the heat into
electrical power in a power block. The technology inherently enables the use of thermal storages
allowing the decoupling of power production and solar radiance. The volatile nature of the primary
energy source, the sun, and the use of a thermal storage set challenges for the control of these systems
compared to conventional power plants. Model-based control methods like model predictive control
are promising for these power plants. For that a comprehensive model of the plant is needed. In
future studies the performance of model based control is to be compared for physic’s based models
and for data driven models based on neural networks.

This study aims to provide physics-based models of the power plant’s components for a mod-
ular design of a solar tower power plant. Model reduction e�orts are conducted in order to keep
computational expenses down for optimization processes and to mitigate numerical issues when
solving the system of equations. The models are �t to operational data by adjusting a chosen set
of parameters. Moving horizon estimation and sequential quadratic least square programming are
used to identify these sets of parameters. The systems of equations describing the dynamic behavior
of the components is simulated using the do-mpc framework based on Casadi. For the automatic
di�erentiation performed in Casadi, di�erentiable functions describing the thermodynamic properties
of the �uids are needed. The thermodynamic properties have been approximated using polynomial
functions. Their accuracy is evaluated for di�erent degrees and domains.

The results show that the methods for parameter identi�cation are suitable and the simulations are
able to reproduce the measured operational data. Sets of parameters for each simulated component are
found and their accuracy is evaluated. The results show that the use of polynomials for steam property
approximation as implemented in this study is very restricted for the simulation and optimization of
large scale systems of di�erential algebraic equations. A comprehensive knowledge of the process
and the accuracy of the polynomials in various domains is needed for their application. Simpli�ca-
tions made for model reduction e�orts lower the model’s accuracy but enhance their computational
performance. The e�ects of simpli�cations are analyzed and evaluated.





Zusammenfassung

In dieser Arbeit werden thermische Modelle von Komponenten eines Solarturmkraftwerks
zum Zweck der modellbasierte Regelung aufgestellt und an Betriebsdaten des Solarturmkraft-
werks in Jülich angepasst. Solarturmkraftwerke liefern erneuerbaren Strom, indem sie
Sonneneinstrahlung konzentrieren und die Wärme mittels eines Wärmekraftprozesses in
elektrische Energie umwandeln. Konzentrierende Solarkrafttechnologien ermöglichen die
Nutzung thermischer Speicher, was eine zeitliche Entkopplung der Energieerzeugung und der
Sonneneinstrahlung ermöglicht. Die nur bednigt vorhersagebare Menge an Primärenergie,
namentlich die Sonneneinstrahlung, und die Nutzung eines thermischen Speichers stellen
Herausforderungen für die Regelung und Automatisierung von Solarturmkraftwerken im
Vergleich zu konventionellen Kraftwerken dar. Modellbasierte Regelungsmethoden wie die
modellprädiktive Regelung zeigen sich hier vielversprechend. Für die Verwendung model-
basierter Regelungsmethoden ist ein umfassendes Modell des Kraftwerks erforderlich. In
zukünftigen Studien soll die Leistung modellbasierter Regelungen für Solarturmkraftwerke
basierend auf physikalischen Modellen mit der von datengetriebene Modelle auf Basis von
neuronalen Netzwerke verglichen werden.

Ziel dieser Arbeit ist die Erzeugung von physikalischen Modellen von Komponenten für ein
modulares Design von Solarturmkraftwerken. Reduktionsmaßnahmen werden durchgeführt,
um Rechenaufwand für Optimierungsprozesse zu senken und numerische Probleme beim
Lösen des Gleichungssystems zu vermeiden. Anhand von Betriebsdaten werden die Modelle
mittels Justierung ausgewählter Parameter an das dynamische Verhalten der realen Anlage
angepasst. Zustandsschätzung mit bewegtem Horizont und sequentielles quadratisches Pro-
grammieren werden verwendet, um diese Parameter zu identi�zieren. Das Gleichungssystem,
welches das dynamische Verhalten der Komponenten beschreibt, wird mithilfe des do-mpc-
Frameworks gelöst, welches auf Casadi basiert. Casadi verwendet automatische Di�eren-
zierung undmacht damit di�erenzierbare Funktionen erforderlich, die die thermodynamischen
Eigenschaften der Fluide beschreiben. Die thermodynamischen Eigenschaften vonWasser und
Dampf werden mithilfe von Polynomen approximiert. Ihre Genauigkeit wird für verschiedene
Polynomgrade und Gültigkeitsbereiche bewertet.

Die Ergebnisse zeigen, dass die Methoden zur Parameteridenti�kation geeignet sind und die
Simulationen die gemessenen Betriebsdaten wiedergeben. Für jede simulierte Komponente
wurden Parameter gefunden und deren Genauigkeit wurde bewertet. Die Ergebnisse zeigen,
dass die Verwendung von Polynomen zur Dampfeigenschaften-Approximation, wie in dieser
Studie implementiert, sehr begrenzt ist für die Simulation und Optimierung großer Systeme
von Di�erential-Algebraischen-Gleichungen. Ein umfassendes Verständnis des Prozesses und
Kenntniss über die die Genauigkeit der Polynome in verschiedenen Domänen ist erforderlich
für deren Anwendung. Vereinfachungen, die für Reduktionsmaßnahmen vorgenommen
werden, verringern die Genauigkeit des Modells, verbessern jedoch die Rechenleistung und
numerische Stabilität des Modells im Bezug auf Eingangsgrößen und die Parameterwahl. Die
Auswirkungen der Vereinfachungen werden analysiert und bewertet.
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1 Introduction

Resource scarcity, environmental pollution and political dependency set challenges for the
ever-growing demand of electricity in the coming decades. Renewable energies provide op-
portunities for a reliable, clean supply. Concentrating solar power (CSP) production serves a
unique role by storing heat over a time span and thereby decoupling solar irradiation and elec-
tricity production. While large scale batteries storing electricity from wind and photovoltaic
remain unsuited and too expensive, solar thermal power inherently contains the possibility to
store heat in isolated thermal storages and use it for energy production when needed.

The most prominent CSP technologies are parabolic throughs, solar tower power plants
(STPP), linear Fresnel lenses and dish receivers. Most relevant for large scale use are the �rst
two technologies. Depending on desired working temperatures, a technology can be chosen.
The highest concentration factors within the di�erent CSP technologies are realized in STPP,
meaning the ratio between re�ecting area of mirrors and the receivers surface is the highest.
They achieve the highest temperatures leading to high e�ciencies in power conversion and
storage.

While providing that utility, STPP are systems of higher systemic complexity than e.g. a
photovoltaic panel and raise challenges in operation, optimization and control. Important
di�erences between conventional and STPP are the volatility in energy intake as well as a
degree of uncertainty in parameters and input values. The amount of energy brought into
the system of, e.g., a coal plant is known through the caloric value and mass of supplied coal.
The position of the sun, bypassing clouds or state of the mirrors alter the energy intake of a
solar plant. Flux of solar rays at the receiver or its surface temperature are di�cult to measure
accurately and show relevant uncertainties. In plants around the world and speci�cally at the
Solar Tower Jülich (STJ), a crew of operational sta� is necessary to steer the process during
operation and adapt to environmental changes. With STPP being commonly located in desert
regions, sta� is a critical factor in production costs and an automation is desirable also in
terms of e�ciency.

Robust control methods need to be applied to ensure compliance with material limits and
operation close to the optimal operational point. Model predictive control (MPC) is a modern
control method for multi variable systems using dynamic models to predict future behaviors
depending on input variables. It allows the manipulation of a controlled variable to obtain
optimal output variables with respect to a given objective function, while boundaries for input
and output variables are met. The method of model predictive control is ressource demanding
in terms of computational power. Accurate yet e�cient models in terms of computational
expense are needed.
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1 Introduction

In recent studies, MPC concepts for STPP have been conducted and appear to be viable in
the results. Prior authors however did not take into account the high uncertainty of variables
in the power plant system such as �ux density and temperature on the receiver surface being
primarily based on simulations. In addition, an implementation of said concepts was not
performed. A comprehensive model of the STPP is needed to investigate e�ects of uncertainty
in parameters on predictive control methods. This study aims to provide modeled components
suitable for predictive control. They can be the basis of a comprehensive model of a power
plant by connecting the respective inlet and outlet streams of the components. The modular
approach allows variations in the power plant con�guration. A model of the components of
a solar tower power plant located in Jülich is implemented as an application example. The
physical mechanics governing the components behavior are simpli�ed and in part replaced
with empirical correlations. The systems of equations for the components is set up, and
relevant parameters are chosen to �t the model to operational data using the DoMPC-Toolbox
based on Casadi for Python.

1.1 Structure of the Work
This work aims to provide physics based models of solar tower power plant components
suitable for optimization and MPC. In chapter 2, the fundamental principles of STPP and
their simulation are explained. Relevant mathematical and thermodynamic concepts are
introduced. Software and methods for model optimization and MPC, implemented in this
work, are described. An introduction into class-oriented programming, used in this work to
implement the model, is given. In chapter 3, the governing physical e�ects in the power plant
components and their describing equations are laid out. This work focuses on the systems
for energy storage and conversion, largely excluding the heliostat �eld. The di�erentiable
approximation of water, steam and air properties is of particular interest as a trade-o� between
accuracy, calculation power and numerical stability in the simulation has to be made. The
methods for approximation and assessing their accuracy are described in section 3.1.1. In
chapter 4 the simulation results are presented validated against plant data obtained from the
solar tower power plant STJ. Their accuracy is evaluated. The adjusted parameters are named
and for the storage the quality of estimation is assessed.

2



2 Theoretical Basis

In this section, theoretical fundamentals and principles are introduced. Mathematical and
thermodynamic fundamentals relevant for this work are listed and explained as well as the
basic functionality of solar tower power plants (STPP) and their key components. Information
on power plant simulation and important methods is given. The basics of model-based control
as well as simulation frameworks to perform it are explained. Finally, the structure of the code
and the concept of object-oriented programming are speci�ed.

2.1 Mathematical Fundamentals
In this section, two important forms of equation systems, the ordinary di�erential equations
(ODE) and the di�erential algebraic equations (DAE), are explained. The fundamental ter-
minology relevant when dealing with ODEs and DAEs as well as forms of their solution are
presented.

2.1.1 Ordinary Di�erential Equations
An ODE is a type of di�erential equation that involves one or more functions of one indepen-
dent variable and its derivatives. ODEs describe the relationship between a dependent variable� and an independent variable � . They are used to model many di�erent phenomena, such
as the motion of a particle in time, the �ow of a �uid or the changes in a chemical reaction.
By solving an ODE, we can gain insight into the behavior of the system being modeled. The
derivative of the order � of the state variable � (�) can be expressed by a function dependent
on the independent variable � and the derivatives of � smaller than �.[1][2]

x(�) = � (x, �x(�), �x(�), ...,x(��1), �) (2.1)

The bold notation x refers to the vector of dependent variables x(�) = (�1(�), ..., ��(�)), while� refers to functions of the system in their explicit form. Systems of ODEs are relevant in
power plants as they are used to model the dynamic interactions between and inside di�erent
components. In STPP, ODEs can be used to model the storage devices, the �ow of the coolant
or the operation of the turbines.

ODEs can be solved using analytical or numerical methods. Analytical methods involve
�nding closed-form solutions to the equations, and can be used to solve a group of ODEs
including linear �rst-order equations, linear second-order equations, separable equations and
homogeneous equations. Some higher order ODEs may be reduced to �rst order equations. To
solve other ODEs they must be solved numerically. Numerical methods involve approximating
the solutions to the equations using iterative algorithms. These methods include the Runge-
Kutta method, the �nite di�erence method, and the �nite element method.[1][2] Each of
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these methods has advantages and disadvantages, and the choice of method depends on the
particular ODE being solved.

2.1.2 Di�erential Algebraic Equations
Systems of equations that include ODEs and algebraic equations which describe the state
variables are called DAEs. The algebraic equations within these systems are sometimes referred
to as constraints. DAEs are used to describe a range of physical phenomena. Oftentimes, DAEs
are used to describe systems in which the variables are interdependent. The equations in these
systems may contain derivatives of the unknown variable with respect to the independent
variable, making it an ODE or may not include a derivative, making it an algebraic equation.
A DAE system is a set of equations of the form

� (x(�)(�),x(��1)(�), ...,x(�), z(�), �) = 0 (2.2)

where � refers to functions of the system in its implicit form, the bold notation x is a vector
of dependent variables x(�) = (�1(�), ..., ��(�)) for which derivatives are present, z is a vector
of dependent variables z(�) = (�1(�), ..., ��(�)) for which no derivatives are present and � is
the independent variable. In this work, DAEs often appear in their semi-explicit form with
derivatives of the �rst order. They can be written as follows.

�x(�) = � (x(�), z(�), �) (2.3)0 = �(x(�), z(�), �) (2.4)

A useful concept to describe complexity of a DAE is the index of a system. The index of a
di�erential algebraic equation is an integer that indicates the degree of implicitness of the
equation. With the index DAEs can be classi�ed and numerical methods for solution can be
chosen accordingly. The number of derivatives of the unknowns in the system determines the
index. For example, if a DAE contains two derivatives of the unknowns, then its index is two.
The greater the index of a DAE, the more di�cult it is to solve numerically.

Linear DAEs with an index of one and and linear DAEs with an index of two can be solved
analytically. Additionally, some higher-order DAEs may be reduced to �rst-order equations
by reformulation. Especially, when they are non linear an analytical solution might not be
available. DAEs can be non-linear if the equation contains non-linear terms. To solve these
DAEs, numerical methods such as the Runge-Kutta method, �nite element method, and the
�nite di�erence method can be applied.[3][2] These methods are applied to approximate the
solution of the DAE system and to iteratively improve the accuracy. Additionally, there are
speci�c algorithms for solving DAEs, such as index reduction and symbolic manipulation.[2]
Index reduction will not be a matter of interest in this study as derivatives of the second
order have been avoided within the DAE subsystems. They can however arise through in-
terconnection of subsystems.[4] Symbolic manipulation is a technique used to solve DAEs
by transforming them into di�erent forms. This can be done by introducing new variables,
substituting certain terms, or rearranging the equations. Symbolic manipulation can be used
to reduce the number of implicit terms in a DAE, or to eliminate the need for certain numerical
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algorithms. Symbolic manipulation can therefore be used to reduce the complexity of the
equations and simplify the numerical solution.[5][6]

Consistency of initial values in DAE systems requires that the initial conditions of a system
must be coherent with the equations of the system. This means that all of the initial values
of algebraic variables in the system must satisfy the equations of the DAE.[7] Particularly, it
means that for the set of starting values the following is true:� ( �x(�0),x(�0), z0, �0) = 0 (2.5)

Consistency of initial values is crucial for the accuracy of the solution as well as for the
ability of a number of numerical methods to converge.[7][8][9] Modern softwares for the
solutions of DAE systems include specialized algorithms in order to determine consistent
initial values for algebraic variables based on starting values provided by the user. Several
authors propose methods to make the algorithms more robust to inaccurate starting values of
algebraic variables. Biegler proposes the integration of Newton algorithm with the Armijo
line search [9]. An additional solution to providing adequate starting values is to perform
several steps of algorithms more robust to unprecise starting values of algebraic variables.
Examples for more robust algorithms are the sequential-modular approach or the moving
horizon estimation (MHE).[10] The process chosen in this study for initializing algebraic
variables in DAE is explained in section 2.4.3.

2.2 Thermodynamic Fundamentals
In this section, some fundamental principles and vocabulary in the �eld of thermodynamics are
presented. The de�nitions used in this work are based on de�nitions given by Tsatsaronis [11]
as they are widely accepted and overlap with de�nitions of other relevant authors.[12][13]

2.2.1 Thermodynamic Systems
A thermodynamic system in general is the subject of analysis and is separated from its
surroundings by a well de�ned interface. This interface is called system boundary. Everything
outside of that boundary is the system’s environment. Distinctions for systems can be made
based on their permeability for energy, mass and information. Closed system’s boundaries
are permeable for energy but not for mass. Isolated systems are not permeable for mass nor
energy. For power plant applications systems with boundaries permeable for mass and energy
are relevant which are called open systems.[11][12][13]

2.2.2 States and Properties
A thermodynamic property is a physical characteristic of a substance which can be used to
describe its state. In general, a combination of two properties can be used to unambiguously
de�ne its state. From that information, all other properties can be derived.[13] A system’s
properties are only dependent on the system’s state but not on its history. They are usually a
result of a physical operation.[11] Examples for these thermodynamic properties of a system
in the narrow sense are temperature, enthalpy, pressure and density.[12]
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2 Theoretical Basis

2.2.3 Isentropic E�iciency
Isentropic e�ciency �� is a measure of how e�ciently a device or system performs work
in comparison to operating isentropically, meaning with constant entropy. It is typically
expressed as the ratio of the actual work output of the system to the work output of an ideal
isentropic system operating between the same inlet and outlet pressures.[11] The enthalpy
di�erence of the process �in � �out is set in relation to the enthalpy di�erence of the isentropic
process �in � �s,out. The index � refers to the state after an isentropic process.

�� = �in � �out�in � �s,out (2.6)

The higher the isentropic e�ciency, the more e�cient the system. Isentropic e�ciency is
useful as it indicates how much energy is lost due to friction or other energy-dissipating
activities in the device or process. It can be used to determine the e�ectiveness of e.g. a
compressor, turbine, or pump.

2.3 Solar Tower Power Plants
This section will go into the general operation of STPP and the functionality of their key
components. A basic scheme of a STPP can be found in �g. 2.1. The part of the hot air cycle
includes the heliostat �eld, the solar tower and the thermocline heat storage. The part of the
steam power cycle includes the super heaters, the evaporator, the economizer, the preheater,
the feed water tank, the condenser, the steam turbine system and the pumps. A comprehensive
�ow diagram of the STJ can be found in �g. 2.3

Solar Tower

Storage

Turbine

Heliostat Field

Steam
Generator Condenser

PumpVentilators

Figure 2.1: Scheme of solar tower power plants consisting of a heliostat �eld, a solar tower, a thermal
storage and a power block.

STPP are a type of concentrating solar power system that use large numbers of movable
mirrors, called heliostats, to focus and concentrate sunlight onto a central receiver located
on the top of a tower. The concentrated sunlight is used to heat up a heat transfer �uid
which �ows through the receiver. This heat transfer �uid will then heat up a working �uid
inside a power generation cycle, for example steam in a steam cycle. The steam is �nally
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used to drive a turbine generator to produce electricity. In addition, it is possible to use the
generated heat to �ll a thermal storage, thereby time-decoupling the electricity production
and solar radiance. This inherent feature of concentrating solar power to store heat gives a
key advantage towards photovoltaic panels which otherwise would be cheaper and easier to
deploy [14]. To store electricity provided by photovoltaic panels, large-scale batteries would
be necessary. Batteries however are expensive, often contain rare materials and their life span
as well as the number of charging cycles are limited. Solar power towers are an e�cient way
of generating electricity from the sun, as the concentrated sunlight can reach temperatures up
to 1000 °C, which is much higher than the temperatures achievable by other concentrating
solar power technologies like parabolic troughs or linear Fresnel re�ectors [15]. This is due
to the fact that the sunlight is concentrated in a single point in stead of a long pipe like in
the other two mentioned technologies. In dish collectors the sun light is also concentrated
in a point but the surface area of the single mirror is limited. In STPP the sun light can be
re�ected from multiple mirrors to the solar receiver. With higher temperatures, the e�ciency
of the steam cycles rises. The e�ciency of the thermal storage rises as well, as more energy
can be stored in less material .

2.3.1 Heliostat Field
The heliostat �eld consists of a large number of mirrors that re�ect sunlight to a �xed point on
top of the solar tower. The sun is tracked by the heliostats as it moves across the sky, ensuring
that the maximum amount of sunlight is always being collected and concentrated onto the
receiver. Energy losses caused by overshadowing, the cosine e�ect or inaccurate re�ection
can occur depending on the mirrors’ positions relative to the solar tower or to each other. To
minimize losses, several algorithms for con�guration of heliostat �elds are available, among
others proposed by Eddhibi [16]. To prevent losses through inaccurate re�ection, regular
calibration of the heliostat �eld is needed. State-of-the-art method here is the camera target
method, most notably implemented in form of the Stein-method [17]. Recent developments
point to the use of neural networks in that regard as indicated by Pargmann [18].

2.3.2 Solar Receiver
Solar receivers in STPP are used to capture and absorb the concentrated solar radiation from
the sun and convert it into thermal energy. The thermal energy can then be used to power a
water/steam circuit for electricity generation, or it can be stored in a thermal storage. Various
models of receivers can be implemented depending on information of the heliostat �eld, the
receiver’s surface temperature, temperature of the heat transport �uid at the inlet and outlet
of the receiver, hydrodynamic properties of the heat transfer �uid and constrictions through
mechanical stress. A closer description of a design process can be found among others by
Rodriguez-Sanchez [19].

At the STPP studied in this work (STJ) an open volumetric receiver is implemented. Atmo-
spheric air is used as heat transfer �uid in these type of receivers. It consists of a large number
of modular ceramic absorbers which are heated up to 1000 °C. Atmospheric air is sucked
through these ceramic modules and heated up to almost the absorber’s temperature. [20] The
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2 Theoretical Basis

modules, also called absorber cups, have a honeycomb-like structure ensuring high areas of
heat transfer and bene�cial �ow conditions when air is �owing through them. The metal
structure upholding the ceramic modules needs cooling in order to maintain its structural
integrity. Cool air is being circulated between absorber cups to perform the cooling of the
structure. The circulated air is led to the inlet of the receiver where it mixes with ambient air,
thereby increasing the inlet temperature of the air �owing into the receiver. This means some
of the heat from cooling the steel structure that would be otherwise lost to the environment is
being used. The temperature di�erence between air inlet and outlet temperature at the re-
ceiver is smaller with higher inlet temperature thereby increasing the e�ciency of the receiver.

Volumetric receivers are a trade-o� between two contradicting ambitions of a receiver.
The lay out is a trade o� between reducing the size for radiation loss to the environment
while simultaneously increasing the area available for heat transfer with the air used as heat
transport �uid. The volumetric receiver limits the area of loss to the environment largely to
the surface. The heat transfer to the heat transport �uid takes place inside the receiver, hence
the name ’volumetric’. [21] A comprehensive model of a solar receiver can be found among
others in Gall [22] and Schwarzboezl [20].

2.3.3 Thermal Storage
Thermal storages are a key component in STPPs as the capability of storing heat increases the
e�ciency and reliability of the plant signi�cantly in both annual plant capacity and annual
solar-to-electricity e�ciency.[23] Through thermal storages, the solar irradiation and the
production of electricity can be decoupled in time. The heat supply to the power block can be
adjusted according to demand. Unlike battery components, these storages do not typically
degrade with loading cycles and are made of readily available materials.[24] Several di�erent
types of storages are known with the most common ones being the two-tank direct storage,
the two-tank indirect storage and the thermocline storage. In the two-tank direct storage, the
hot heat transfer �uid, often a molten salt, is stored in a hot isolated tank and can be extracted
when needed. After exiting the heat exchangers of the power block, the cool heat transport
�uid is stored in a second, cool tank. From there, it can be lead into the solar receiver once the
conditions are suited for reheating. The indirect storage works in a similar way but the heat
transfer �uid and the storage media are of di�erent material. The heat transfer is conducted
through heat exchangers at each tank where the heat transfer �uid is cooled or heated up
respectively.[24]

The technology used at the STJ and looked at closer in this study is the thermocline storage.
The functionality of the thermocline storage at the STJ is explained in the following. The
thermocline storage consists of a ceramic block with a large number of small air tunnels inside,
to facilitate heat transfer between heat transport �uid and storage material. At any given time
in operation, one part of the storage will be at a hot temperature �� , while another part will
be at a cold temperature �� . To heat up the storage, the heat transport �uid, in this case hot
air, is led from the top through the ceramic block, thereby heating up the storage material.
The heat transfer coe�cient here can be assumed as very high and the heat capacity of the
air low in comparison to the heat capacity of the storage material. This causes the air to take
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Figure 2.2: Scheme of the temperature curve inside a thermocline storage. Region with temperature
gradient (thermocline) marked in gray.

on the storage material’s temperature rapidly. The upper layers of the storage heat up to the
inlet temperature of the air while the lower layers stay cool. Between these two regions, a
temperature gradient, also called thermocline, can be observed, giving this technology its
name. A schematic temperature curve inside the thermocline in correlation with its height
can be found in �g. 2.2 to illustrate that dynamic. The region with the thermocline is marked
in gray. During the operation it has to be avoided that the storage is fully discharged meaning,
that the upper, hot side of the storage should not fall below �� . This ensures the high outlet
temperature when discharged. In analogy, the temperature of the cold side at the bottom of
the storage should be below �� to ensure a consistent supply of cold air to the solar receiver.[25]

The operating states, charge or discharge of the storage, are determined by the �ow direction
of air inside the storage. The direction in turn is a result of the di�erence of the two mass
�ows induced by two ventilators. These are namely the receiver ventilator ���� and the
steam generator ventilator ���, see �g. 2.3. The ventilator ���� responsible for the mass
�ow through the solar tower should be controlled on the basis of information about the
incoming sunlight, expected energy intake and outlet air temperature. It should be adjusted
in order to keep a uniform outlet air temperature at the solar tower during operation. This
control problem can be addressed e.g. with a nonlinear model predictive control (NMPC) or an
extended Kalman �lter. The ventilator behind the steam generator ��� is responsible for the
energy intake of the steam cycle. It should be adjusted on the basis of energy demand, storage
�lling level and ideal operating conditions of the steam cycle. Is the air mass �ow through the
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solar tower higher than through the steam generator, the thermal storage is charged. Vice
versa, is the mass �ow through the steam higher than through the solar tower, the storage is
discharged.

2.3.4 Steam Cycle
The steam cycle is a process designed for the conversion of heat into mechanical work. In its
idealized thermodynamic form, the Rankine cycle, it consists only of four components, namely
of a boiler, a turbine, a condenser and a pump. Heat is supplied to a pressurized working
�uid, usually water, which is then vaporized in a boiler, expanded in a turbine, and �nally
condensed back to its liquid state in a condenser. The working �uid is pressurized in pumps
and is afterwards recirculated back to the boiler to complete the cycle. The Rankine cycle is
an important model of thermodynamic cycles used in power plants and other systems that
convert heat into mechanical work.[12] In more re�ned versions of the steam cycle, the steam
generation is performed in a series of preheater, an economizer, an evaporator and a super
heater. Lower grade energy from the cooler air is used to preheat the water before evaporation.
The hot air directly from the receiver and the storage is used in the super heaters to achieve
the life steam temperature. By using methods of regenerative feed water preheating, the
e�ciency is increased in modern power plants.[12] These methods of preheating and super
heating have been implemented at the STJ. Several turbines instead of a single one can be used
to exploit heat more e�ciently. Steam turbine versions specialized for certain pressure levels
can yield better results. Sequential heating can be implemented through the use of turbine
tappings and multiple turbines. [12] This method of sequential heating, however, has not been
implemented at the STJ. A schematic plan of the STJ is found in �g. 2.3 and is described closer
in the subsequent paragraph.

The steam cycle at the STJ includes a feed water regenerative system consisting of a pre-
heater, an economizer, an evaporator and two super heaters. The preheater is used to extract
low-grade heat from the air at lower temperatures, meaning air that has already been cooled
down in the process of evaporation. It is used to bring water which is exiting the condenser
close to boiling temperature at atmospheric pressure before it is being pumped into the feed
water tank. From the feed water tank, the water is brought up to a pressure above life steam
condition. Afterwards, a control valve behind the feed water pump regulates mass �ow and
inlet pressure into the economizer, thereby also regulating the mass �ow into the evaporator.
The economizer is a heat exchanger that will use the lower grade heat from the air outlet
stream of the evaporator to bring the water inlet steam into the evaporator just below evapo-
ration temperature.

There are multiple operation modes for power cycles with the two major branches called
�oating pressure operation and turbine driven operation. The di�erence is the method on
how the output of mechanical work is controlled. In �oating pressure operations, the power
output is controlled by the energy intake into the evaporator, in this case the air mass �ow.
The pressure level inside the evaporator can then be regulated by the water inlet mass �ow.
From an energetic standpoint, this is the preferred option as the turbine control valve can
stay fully opened throughout the operation and no throttling loss is caused here.[26] On the
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Figure 2.3: Scheme of the Solar Tower Power Plant in Jülich.

downside, the amount of heat converted into mechanical work can be controlled only slowly
using this method. To be able to adapt to changes in demand, a turbine driven operation can be
implemented. The turbine control valve is used to determine mass �ow and inlet pressure into
the steam turbine and simultaneously control evaporator pressure. This enables fast response
to load changes, but at the cost of throttling losses. At the STJ, a turbine-driven approach is
chosen. The pressure in the evaporator is therefore controlled by the position of the turbine
control valve.[26] Advanced approaches are available, one of which including the alteration
of the evaporator’s energy intake based on the turbine valve’s position aiming to bring it back
to a fully opened position.

After the pressure increase in the feed water pump, the hot water is heated up in the
economizer to the now much higher saturation temperature. Subsequently, the water �ows
into the evaporator where the phase change takes place. The temperature and �lling level
inside the evaporator is determined by mass �ow and by inlet and outlet temperatures of
the air, water and steam. The steam temperature at the outlet of the evaporator is slightly
over the saturation temperature. It is heated up close to life steam temperature inside the
�rst super heater, super heater 1. The second super heater, super heater 2, in combination
with the steam cooler is used to precisely regulate the life steam temperature, ensuring the
compliance with temperature limits and operation close to the optimal operating state. The
steam cooler is a heat exchanger between the super heated steam at the outlet of super heater1 and the content of the evaporator. In �g. 2.3 the steam cooler is not explicitly depicted
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as the component is constructed within the evaporator. It is indicated by the heat transfer
symbolic on the upper part of the evaporator depiction in �g. 2.3. The mass �ow through the
steam cooler is controlled by a control valve ��� adjusting the inlet temperature into super
heater 2 and hence it’s outlet temperature. The life steam reaches a turbine control valve,
regulating inlet pressure into the turbine in a �nal instance and adjusting the mass �ow inside
the turbine. The turbine group is found in the top right corner of �g. 2.3. The mass �ow is
determined through a correlation between inlet and outlet pressure and the valve position.
The turbine is driven by the life steam, thereby providing mechanical work which powers
the generator. The electrical generator then produces electricity which is in part used for the
power plant’s pumps and ventilators and in part fed into the electrical net. The turbine well
and the generator are not depicted in �g. 2.3 and have not been modeled explicitly.

2.3.5 Control Problems
In STPPs, a number of control problems arise as the primary energy source, the sunlight, is
only available at certain times and can be disturbed by events like weather changes, passing
clouds or defect mirrors. Keeping temperatures and temperature gradients within material
limits and simultaneously close to the optimal operating point is the aim of the control system.
To mitigate sunlight �uctuations and to make the energy production more economical, a
thermal storage is integrated into the system which requires additional control e�ort. In this
section, control problems within the STPP are presented.

TRec,out,Air,set Control VREC REC
TRec,out,AirRecv mRec

Figure 2.4: Scheme of control loop responsible for following the set air temperature at the outlet of
the receiver.

The air mass �ow through the solar tower ����� is controlled through the rotation speed���� of the receiver ventilator ���� . The aim is to keep the air outlet temperature of the solar
receiver ����,��� ,��� as high as possible. Doing that, the material’s upper temperature limits
must be respected while temperature gradients in the solar receiver that are too steep should
be avoided. Abrupt changes in temperature may lead to damage in the receiver material. With
a simple energy balance it becomes clear, that the amount of air lead through the receiver
will impact the air outlet temperature, see eq. (2.7). Considering a constant energy intake at
the receiver ���� , a larger air mass �ow thorough it would lead to a lower outlet temperature.
Vice versa, a lower air mass �ow would lead to a higher air outlet temperature. Through
manipulation of the air mass �ow through the receiver the outlet air temperature can be kept
a set trajectory or set point even when the energy intake varies.����� = ����� . , �����,��� �� ����,��� ,��� � (2.7)

The controlled variable is altered based on information on the outlet temperature of the
receiver �Rec, out, Air, the surface temperature of the receiver and a possible heat �ux estimation
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at the receiver. In a last consequence, where the alteration of the mass �ow is not capable of
preventing damage to the material, the defocus of mirrors can be initiated. The �ux density
at the solar receiver is of importance for operation and control of the STPP. Through a mea-
surement of �ux density, the energy intake and its gradient can be determined. At industrial
scale, the re�ection of the receiver’s surface can be used to obtain information on the �ux
density. Digital cameras capture footage of the irradiated receiver and together with re�ection
properties of the receiver’s surface, the �ux density can be calculated.[27] Göhring presents
a method of �ux measurement using a�ordable camera equipment [28]. The e�ects of the
absorber material’s inhomogeneities on the re�ection as well as the direction of incidence is
taken into account by the ’Cloud and Goniore�ectometer Method’ proposed by Göhring [28].
An estimation of this variable using state estimation techniques is despite that of interest as
measurements and analytical deduction of the �ux remain elaborate.

The air mass �ow into the steam generator is controlled through the rotation speed of
the steam generator ventilator. In the steam generator, the air passes its thermal energy
successively onto super heater 2, super heater 1, the evaporator, the economizer, and the
preheater. The goal is to provide air for the steam generation at a constant, high temperature
while simultaneously preventing high �uctuations in the mass �ow, using the thermal storage
if necessary. The air mass �ow through the steam generation controls the use of the thermal
storage and is adjusted to provide the right amount of energy needed to follow power demands.
When the mass �ow through the receiver �����,��� is higher than the mass �ow through the
steam generator ��SG,in,Air, the storage is charged. In analogy, the storage is discharged if�����,��� is smaller than ��SG,in,Air. Comparing to �g. 3.1 it can be observed that the upper
portion of the storage is at maximum temperature. Charging the storage results in a larger
volume inside the storage being at maximum temperature. Consequently the volume with a
vertical temperature gradient, the thermocline, is moving farther to the bottom of the storage.
The thermal storage is explained in more detail in section 2.3.3.

�����,��� < ��SG,in,Air � Discharge (2.8)

Gradients when charging and discharging the storage have to be below a certain value,
and upper and lower limits of the storage’s �lling level are regarded as constraints as well.
Changes of temperature in to short time spans can results in damage to the storage material or
the structure of the component. Keeping the top part of the storage at maximum temperature
is necessary to reliably provide the steam generator with su�ciently hot air when discharging
the storage. Similarly the bottom part is kept to be at minimum temperature in order to ensure
a su�cient cooling of the receiver cups while charging the storage. The control of the air
mass �ow into the steam generator is based on information on the power demand curve, inlet
temperature into the steam generator, and the �lling level of the thermal storage.

The water mass �ow from the feed water tank to the steam generator as well as its pressure
is controlled through control valves behind the feed water pump. In the feed water pump, the
water is brought up to pressure levels over life steam pressure plus pressure losses during
steam generation. The control of pressure and mass �ow is then performed in the valves
behind the feed water pump. The valve position regulating pressure and mass �ow into the
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steam generator is based on life steam temperature, life steam pressure and steam cooler valve
position. The pressure and temperature limits for the life steam have to be kept. As mentioned
in section 2.3.4, the pressure level inside the evaporator is controlled through the turbine
control valve leaving the inlet mass �ow to mainly ensure the �lling level of the evaporator to
be kept from running dry or spilling.

The mass �ow through the steam cooler ��SC is controlled through the position of the steam
cooler control valve. By adjusting the steam cooler mass �ow, the life steam temperature can
be regulated more precisely into the steam generator than by controlling the outlet steam
mass �ow out of the evaporator. The steam cooler is a heat exchanger between the steam
at the outlet of super heater 1 and the content of the evaporator. When steam is directed
through the steam cooler, it exits the steam cooler at evaporator temperature plus a constant
temperature di�erence passing its thermal energy to the content of the evaporator. By mixing
hot and cooled steam in the three way steam cooler control valve, the inlet temperature into
super heater 2, �SH2,in, H2O, and thereby also life steam temperature, �SH2,out, H2O, can be adjusted.
Constraints are set through the upper temperature limit of the turbine equipment and piping.
The control of the mass �ow through the steam cooler is based on measurements of life steam
temperature, lowering the steam cooler mass �ow when life steam temperature is too low and
vice versa. ��SC � � �SH2,in, H2O �, �SH2,out, H2O � (2.9)

The mass �ow into the steam turbine group is controlled by the turbine control valve. The
position of the valve in combination with inlet and outlet pressure of the turbine determines
the mass �ow directed through the turbine group. It regulates the pressure inside the evapo-
rator consequently. The control of the mass �ow through the turbine is relevant for secure
power plant operation. It prevents too high turbine inlet pressures and outlet temperatures
and ensures the compliance with �lling and pressure limits in the evaporator. The alteration of
the controlled variable is performed based on information on the �lling level in the evaporator,
temperature and pressure at inlet and outlet of the turbine as well as the evaporator pressure.

2.4 Power Plant Simulation
This section addresses the set-up and solution of the system of equations describing the
STPP. Relevant types of equations are listed and an overview of solution methods for large
sets of equations as they appear in power plant simulations is given. Basic thermodynamic
terminology relevant in this regard is explained in section 2.2 and mathematical fundamentals
are presented in section 2.1.

The model of a steam cycle power plant consists of a set of equations which describe the
thermodynamic behavior of each component and their interaction [10]. Martelli describes in
his review on power plant simulation a procedure followed by a number of authors to deduct
a system of equations for a power plant model [10]. The procedure involves the set-up of the
following equations:
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• Thermodynamic properties

• Energy, impulse and mass balances

• Flow sheet topology

• Performance correlations

Thermodynamic properties such as enthalpy, entropy, density or thermal conductivity
of a material are determined through property equations at each state. These property
equations enable to calculate all properties of the system when the state is known as explained
in section 2.2.2. For a wide range of materials, tables for thermodynamic properties or
semi-empiric equations closely approximating the material properties are available.[13] The
equations for each component are set up according to energy, impulse and mass balance.[11]
The equations describing the �ow chart topology connect the outlet stream of a component to
the inlet stream of the down stream component.[11] In addition, performance correlations
such as heat transfer coe�cients, valve characteristics or mass �ow dependent e�ciency
of the turbine need to be considered when solving the power plant’s model.[10] The aim
of the simulation is to �nd pressure, temperature, enthalpy, entropy and other relevant
thermodynamic properties for each state in the plant and determine the energy intake and
output for each component. The equations listed for each component are found in chapter 3.

2.4.1 Steady-State Simulation
Steady-state systems are assumed to remain constant over the observed time period and
therefore the observed behavior will continue into the future [11]. Steady-state simulations
in the context of power plant simulations are an essential tool to understand the process
as well as to �nd opportunities for improvement [29]. The describing algebraic system of
equations (AE) has an equal number of variables �� and equations �� . In steady-state systems,
the equations can be formulated in their vectorial form:� (x) = 0 (2.10)

Models deducted from steam cycles are non-linear as property equations or performance
equations like heat transfer coe�cients or logarithmic temperature di�erences are non-linear.
The AE describing steam cycles are sparse, as only a part of all variables appear in each
equation. They can involve hundreds of variables and equations as power plants involve
numerous pipelines and components.[10] In many power plant simulation softwares, either
an equation-oriented or a sequential modular approach is used.

Equation-oriented modeling relies on well-known and speci�cally developed numerical
algorithms such as the Newton-Raphson algorithm or the Powell dogleg algorithm [9]. The
Newton-Raphson algorithm is a root-�nding algorithm which produces successively better so-
lutions to �nd the roots of a problem. The Powell dogleg algorithm is an iterative optimization
algorithm for least squares problems to �nd a local minimum of a function of several variables.
These algorithms have quadratic rates of convergence and can e�ciently solve the systems of
equations.[30] One downside of these methods on the other hand is the necessity of providing
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good initial values for the variables as they may fail to converge when they are too far o�
the actual solution. Additionally, they require di�erentiable equations � (�) with non-singular
Jacobians and second derivatives for the Newton-Raphson method respectively.[30] That
means that the user has to provide reasonably good starting values for all properties for each
stream and variables of components. Depending on the complexity of the model and the user’s
knowledge of the plant, this task may be very time consuming and prone to errors. Inadequate
starting values may lead to a failure of convergence within the solution algorithm with very
limited options of debugging.[10] The concept of consistency of initial values for algebraic
variables in DAE systems is explained in more detail in section 2.1.2. The method used in this
study to initialize the systems of equations with consistent values is presented in section 2.4.3.

The sequential modular approach orientates itself on the �ow sheet order of components
�rstly solving a component upstream and using its output values as input for the downstream
component [31]. Is an input dependent on a downstream component, the value for that state is
estimated and updated iteratively until convergence.[10] The sequential modular method deals
with a rising number of converging issues as the number of cycle loops increases and more
variables need to be estimated. Power plants consist of at least one of these loops, the steam
cycle, but can have an increased amount when multiple pressure levels in a heat recovery
system or multiple temperature levels in heat regenerators are involved. Convergence issues
may occur in power plant applications due to that reason. These algorithms, however, are
more robust to the choice of starting values and debugging can be conducted more precisely
as convergence issues may occur on the component level.[10]

2.4.2 Dynamic Simulation
In dynamic models the system of equations can be formulated in its vectorial form as in
eq. (2.11). � (x, ��,u) = 0 (2.11)

Where � denotes the time-dependent state variables (pressures, temperatures, mass �ow rates,
etc. of each stream and unit of the plant), �� denotes the derivative over time, and � the time
dependent control variables [10]. The bold notation here refers to vectors. The equations
are build in the manner described in section 2.4 but contain instationary terms with time
derivatives such as the mass or internal energy stored in a piece of equipment. Some of
these equations are algebraic such as material property functions or heat transfer correlations
and others are di�erential, containing time derivatives such as the temperature of a body
of water or the temperature of casing material in a component. Di�erential equations with
algebraic constraints lead to DAEs, which are mentioned and further explained in section 2.1.2.
As implied by the name, these systems of equations contain ODEs as well as AE. The DAE
resulting from models of power plants are non-linear as mentioned in section 2.4.1.

The di�erential equations in these DAEs can often be sti� which can cause numerical
issues when solving them and will also limit the methods for resolving them. The term
sti�ness refers to a coupled system of equations in which certain components vary on a
very di�erent time scale [32]. In other words, the system contains very fast and very slow
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components[33]. A more mathematical and in-depth de�nition of the term has been presented
by Brugnano [32]. Curtis [34] gives an additional concept of sti�ness linking the variation
speed of a time-dependent variable to a chosen evaluated time step. In certain problems, this
may lead to unreasonable small time steps to keep the di�erential equation solvable with
traditional methods[32]. Several authors denote that sti� problems can be solved better via
implicit methods than explicit methods.[32][34][2] Solvers with implicit methods have been
chosen in this study to address these sti� sets of equations. Depending on speci�cations of
the given DAE systems, methods for the solution have been selected. In case of index one
DAEs, the backward Euler method is suitable for DAE systems with sti� ODE [3]. In case
of higher index systems, reformulation is necessary in order to apply the backward Euler
method, Runge-Kutta method or in fact any other multi-step method [3][2]. Ascher [3] shows
that these methods fail in higher index problems.

Several softwares are available which aid in the solution of DAE systems. The IDAS code is
part of a larger software package called SUNDIALS (SUite of Nonlinear and DI�erential/ALge-
braic equation Solvers) and was used to solve the DAE systems in this study [35][36]. The IDAS
package is designed speci�cally to solve DAEs. The integration method in IDAS is variable
order, variable coe�cient backwards di�erentiation formulas in �xed leading coe�cient form.
The method order varies between 1 and 5. The solution of the resulting non-linear system is
accomplished with some form of Newton iteration. As mentioned in section 2.4.1, Newton
iterations require a choice of relatively good starting values for algebraic variables in order to
converge. This problem remains in the dynamic simulation causing numerical issues when
solving the DAE which are hard to track. The developers of IDAS are addressing this issue
augmenting a Newton iteration with a line search globalization strategy [37]. Line search
algorithms are iterative methods to determine the minimum of a cost function. For problems
not falling into a category being suitable for that method, the user is responsible for providing
adequate starting values [37]. In this work line search augmented Newton algorithms as
implemented in the IDAS have been used but have been shown to be insu�cient on their own.
The following section section 2.4.3 explains the method implemented in this work to �nd
suiting initial conditions for the solution of DAE systems.

2.4.3 Initialization of algebraic variables.
While appropriate starting values for the state variables can often be derived from plant
data, the initialization of the a�liated algebraic variables represents a hurdle as they di�er
greatly for di�erent sets of input variables, parameters and state variable starting values. As
mentioned in section 2.4.2, the choice of initialization of algebraic variables is crucial for the
dynamic simulation to converge to a solution.[30] Finding these initial values is typically
subject to a non-linear programming problem (NLP) and analytical solutions are therefore
not available. As suggested by Martelli [10], several time steps of a more robust optimization
algorithm are performed to �nd suitable initial algebraic variables consistent enough for the
methods implemented in ����.

In the �rst time step of each simulation in this study, a non-linear optimization is performed
to determine a suitable set of algebraic variables either consistent or close enough to consis-
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tency for the line search algorithm augmented Newton method of the ���� solver to converge
to a solution. For this optimization problem, a moving horizon estimation (MHE) has been
performed to determine the algebraic variables in the �rst time step. The MHE is an optimiza-
tion method for state and parameter estimation. Based on a �nite set of past measurements,
often called the estimation horizon, the current state of the system is inferred.[38][39] The
MHE is explained in more detail in section 2.5.2. In this work, Casadi’s [40] interface to the
Interior Point Optimizer IPOPT, an open source software package for large scale non-linear
optimization, has been used to solve the optimization problem. It can be applied to solve
general non-linear programming problems of the formmin �(�) ����

s.t. �� ��(�) � �� ,�� �� � �� (2.12)

Here, ���� are the optimization variables possibly with lower and upper bounds, ��� (� �{�})� and �� � (� � {+�})� with �� � �� , � � �� � � is the objective function, and� � �� � �� are the general non-linear constraints. Equality constraints of the form��(�) = �� can be speci�ed by setting ��� = ��� = �� .[41]
In order for this method to be applicable, a measurement of that time step of at least one

output of the system has to be available. In this particular application of the MHE, the state
variables of the ODE are given. The algebraic variables on the other hand are being manipu-
lated in a way to �t the state variables of the system and simultaneously the measurement in
that time step. Thereby, a set of algebraic variables that satisfy the set of equality constraints
and the set state variables is found. In a strict sense, it cannot be spoken of a MHE as no
parameter or state is estimated with this method. The framework for MHE in do-mpc however
provides an interface for e�cient optimization algorithms. The software framework do-mpc is
a comprehensive open-source toolbox for robust model predictive control (MPC) and MHE
based on Casadi. It is explained closer in section 2.6. Using the framework’s interface for MHE,
the objective function found in eq. (2.18) is reduced of all its terms but the �rst. Initial states
are found which satisfy the starting values of the ODE and the algebraic constraints.

During the present study, this method has shown to be e�ective with less accurate starting
values than the line search algorithms implemented by ���� and the combination of the
two enables converging simulations with broader ranges of starting values. This allows for
simulation of di�erent input variables without manually adjusting the initial values of the
algebraic variables. The need for that manual adaptation is also being lifted when adjusting
parameters for the purpose of data-�tting.

2.4.4 Model reduction
Model reduction is a concept in the �eld of process simulation where e�orts are made to
remove redundant or unnecessary terms from a mathematical model in order to simplify its
computation. By reducing the number of terms a model has, it allows for faster and more e�-
cient simulations and optimizations. It also increases the robustness of the systems in terms of
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numerical stability. The set-up and solution of mathematical models of complex processes may
require many resources and its accuracy needs to be coherent with its speci�c purposes.[42]
A trade-o� in accuracy and computational e�ort can be made in order to derive su�ciently
accurate but easy-to-handle models. Especially for optimization purposes, simpli�ed models
are favorable.[43]

A model entirely based on physics and fundamental phenomena is reliable in a sense that
the applicability of these phenomena has been validated in many instances. It can be used to
extrapolate into the future as these fundamentals will hold true.[43] However, complex systems
of equations which may include systems of partial di�erential equations, DAE systems of high
order, and non-linearities arise from these physical interactions. As indicated in section 2.4.2,
the systems of equations originating from power plants and their components can be of this
nature and may be ressource-intensive to solve or optimize. The reduction of a model can
yield a system of equations more suited for e�cient numerical solution and optimization.[44]

The reduced models may include simpli�ed physical equations, empirical correlations or
possibly data driven subsystems. Here data driven models refer to models deducted from large
sets of data using methods of machine learning, arti�cial intelligence and statistics. Just like
other models they can be used to predict a systems behavior but they are not based on the
underlying physical fundamentals. As the dynamic of the model is often not accessible for the
user, these models are also referred to as black-box models. The reduced systems are interpola-
tive in nature as they require the results of an accurate physics-based model or operational
data from the system.[43] To bring back extrapolative qualities to these models, they have to
be validated against physics-based models or data to thereby ensure their performance. Steps
that can be taken regarding the set-up of of the system are:

• Simplifying physical equations by removing negligible or redundant terms [43]

• Time scale reduction by neglecting dynamic behavior too fast or too slow for the relevant
time scale [45]

• Formulating data-driven input-output models [46]

Through empirical models, a correlation between input and output variables can be derived
without relying on actual physical equations. It is possible for models to rely entirely on
these correlations. Empirical models use measured input and output data of a system and
manipulate the model with means of interpolation or regression to reproduce the observed
behavior.[45][46] Coe�cients of correlation functions for phenomena or parameters can be ad-
justed in these types of models in an optimization problem. Some strategies for �nding hybrid
models of that nature are explained by Marquardt [45]. In this work empirical correlations are
used to increase the accuracy of the physics based models. In this context, the use of machine
learning and arti�cial intelligence opens great possibilities of model reduction [47]. Often
these models are also referred to as black-box models. If only one part of the phenomenon is
described in that way, these systems are referred to as gray-box models. Data driven models
however have not been implemented in this work.
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A relevant tool in model reduction is the trust region method. The basic idea is that
the approximation is done not for the entire domain, but for a subset of the domain in
which the approximation is expected to be accurate. This results in a lower absolute error
of the approximation and makes the functional form less crucial. Simpler functions for
approximations are made possible while still maintaining a high accuracy. The approximation
is however limited to the use within the trust region. In a �rst step, the optimization problem
is formulated. Secondly, the approximation is constructed in the constricted region. Thirdly,
said approximation is evaluated and then validated against the original model or data.[43] The
trust region method �nds use in this study in the approximation of steam properties which is
explained in section 3.1.1.

2.5 Model Based Control
Processes in the physical world can be approximated by mathematical models. These mathe-
matical models can then be used to design control mechanisms to in�uence the process with
the variation of a set of manipulated variables to follow a desired behavior. The time constants
of the proportional integral derivative (PID) controller often depend on local behavior of a
process which can be approximated by a mathematical model.[48] Model-based control in this
context however refers to control algorithms in which the model is explicitly embedded [48].
Meanwhile, the time constants of PID controllers can, but do not have to be identi�ed using
a system’s model. They could also be derived from process data directly.[49] Model-based
control techniques like MPC use the predictive nature of the model to derive the manipulated
variables. They achieve high performance and often approach the optimal operating point
better than PID controllers, but at the cost of higher computational expenses [48]. With the
emergence of higher availability of computational power, online applications of model-based
control became more relevant, especially in large-scale systems like power plants as these
techniques have been applied in various studies [50][51]. The process model predicts values
of the measurements. The measurements and the predicted values are being compared and
the information of the comparison is conveyed to the controller or the optimizer respectively.
The model as being shown in a general form in eq. (2.13) and eq. (2.14), is being formulated in
this work in the continuous form.�x(�) = � (x(�),u(�), z(�),p,p��(�)) +w(�) (2.13)

y(�) = �(x(�),u(�), z(�),p,p��(�)) + v(�) (2.14)

However, the software implemented in this work do-mpc transforms the model in its discrete
form as shown in eq. (2.15) and eq. (2.16). The following explanations in this chapter are
therefore using the discrete model formulation.

x�+1 = � (x� ,u� , z� ,p,p��,�) +w� (2.15)

y� = �(x� ,u� , z� ,p,p��,�) + v� (2.16)

The bold notation here refers to vectors, e.g. x0��+1 = (�0, �1, ..., ��+1), the states of the system
are denoted as �(�), �� , the systems measurements as �(�), �� , the control inputs are denoted
20
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as �(�), �� , the algebraic variables as �(�), �� , parameters as �, � and time varying parameters
as ���(�), ���,� . In this general form of the model, the system is disturbed by additive noise�(�),�� . The measurement noise is denoted as �(�), �� .[38] No measurements of potential
disturbances have been included into this estimation process which makes the source of
deviance from measured variables indistinguishable between measurement inaccuracy and
disturbance. Consequently, only one term is needed for describing that deviance. The term�� is kept in the estimation process and the term �� is set to zero. This decision is taken
for means of simplicity and the assumption would need to be assessed further in possible
following studies as disturbances might in fact occur in the system and could be included
through measurements such as the tracking of clouds. The parameters � di�er from the time
varying parameters ��� in the form that parameters � stay constant over the span of the
simulation. Time varying parameters ��� change with every time step and have been used in
this study to model input variables. The process model is of high importance for the success
and accuracy of the control e�ort and therefore it is given special attention to in this work.

2.5.1 Model Predictive Control
Model predictive control is a control strategy based on the predictions of a model for the
system’s dynamic behavior. An optimization algorithm is used at each time step to determine
the best possible control input. The optimization problem considers the model’s predictions
in combination with state measurements or state estimates within a �nite time window. This
time window is called the prediction horizon.[52] A �gure illustrating the concept of prediction
horizon, control horizon and the structure of MPC is found in �g. 2.6. MPC is a tool to ensure
the satisfaction of constraints even in presence of uncertainties and disturbances. It is suited
for applications with multiple input and output variables and complex non-linear dynamics.
[52][53] When MPC is applied to non-linear systems it is by some authors also referred to
as non-linear model predictive control (NMPC). The basic structure of predictive control is
illustrated in �g. 2.5. For the controlled variable, it is desired to follow a set trajectory, labeled

Optimization System

Model

ukr y

y~

Constraints Disturbance

Figure 2.5: Basic structure of predictive control.

� in �g. 2.5. The quality of the control e�ort can then be quanti�ed by deviance from that
trajectory. The model provides a correlation between manipulated variable and controlled
variable. Based on the trajectory � , the constraints and the prediction of the system’s behavior��, the optimizer is generating a set of manipulated variables �. The �rst element of that
series �� is passed on to the system and is used as current input. The control loop is closed
by integrating the predicted development of the system which is based on the predicted
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Figure 2.6: Scheme of Model Predictive Control.

future input variables and the current measurements �. A comparison between estimations
and measurements is conducted to mitigate inaccuracy in the predictive model and possible
disturbances.[52][54]

Additional objectives can be implemented with the help of the objective function. It consists
of multiple objective terms penalizing for example deviance from the set trajectory or the
intensity of changes in the manipulated variable.[52][53] The objective function can be found
in the �rst line of eq. (2.17). The objective function can be split into a Meyer term (�),
penalizing the �nal state of the system, and a Lagrange term (�), penalizing each time step. For
the application of MPC, the current state of the system needs to be known. If comprehensive
measurements �� are not available, a state estimate ��� can be used alternatively. The estimate
can be computed e.g. through MHE or a Kalman �lter method.[38] The concept of MHE is
mentioned earlier in this chapter and explained closer in section 2.5.2. The optimization of
the manipulated variables with respect to the objective function and constraints, based on the
current process state, is performed in each time step for the length of the control horizon. Just
like the prediction horizon, the control horizon is moving with the the current time step �
forward, see �g. 2.6. For time steps outside the control horizon, the manipulated variables
remain constant.[52] Only the entry for the �rst time step in the control horizon is applied in
the actual process. With the discrete model presented in section 2.5, the optimization problem
can be formulated as illustrated in eq. (2.17). It is based on the formulation presented in the
manual of do-mpc [38]. In �g. 2.6, an illustration of the principal function of MPC is depicted.
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min
x0��+1,u0��� ,�,z0��� m(���+1) + ����=0 �(x� , z� ,u� ,p,p��,�)s.t. x0 = �x0,��+1 = � (x� ,u� , z� ,p,p��,�) � = 0,… ,�� ,0 � �(x� ,u� , z� ,p,p��,�), � = 0,… ,�� ,

x�� � x� � x�� � = 0,… ,�� ,
u�� � u� � u�� � = 0,… ,��,
z�� � z� � z�� � = 0,… ,�� ,0 � �terminal(x��+1)

(2.17)

Here, �� is the prediction horizon, �� is the control horizon and �x0 is the current state of the
process, either measured or estimated. Upper and lower bounds of states x��, x��, manipulated
variables u��, u�� and algebraic variables z��, z�� are speci�ed. Terminal constraints can be set
with the term �terminal and general, non-linear constraints can be implemented with �. The
Meyer term � and the Lagrange term � together make up the objective function.

2.5.2 Moving Horizon Estimation
Moving horizon estimation is an e�cient method for state estimation, especially suited for non-
linear systems. With MHE it is also possible to include constraints for the estimated states.[43]
The MHE outperforms traditional estimation methods like the extended Kalman �lter in terms
of accuracy, especially dealing with non linear systems. Reasons for that are the linearization
of the non linear model within the extended Kalman �lter algorithm. Additionally the extended
Kalman �lter falls into the category of unconstrained estimators allowing physically impossible
solutions to arise from bad choices for initial conditions.[53] Using the MHE however results
in an increase of computational complexity.[38] The basic idea of MHE is to estimate the state’s
trajectory based on a �nite number of past measurements. This number of measurements is
often called the estimation horizon. An optimization problem is formulated on each time step
in the horizon where the state is estimated based on the measurements taken in that time
step.[43][53] In this optimization problem, the �nite sequence of states, algebraic states and
control inputs are the optimization variables.[38] A schematic illustration of the principle of
MHE can be found in �g. 2.7. The horizon of the length of � time steps is marked with the
black arrow. Measurements from that time interval are taken into account for the estimation
in step � + 1.

The manual of the do-mpc [38] software which was used to perform the MHE in this study
formulates the determination of sequences as follows:

• The initial state has to be coherent with the last measurement of that state.

• The calculations resulting from the estimated system must match the measurements.

• The describing state equations are obeyed.

23



2 Theoretical Basis

Figure 2.7: Scheme of Moving Horizon Estimation.

Following this concept, the problem can be formulated as:

min
x0�� ,u0�� ,�,w0�� ,v0��

12 ||x0 � x0||2�� + 12 ||p � p||2�� + ��1��=0 �12 ||v� ||2�� ,� + 12 ||w� ||2�� ,��s.t. ��+1 = � (x� ,u� , z� ,p,p��,�) +w� , � = 0,… ,� ,�� = �(x� ,u� , z� ,p,p��,�) + v� , � = 0,… ,� ,0 � �(x� ,u� , z� ,p,p��,�), � = 0,… ,�
(2.18)

The bold notation here refers to vectors, e.g. x0��+1 = (�0, �1, ..., ��+1), the overline notation�0 refers to the measured initial state, the overline notation � refers to the last estimated
parameter. The notation ||� ||2� = ���� refers to the � weighted squared norm. Through
weights in the cost function eq. (2.18), the importance of aspects in optimization can be ac-
knowledged. Through a high � weighted norm �� the importance of close estimated initial
states with the last measurement can be emphasized. Through alteration of �� the deviance
of estimated parameters between time steps can be weighted. An increase of �� would then
lead to less �uctuation of an estimated parameter over the time span of the simulation. The
weight �� enables to weigh penalty for any deviance with measured values due to noise in the
measurement. With the weight �� , deviance between simulation and measurement caused by
disturbances can be penalized.

In this study the estimation of constant parameters is the aim. These parameters can be
used within empirical correlations to enhance the models ability to reproduce measured
data. The time varying parameters are used to model time varying external in�uence. The
ambient temperature could be an example for a time varying parameter. Also an input stream
originating from a connected component which is not part of the simulation model can be
modeled using a time varying parameter. The estimation of constant parameters can be
conducted using the MHE method. In this study, parameters have been estimated using
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relatively short time horizons of two to �ve percent of the data set. The �nal parameter is
then determined through the mean over the time span of the simulation. When choosing
data sets for �tting, it needs to be con�rmed that the e�ects to be analyzed take place during
that period. Constraints have been set for physical limitations, e.g. heat conductivity � > 0.
Alternatively, long estimation horizons that cover the whole data set could be set, �nding
parameters �t for the whole span of the simulation.
The implementation of the MHE in do-mpc has also been used to solve the non linear

problem of �nding consistent starting values for the algebraic variables in a DAE system. The
procedure is mentioned and further explained in section 2.4.3.

2.5.3 Least Squares Method
Least squares is a mathematical method used to �nd the best �t line or curve for a set of
data points. It is a type of regression analysis that minimizes the sum of the squares of the
di�erences between the observed values and the values predicted by a given line or curve. The
least squares line or curve is determined by minimizing the sum of the squares of the vertical
deviation of each point from the line or curve. The sum of the errors � is to be minimized by
altering a set of parameters C.[55]

� = ���0 (�� � � (�� ,C))2 (2.19)

Here, �� and �� are the data points, while �� is the number of data points. If the �tted model
consists of a polynomial the adjusted parameters are its coe�cients C, this method can also be
called polynomial regression. Polynomial regression is a type of regression analysis that uses a
polynomial function to model the relationship between a dependent variable and one or more
independent variables. The polynomial can be of any degree, from linear to higher orders
such as cubic or quartic. The curve is then �t to the data points by adjusting the coe�cients
of the polynomial to minimize the error between the observed points and the predicted values
from the curve. With this method, multiple one dimensional polynomials can be combined to
obtain approximations dependent on two variables. The minimum of the summed error � is
found by setting the gradients of � in regard to the coe�cients �� to zero.����� = 0 , � = 0, ...� (2.20)

Here � is the number of coe�cients and � is the corresponding index. In linear models,
the parameters can be found analytically. In non-linear problems, initial parameters have to
be chosen which are then re�ned in iteration. With an extension of the Newton algorithm
for non-linear problems, minima can be identi�ed. This method is called the Gauss-Newton
method and is described in close detail by Nocedal [56].

2.5.4 Sequential�adratic Programming
Sequential quadratic programming (SQP) is an iterative optimization method for solving
non-linear optimization problems. It is used to �nd the minimum of an objective function
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which can be subject to constraints. Through iteratively solving a sequence of subproblems,
the solution is narrowed down with each calculation step. Step size and search direction are
part of these subroutines. In this manner, information on the solution of the previous step
is used to re�ne the solution of the next step and to �nd a local optimum. The method is
introduced by Kraft [57] and also closely explained by Nocedal [56]. Among other problems,
this method can be used to solve least square problems. In that case, the method is called
sequential least square quadratic programming (SLSQP).

2.5.5 Bootstrap Method

The bootstrap method is a resampling technique used in statistics to estimate the accuracy of
a model or statistic. It works by taking samples with replacement from the original data set,
after which the model will be calculated on each sample. The bootstrap method can be used to
better understand the uncertainty of the analyzed model and can help to obtain an estimation
of its variance and other statistical properties.[58] Thereby, it helps assessing the accuracy of
estimates. In this study, the bootstrap method is used to evaluate the quality of parameter
estimation in the �tting process of chosen components. The steps followed to perform the
bootstrap method in this study are listed below and have been recommended in this form by
King [59].

1. Set index � = 1.
2. The model computes results using the set of estimated parameters at the speci�c points

in time where measurements are available.

3. A noise is added onto the simulated results, imitating an uncertainty in the measure-
ments.

4. The new data set, stemming from the disturbed, simulated results, is used to identify
another set of parameters.

5. Set � �= � + 1 and repeat step 2, 3 and 4 until � = � , where � is a su�ciently large
number.

6. Numerous estimates are now available and statistical analysis of the results can be
performed.

Bootstrapping has several advantages. It is an intuitive approach to evaluate the quality
of estimates without relying on strong assumptions or any complex procedure. Con�dence
intervals for the evaluated parameters can be stated which can be helpful by judging the
reliability of an estimate. On the downside, the bootstrap method can be expensive in terms of
computing power as the model of interest is calculated multiple times with di�erent samples
of parameters. The samples need to be picked by random in order to avoid a bias in the results
of the method. The accuracy of the estimates cannot be ultimately guaranteed as the bootstrap
method is an approximation based on a limited number of samples.
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2.6 Simulation and Optimization Frameworks

In this section, the relevant softwares and frameworks that have been used in this work are
being listed and their fundamental principles are explained. The open-source tool for optimiza-
tion Casadi and the open-source framework for MPC and MHE do-mpc are presented. In this
context, optimization implies improvement rather than a global mathematical minimum [11].

Casadi [40] is an open-source tool for non-linear optimization and automatic di�erentiation.
It facilitates rapid implementation of di�erent methods for numerical optimal control, both
in an o�ine context and for non-linear model predictive control. At the core of Casadi is a
self-contained symbolic framework that allows the user to construct symbolic expressions.
With Casadi, it is possible to generate derivative information e�ciently using automatic dif-
ferentiation to set up, solve and perform forward and adjoint sensitivity analyses for systems
of ODEs or DAEs.[41] Moreover, it is possible to formulate and solve non-linear programs
as well as optimal control problems.[41] It does not however provide solutions for optimal
control problems entered by the user. It only provides building blocks for implementing
optimal control solvers. Automatic di�erentiation is distinct from numerical simulation and
symbolic di�erentiation as it uses exact formulas along with �oating-point values to evaluate
the derivative of a function. Expression strings as in symbolic di�erentiation lead to high
calculation e�orts and ine�cient code while numerical di�erentiation involves a rounding
error using discretization of the derivative with a di�erential quotient.[60] As computational
programs are fundamentally made up of basic arithmetic operations and elementary func-
tions, automatic di�erentiation applies the chain rule to these operations, thereby providing
derivatives of arbitrary order. Computational e�orts can be kept at only a small constant
factor of the original operations while maintaining a high accuracy, especially in the higher
orders.[61] Both of the two classical methods, symbolic and numerical di�erentiation, are
slow at computing partial derivatives of a function with respect to many inputs, as is needed
for gradient-based optimization algorithms like they are used in Casadi.

In order to perform parameter optimization with MHE, the software do-mpc [62] has been
used which builds on the tools provided by Casadi. The do-mpc library is a comprehensive
open-source toolbox for robust MPC and MHE. With do-mpc, it is possible to facilitate the
implementation of non-linear control and estimation problems. Furthermore, it supports
the handling of DAEs and uncertainty values. In this work, the embedded methods in this
framework are used to perform the model simulations. The in the framework implemented
MHE is being used to estimate unknown parameters in the power plant’s components, �tting
the simulation results to power plant data. Another option for data �tting is minimizing the
squared error between simulation and measurement. SciPy optimize provides functions for
minimizing or maximizing objective functions which can be subject to constrains. It includes
solvers for nonlinear problems such as constrained and non-linear least squares methods. For
the identi�cation of local minima, the least squares method has been implemented to identify
suitable parameter combinations in the �tting process of both polynomial approximation of
water and steam properties as well as the parameter identi�cation of power plant components.

27



2 Theoretical Basis

2.7 Object-Orientated Programming
Object-oriented programming (OOP) is an approach to programming that focuses on the
creation of objects containing data and methods which in turn operate on that data. The
objects are organized into classes which contain the data and methods that all objects in
that class share. This approach allows for code reuse and e�cient data storage, making it
an e�ective way to create scalable and maintainable programs. Its modular nature makes
it possible to divide complex problems into smaller, more palpable problems. OOP helps
create code that is easier to understand as objects can be thought of as tangible entities which
contain data and methods that can be used to manipulate that data. It also makes code easier
to maintain as changes to one object do not a�ect other objects in the same class. However,
the performance of the program may su�er and may be slower than programs written with
other programming methods. Debugging might also become more di�cult as the programs
become more intertwined. Should one object have a bug, it can a�ect other objects in the
program, making it di�cult to pinpoint the source of the issue.

2.7.1 Structure of the Code
The code is organized according to principals of OOP. For each component, two classes are set
up. The variables-class contains all variables and parameters relevant for this component. In
the equation-class, the governing equations of that component are formulated, using the sym-
bolic representation of the variables de�ned in the variables-class. A schematic representation
of the code’s structure can be found in �g. 2.8. In the variables-class, values for parameters

Class: Variables
     Components i, ..., N
          State: x
          Algebraic: z
          Controlled: u
          Parameter: p

Class: Equations
     Components i, ..., N
          ODE
          AE
          Expressions
       

Do-MPC:

Simulation: MHE / Fitting MPC

C C

Results Model

Figure 2.8: Scheme of the code structure.

and starting values for states and algebraic variables are stored. The variables-class contains
subclasses which sort all variables by their function in the equations system, meaning into
states, algebraic variables, controlled variables, and parameters. The equation-class uses the
symbolic variables de�ned in the variables class to formulate the relationship between states,
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algebraic variables, controlled variables and parameters. The equation-class contains two
subclasses sorting the equations depending on the presence of a time derivative into algebraic
and di�erential equations. In addition, the equation-class contains so called expressions. Ex-
pressions are used to express certain results which are not necessary for the calculation in
other equations but which might be useful information in other contexts. The �lling level
of a tank as a function of its liquid volume and geometric parameters could be an example
of such an expression. In general these equations could be formulated as algebraic variables.
However, expressions are treated di�erently within the do-mpc framework and using them
where possible, reduces computational expenses.

Through an interface, do-mpc communicates with these classes and builds the model. The
simulation is performed which generates a set of results. In a comparison with measured
plant data, the �tting process is performed using the MHE implemented in do-mpc. The
improved model could then be used to conduct MPC, also within the do-mpc framework. The
class-oriented structure of this code enables a more user readable and organized alternative
to implementing all equations and variables directly into do-mpc using it’s own syntax. In
addition, it would be feasible to alter the interface in a manner that the same equations and
variables can be used with another framework for simulation and optimization.
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In this section, the modeled components of the plant and their underlying physical equations
are introduced. The material properties and their approximation used in the models are
explained. The hot air cycle with the storage system are addressed followed by the heat
recovery steam generator and the applied turbine model.

3.1 Thermodynamic Properties
In this section, the implementation of thermodynamic properties into the model is explained.
The �uids used in the model are water, steam and air.

3.1.1 Water and Steam Properties
The property values for water and steam have been obtained from the Industrial Formulation
1997 for the Thermodynamic Properties of Water and Steam (IAPWS) [63]. Casadi requires
smooth functions to be able to perform the automatic di�erentiation. To handle the calculation
expense and to be able to pass Casadi-variables to the property functions, the results of the
equation implemented by IAPWS, which is based on the Gibbs enthalpy, are approximated
using polynomials. Through variable implementation of polynomial degrees, a trade-o�
between the calculation e�ort and the accuracy is made. The polynomials can be set according
to the need of the application. Among others, Goemans [64] suggests the approximation of
steam properties with Chebyshev polynomials and uses the least square method to obtain the
coe�cients. Åberg is implementing two-dimensional polynomials for optimization-friendly
steam property functions [65]. In the relevant pressure and temperature intervals and for
the regarded properties in this study such as enthalpy and entropy, an accurate description
of properties is implemented using regular polynomials. This decision keeps the calculation
expenses down and simpli�es the procedure. Following suggestions made by Åberg, additional
data points have been added along the saturation line in the approximation process to ensure
accuracy in these regions [65]. The values for enthalpy and entropy have been modeled
separately for the liquid and gaseous regions. The following equation shows the polynomial
form with which the steam and water properties have been approximated.

� (� , �) = ���=0 ���=0 �(�, �)���� (3.1)

The equation includes the independent variables � and �, the polynomial coe�cients � as
well as the polynomial degrees � and �. The polynomial coe�cients � have been determined
using the ordinary least square method minimizing the quantity.�� �� �(� (�, �) � �(�, �))2 (3.2)
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Table 3.1: NRMSD between approximation and steam table values as a function of polynomial degree.

Property/Degree 1 2 3 4 5 6 7�(�, �)steam 0.0595 0.0304 0.0180 0.0248 0.0604 0.1198 0.2002�(�, �)steam 0.0069 0.0031 0.0038 0.0294 0.0782 0.1560 0.2622�(�, �) 0.0390 0.0188 0.0124 0.0032 0.0017 0.0011 0.0008�(�, �)water 0.0178 0.0027 0.0004 0.0068 0.0131 0.0197 0.0252�(�, �)water 0.0031 0.0010 0.0002 0.0039 0.0083 0.0133 0.0178

In this equation, � and � are the variable properties and � is the discrete value of the IAPWS
function at that value pair. To obtain a smooth function over the whole range of temperature
and pressure including the wet steam region, the polynomial for the gaseous region and for the
liquid region are summed together with Heaviside H functions as coe�cients. The argument
of the Heaviside function becomes positive in the gaseous region and negative in the liquid
region. For the Heaviside function multiplied with the term of the liquid region, the argument
is multiplied by �1.

arg = � � ����(�) (3.3)� (�, � ) = H(arg) ����(�, � ) +H(�arg) ����(�, � ) (3.4)

Through that, it is ensured that the property functions remain di�erentiable. For the property
function at saturation line a similar approach has been chosen, with only one property variable
to unambiguously describe the property state. This function needs to be di�erentiable as well.
It needs to be considered, that the accuracy of these functions at saturation line needs to be
accurate enough to follow the saturation line but multiply the polynomial degree when using
the functions � (�, �) in a region including the wet steam region. For a quantitative analysis
of the polynomial’s accuracy, the root-mean-square deviation (����) is taken into account.
For a comparison of the ���� between di�erent properties, a normalized root-mean-square
deviation ����� is used. ���� = � 1� ���=1 (�� � ��)2 (3.5)

����� = � 1� ���=1(�� � ��)2���(� ) ����(� ) (3.6)

with � referring to the number of sampled values. For the properties in dependency of
two variables, the ���� shows minima for speci�c numbers of degrees. In section 3.1.1, the
correlation between polynomial degree and relative ���� values is shown.

In section 3.1.1 the NRMSD between polynomial approximation and the IAPWS values for
the relevant thermodynamic properties in dependency of the polynomial degree is found. For
properties in dependency of pressure and temperature, �at minima on polynomials of third
degree can be identi�ed. For the enthalpy as a function of pressure and entropy, a su�cient
trade-o� between the accuracy and the polynomial degree can be chosen at the fourth degree.
It comes to attention that for the values in dependency of pressure and temperature the
accuracy decreases with polynomial degrees > 3. Expected would be an increase in accuracy
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with larger polynomial degree. A possible explanation could be a discrepancy between number
and position of the �tting points and evaluation points. An oscillation around the �tted values
might be evaluated during high amplitudes of the oscillation. Another possibility could be
inaccurate sorting of �tting points into liquid and gaseous region. Points close or on the
saturation line might be sorted wrongly, causing the polynomial to approximate to the wrong
points. The inaccuracy is not explained in conclusion and needs to be taken into account. A
further discussion of the model is found in chapter 5.

For applications involving optimization and control, it can be desirable to further lower the
degree of these polynomial approximations in order to decrease the computational expense
and to increase the numerical robustness of the simulation or of the control problem. Using
polynomials for steam property approximation, minima which are not found in reality, may
occur, thus hindering the optimization process or leading to a failure of convergence during
calculation. To mitigate this circumstance or to exclude this source of error, the degree of the
polynomial can be further lowered by de�ning a smaller realm where the function is supposed
to be accurate. This method is referred to as the trust region method and is further explained
in section 2.4.4 on model reduction. Several components allow a much smaller realm for
validity for the approximation functions as the result of the simulation can be estimated based
on their functionality or on operational data.

The outlet of the steam turbine during regular operation for example, will always be close to
the saturation line at pressures clearly below atmospheric pressure and close to nominal con-
denser pressure. This allows for a decrease of the pressure range relevant for approximating
polynomials to pressures below atmospheric pressure or, even more precise, around condenser
pressure. The range of temperature can be estimated for this component as it will be clearly
below the saturation temperature of atmospheric pressure, namely 100 °C, but above ambi-
ent temperature. With knowledge of the temperature and pressure ranges, a corresponding
entropy range can be calculated. Through information about the analyzed system, the trust
region for the polynomials can be reduced. Hence, the accuracy of the approximation can
be kept while reducing the degree of the polynomial. Values with this method can be found
in section 3.1.1 where a polynomial degree of one has been chosen. A polynomial degree of
one does not result in a linear correlation as the � � � term remains. Region 1 in section 3.1.1
describes a range of properties with little knowledge on the evaluated state. A range including
maximum pressure and maximum temperature of the entire process was chosen. Region 2 in
section 3.1.1 includes values with basic knowledge on the observed state. It should be below
atmospheric pressure and below boiling temperature at atmospheric pressure. The lowest
pressure should be below nominal condenser pressure. A margin was added. Region 3 in
section 3.1.1 includes detailed knowledge on the expected values. These can be obtained from
operational data.

It can be observed that the NRMSD values for region 1 are several times higher than the
values obtained with the polynomials of a higher degree in section 3.1.1. They are in the range
of several percent and the use of the polynomial functions of �rst degree are not suitable for
that trust region. Region 2 has lower NRMSD values but still maintains an inaccuracy that is
too signi�cant for the application. The accuracy of region 3 is comparable with the results
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3.2 Thermal Storage

Table 3.2: NRMSD between polynomial approximation of �rst degree and value derived from IAPWS
for three trust regions.

Region 1 Region 2 Region 3

Pressure-Range inMPa [0.01 - 3] [0.03 - 0.1] [0.03 - 0.05]
Temperature-Range in K [274 - 874] [274 - 374] [294 - 354]
Entropy-Range in J g�1 K�1 [0.013- 7.372] [0.013 - 7.360] [7 - 8]
NRMSD ( s(p,t) ) 0.0861 0.039 0.0007
NRMSD ( h(p,t) ) 0.0722 0.039 0.0005
NRMSD ( h(p,s) ) 0.0242 0.009 0.0135

of polynomials of a higher degree and is valid for the entire region of relevant properties.
The accuracy of the approximations of entropy and enthalpy in dependency on pressure and
temperature, �(�, �) and �(�, �), are even lower. Polynomials of a low degree can only be used
if the range of the expected results is narrow. In cases where the expected results are well
known, this method can be used to mitigate convergence issues or to increase computational
e�ciency. The results in section 3.1.1 show that this method can only be applied with great
caution. It is numerically favorable to exclude the wet steam domain of the trust region if
possible to avoid the multiplication of polynomials, as can be seen in eq. (3.4).

3.1.2 Air properties
The air properties have been modeled using polynomials in analogy to the steam and water
properties. Correlation with air pressure is not taken into account as the e�ects are minor
for this application. Therefore, the air properties are only a function of the air temperature.
Accuracy and numerical stability are no issue when approximating the airs thermodynamic
properties using polynomials.

3.2 Thermal Storage
In this section the thermal behavior of the storage unit is described. Hot air �ows through
ceramic storage material and heats up the mass in an isolated tank. The storage unit con-
sists of four separate, identical tanks. The model used in this work is based on the ”One-
Temperature-Model” (”Ein-Temperatur-Modell”) by Gall [22] with enhancements proposed
in Nolteernsting [66]. In Gall [22] the heat transfer is calculated with use of the number of
transfer units, a dimensionless quantity used for heat exchanger characterization [67]. The
number of transfer units puts heat transfer and heat capacity rate in proportion. The storage
is modeled as a discrete series of heat exchangers in which the temperature of the storage
mass is horizontally constant.

Under the assumptions that the heat capacity of the air is negligible in comparison to the
heat capacity of the storage media, the �uid phase does not have to be explicitly modeled.[68]
Due to the low �ow rate of air in the storage media the number of transfer units becomes
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Figure 3.1: (Left) Scheme of the storage with it’s measurement positions as constructed. (Right)
Illustration of the discretization of the thermal storage model. Enthalpy �ows are marked
with arrows.

high and the heat exchange very e�cient respectively. In other words, the heat transfer
coe�cient become in�nite. Therefore it is assumed that at the exit of the discrete layer the air
temperature is equal to the storage media temperature. From this reduction to the observation
of one temperature the term ”One-Temperature-Model” is deducted.

If the storage is neither charged nor discharged for an extended period of time, for example
over night, the temperature pro�le becomes more homogeneous in axial direction, lowering
the maximum temperature in the storage layer and thereby its utility. Therefore a term for axial
heat conduction was added to the model in Nolteernsting [66]. Two further improvements
proposed by Nolteernsting [66] and implemented in this work are the larger areas available
for heat exchange in the top and bottom layers as well as a better resolution in form of
a higher number of discrete layers going from eight layers in Gall [22] to one hundred in
Nolteernsting[66]. The di�erential equation describing a discrete layer in the model is found
in ??.

��� ,� � ���� ���� ,��� = ����� ,��(���� (��� ,��1) � ���� (��� ,�))+ ������,�������,�(���� � ��� ,�)� ��� � ������ ((��� ,� � ��� ,�+1) + (��� ,� � ��� ,��1)) (3.7)

The left hand side of that equation describes the temporal change of energy in the media of
the storage layer. Layers of equal size i are used where i-1 is referring to the layer before i. At
the inlet to the storage the inlet temperature of the air is used. When switching from charging
to discharging the order of discrete layers is reversed. Accordingly it is assumed, that the
temperature at the exit upstream of the mass �ow is equal to the temperature of the storage
layer. The �rst term on the right hand side is describing the heat exchange between air and

34



3.3 Power Block

storage media which is only dependent on the air mass �ow ���� ,�� and the temperature of
the storage ��� . It is based on the change of the speci�c enthalpy ���� over the discrete layer.
The following equation applies: ������������ = ����� (������) (3.8)

The change of the speci�c enthalpy represents the integral of ��,��� ���� over the temperature
change. The entanglement of air and storage properties in ���� (���) is due to the assumption
of equal air and storage media temperature at the exit of the layer. The second term in eq. (3.7)
describes the heat loss to the ambient environment. It depends on the heat transfer coe�cient
between storage and ambient environment ��� ,���,� the area available to heat transfer in that
layer ��� ,���,� as well as the driving temperature di�erence (���� � ��� ,�). The higher area
available for heat transfer the top and bottom layer of the tank is considered.

The third term describes the axial heat conduction. It depends on the the storage media
conductivity ��� the heat conduction length ������ and the temperature di�erences to the neigh-
boring discrete layers (� ± 1). The heat transfer length is calculated from the height of the
storage tank ��� and the number of discrete layers ��� . The temperature di�erence is calculated
between the neighboring layers. At the top and bottom layer only conduction in one direction
is calculated.

The storage at the STJ consists of four separate tanks which can be �lled or discharged with
independent mass �ows ����� ,�� . Therefore the tanks can show di�erent temperature pro�les.
The model is calculated with 4 � 100 = 400 states for the temperature ��� in four tanks with
one hundred layers.

3.3 Power Block
In this section the components of the power block consisting out of heat recovery steam
generator, steam turbine, feed water tank, condenser and pumps are introduced. The model
of the power block is build on the basis of the model proposed in Gall [22] with re�nements
proposed by Vinnemeier [69]. Heat loss through outer shell of the components into the
environment is considered as negligible. In general heat transfer through radiation becomes
relevant at very high temperatures. In conventional power plants heat transfer due to radiation
reaches the same order of magnitude as heat transfer through convection at temperatures
above 1200 °C[70]. In this plant maximal temperatures of 700 °C are reached which is well
below the mentioned value. As a consequence radiation is regarded as negligible in this study.

Heat transfer functions describe part-load characteristics of the heat exchangers and aremod-
eled using transfer coe�cient based on the applied correlations found in the VDI-Wärmeatlas
(VDI) [71].The heat transfer coe�cients k are calculated according to1� = 1���� ,� + ��� + 1�� ,�20 (3.9)
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Table 3.3: Applied heat transfer correlations. VDI-Wärmeatlas (VDI)

Heat exchanger Con�guration ���� ,� �� ,�20
Preheater
Economizer

Fin tube bundle VDI section �1 [71] VDI section �1 [71]

Evaporator Plain tube bundle VDI section �1 [71]

� = 1.96 ��0.72�0.24�[Wm�2 K],��[Wm�2], �[bar]
0.2 < p 50 bar [72]

Superheater1
Superheater2 Plain tube bundle VDI section �7 [71] VDI section �1 [71]

Comparison of simulation results with operational data using strictly heat transfer cor-
relations derived from the sources listed in section 3.3 show signi�cant discrepancy. This
motivated the alteration of heat transfer coe�cients to better �t the measurements. Constant
coe�cients or exponents to relevant values like the mass �ow have been used to describe the
heat transfer more accurately or avoid elaborate heat transfer correlations.

3.3.1 Preheater and Economizer
Dynamic modeling of the preheater and economizer leads to more accurate reproduction of the
components behavior considering their thermal inertia. The amount of water inside the tube
bundles as well as the mass of the steel piping is signi�cant and therefore the accumulation of
heat inside the pipe wall is considered. The wall temperature is assumed to be characteristic
for heat transfer and contained heat in the wall. Therefore the temperature of the pipe is
considered constant over its length, despite of a temperature gradient in �ow direction. The
following set of equations applies:

0 = ( ���)��,��� � ( ���)��� ,��� � ����� ,� (3.10)0 = ( ���)��,�20 � ( ���)��� ,�20 � ��� ,�20 (3.11)����� = 1���� ����� ,� � ��� ,�20 (3.12)

0 = ����� ,� � (��)��� ,� (���� � �� ) (3.13)0 = ��� ,�20 � (��)� ,�20(�� � ��20) (3.14)0 = � �� ,�2� � �1 ���
H2O2 (3.15)0 = � ���� ,� � �3� �� ,�2� (3.16)

For temperatures ��20 and ���� relevant in the driving temperature di�erence the inlet tem-
peratures of the respective �uid have been chosen. The residence time of water and air is in
the range of several minuets and therefore considerable. Calculating both sides dynamically
would lead to partial di�erential equations which are problematic to solve as they could cause
instabilities and high calculation e�ort.
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3.3.2 Evaporator
The evaporator is used to perform the phase transition of the working media within the water
steam cycle. Heat from the hot air is introduced to evaporate the inlet �ow of feed water.
The high amounts of water inside the evaporator are cause to high thermal inertia in this
component. The mass of water contained in this component is by magnitude of four higher
then its inlet streams and therefore dynamic modeling is applied. The heat is introduced
through a pipe bundle with hot air �owing through it and a pipe returning hot steam from
the steam cooler. The mass of the piping as well as the shell of the evaporator are signi�cant
and are considered in the model. In order to represent the dynamics within the evaporator a
two-phase equilibrium model is implemented as derived by Vinnemeier[69]. A summery of
the di�erential algebraic system of equations is found in 5. The air side of the evaporator is
modeled in a steady state as the mass of the �uid inside the pipe is relatively low and the �ow
rates substantially high. As mentioned above the mass of the pipe bundle is not negligible.
Due to the high heat transfer coe�cients on the water side the pipe walls temperature is
assumed equal to the water temperature. The mass of the pipes is included in the model the
same way as the casing of the evaporator. The di�erential algebraic system of equations used
to describe the evaporator consists of0 = ( ���)��,��� � ( ���)��� ,��� � ����� (3.17)0 = ����� � ����� (3.18)0 = � � � (�Air,W,� , �W,H20,���) (3.19)

0 = �� ������,��,�2� � ����,��,���2 � ����� (3.20)

0 = �� � �� (3.21)0 = � � � (�liq,���) (3.22)

In addition the two di�erential equations eq. (.6) and eq. (.7) and the associated algebraic
equations found in chapter 5 are part of the full di�erential algebraic system. The preservation
terms used in the model are �� ��� = ��in,H20 � ��out,H20 (3.23)

�� ����� +�� ��� = ( ���)��,�20 � ( ���)��� ,�20 + ��Eva + ��SC (3.24)

�� �steel,k�steel,k = ���� +�Tube�Tube +�SC�SC (3.25)

The DAE in chapter 5 is written in a compact form with emphasis on comprehension. In
this form it would be required to solve for the gradients ���� and ������� as algebraic variables.
To avoid the implicit formulation and avoid the additional algebraic variables, the terms
have been reformulated. The temperature gradient appears in the gradient of the liquid
volume and vice versa. With simple mathematical operations, an explicit formulation can be
derived. This formulation is longer and more di�cult to read but numerically favorable as the
interdependence within the model is avoided.
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3.3.3 Steam cooler
The steam cooler enables the redirection of super heated steam back to the evaporator. The
branch is located after super heater 1. Through the control of the mass �ow of the redirected
stream the outlet temperature of life steam can be regulated while recuperating its energy in
the evaporator. The cooled steam is then mixed with the steam not redirected to the evaporator.
The heat transfer, the mixing and the valve characteristics are modeled in a steady-state model.
The following equations apply.0 = ( ���)in,H20 � ( ���)out,H20 � ��SC (3.26)0 = ��SC � ��SC �p,SC ��SC (3.27)0 = ��SC � � (�SCV ��in,H20) (3.28)0 = ��SC � (�in,H20 � (�Eva,H20 + ��SC,term)) (3.29)

The amount of redirected steam is controlled through the position of the three-way valve.
Through analysis of operational data a terminal temperature di�erence between cooled steam
and evaporator �uid consistently under 5 K can be observed. This implies high heat transfer
under various working conditions which justi�es the steady state modeling. For the de�nition
of heat transfer e�ciency a constant terminal temperature di�erence is set.

3.3.4 Super Heater
To bring steam temperature up to turbine inlet conditions the steam exiting the evaporator is
entering a series of two super heaters. Super heater 1 will bring the temperature on a level
below life steam temperature. Following the �rst super heater the steam enters the steam
cooler where the temperature of the inlet stream in the second super heater can be controlled
as described in section 3.3.3, thereby regulating life stream temperature. Low �uid content
and thin-walled plain tube bundles allow the assumption of low thermal inertia within the
component and therefore a steady-state model. The following set of equations is applied.0 = ( ���)��,��� � ( ���)��� ,��� � ���� (3.30)0 = ( ���)��,�20 � ( ���)��� ,�20 � ���� (3.31)0 = ��SH � ����� (3.32)0 = � � � (�Air,W, �� , �W,H20,���) (3.33)0 = �� � �1� ���2

in,Air (3.34)

The heat transfer coe�cient � is calculated based on mean inlet conditions. It therefore does
not correlate dynamically with inlet condition and simulation results. To keep the use of
material property correlations within the model low, a simpli�ed heat transfer based on the
air mass �ow is chosen and �t to operational data. An implicit formulation of temperature
di�erence is chosen to avoid an additional interdependence of equations within the component.
The temperature di�erence is chosen as follows:�� = �in, Air � �in, H2O (3.35)

38



3.3 Power Block

SH2,H2O,out

SH1,H2O,out

SH1,H2O,in

SH2,H2O,in

SH2,Air,in

SH1,Air,out

Figure 3.2: Schematic illustration of the super heater

The super heater component at the STJ consists of one continuous air section with two separate
heat exchangers between air and steam. Consequently it has one air inlet stream, one air
outlet stream two steam inlet streams and two steam outlet streams. A Schematic illustration
of the component can be found in �g. 3.2. The super heater on the lower temperature level is
called super heater 1 and on the higher temperature level is called super heater 2.
3.3.5 Steam Turbine
The steam turbine at the STJ is expanding the steam on two pressure levels. Turbine extrac-
tions are not conducted and no measurements at the outlet of the �rst pressure level are
available. Only input and output values of the turbine group are considered. The steam turbine
is connected with a turbine control valve (TCV) system. Objective of the model is to accurately
determine electricity production and correlation between control valve position and turbine
outputs. The following set of equations has been used to model the steam turbine.

����� = 1����� ��H2O,W (3.36)

0 = � � �mech�el �( ���)in,H2O � ( ���)out,H2O � ��H2O, W� (3.37)0 = ��H20,W � (��)H20, W�� (3.38)0 = �� � (�H2O � �� ) (3.39)0 = ��in,H20�����
in,H20

� �Stodola�TCV (3.40)

0 = �Stodola � �in,H2O����in,H2O

�������
1 � � �out,H2O�in,H2O �2
1 � � ����out,H2O����in,H2O �2

�� ���
in,H2O�in,H2O

(3.41)
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0 = �TCV � (3�2TCV � 2�2TCV) (3.42)0 = �� � �in,H2O � �out,H2O�in,H2O � �s,out,H2O (3.43)

To describe �ow characteristics within the turbine the Stodola equation, �Stodola, has been
implemented. It correlates the mass �ow through the turbine in dependency on inlet and
outlet pressure, inlet temperature and the respective reference values during full operation.
The Stodola equation was proposed by Stodola [73] and a derivation to the equation can be
found in Kestin [74]. The Stodola equation is augmented with a term including the valve
position of the TCV. A polynomial correlation for a single control valve with valve position�TCV as proposed by Grote [75] has been chosen.

The driving temperature di�erence for the heat transfer between steam and the turbine
casing wall has been formulated explicitly for this model to reduce computational complexity
and reduce the number of interdependencies within the model, see eq. (3.39). A more realistic
temperature di�erence would include the outlet temperature of the turbine, to more accurately
describe the heat �ow. It has shown, that with means chosen to simulate the components,
convergence is often hindered by an implicit formulation of temperature di�erence while the
impact on the solution remains small. For a more comprehensive model, di�erent methods of
solving the DAE system could be considered in order to include and implicit formulation.
In this model the isentropic e�ciency of the turbine �� is set constant while in reality it is a
function of the steam mass �ow. A more precise o� design model can be formulated through
the approximation of fundamental equations [76]. Purely empirical descriptions as well as a
combination of the two have been proposed for similar applications.[69][77].
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In this section, the results of the modeled components are compared to real plant data. In
order to keep discretion over actual values of the STJ, the results are displayed in a normalized
form. Therefore all �gures display values in a dimensionless form. The simulation results
of the storage in di�erent modes of operation are presented and discussed. The models for
each component rely on the accuracy of certain parameters to achieve satisfying results. In
order to increase model accuracy, chosen parameters have been adapted in comparison with a
training data set, and the improved models have been validated against additional data sets
obtained on di�erent operational days. A simulation is carried out with initial values chosen
on the bases of the �rst time step of the observed validation time span. For the storage, the
evaporator, the steam turbine, and the heat exchangers, more than one parameter was �tted,
leading to a non-linear optimization problem. These non-linear optimization problems lead
by their nature to local minima, which can, but not necessarily must, be global minima. The
results highly depend on starting conditions and the chosen optimization algorithm.

In this work, the sequential least squares programming (SLSQP) algorithm, implemented in
SciPy [78], and the moving horizon estimation (MHE), implemented in do-mpc[62], have been
used in order to determine a combination of parameters su�ciently capable of replicating
the plants’ measured data. In section 2.5.4, it is explained how the parameter estimation with
SLSQP is conducted, and in section 2.5.2 the parameter estimation with MHE is explained.
The MHE can �nd a minimum using a wide range for parameters while still maintaining
low computational cost. Furthermore, it is able to include combinations of parameters which
would lead to a failure in convergence of the simulation when implemented as constant
parameters. Some parameter combinations can cause e.g. too high gradients or a division by
zero when solving the system of equations. These combinations of parameters might not be
clear when choosing possible ranges for parameter estimation, and so it is advantageous for
MHE to be able to include these combinations, even though they will not be a solution. The
accuracy of the parameters can be further improved by performing a minimization of the error
between measurement and results using an SLSQP algorithm implemented by SciPy. Here, the
computational expense increases drastically with high ranges of parameters and the problem
of convergence failure translates into the optimization process, as the model is solved multiple
times with di�erent combinations of parameters. The results of the MHE have been chosen as
starting values for optimization and small ranges of variation have been chosen around them.

4.1 Thermal Storage Validation
The thermal storage of the solar tower was modeled according to the equations and expla-
nations given in section 3.2. The heat transfer coe�cients between storage and ambient
environment �St,Amb,i, the heat capacity of the storage media ��St and the heat conductivity
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Figure 4.1: Input variables ��St,Air and �St,Top of the thermal storage during charge.

of the storage media �St have been selected for the �tting process. As starting values for the
optimization problem, material properties of the ceramic �lling material have been used. It is
to be expected that the adapted values will di�er due to the porous structure of the storage
material.

The temperature in the storage is measured at eight di�erent vertical positions with three
thermal elements at each measured layer. The mean of the measurement of these thermal
elements has been used in the �tting process and is compared to the simulated temperature at
the respective position. The simulation treats the temperature horizontally as uniform. The
input variables in the model are the air mass �ow entering the storage ��St,Air and the inlet air
temperature at the top �St,Top or bottom temperature �St,Bottom. In this context, a positive mass
�ow means the storage is being charged with hot air entering the storage from the top and
cold air exiting it at the bottom. In analogy, a negative mass �ow corresponds to the storage
being discharged with cold air entering at the bottom and hot air exiting at the top. Starting
values have been chosen to be coherent with the measured values.

4.1.1 Charge

In this section, simulation results of the thermal storage during charge are presented. Sim-
ulation results will be analyzed and validated against plant data. In this operational mode,
the volumetric receiver is providing substantial amounts of hot air and it’s majority is passed
through the storage in order to heat up the ceramic material. In �g. 4.1, the input variables��St,Air and �St,Top are depicted over time. In �g. 4.2, the measured and simulated temperature
curves of four chosen layers over time are depicted.

In this data set, the storage starts out in a cooled down status. The temperature of the storage
is low over the entire height of the storage and the temperatures are in a close range. At the
beginning of the observed time period, the mass �ow into the storage and the inlet temperature
are low and start rising. With the inlet temperature being below storage temperature and a
positive mass �ow, a decline of storage temperature in the upper levels can be observed. Once
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Figure 4.2: Comparison of measured and simulated temperature curves of selected layers in the thermal
storage during charge. Measured data ( ) and simulated data ( ).

inlet temperature rises above the temperature of the �rst layer, it’s temperature starts rising
and with corresponding time di�erences the lower levels follow. The simulated temperature
of the highest layer reacts slightly faster to changes in the input variables. The simulated
temperature of layer 3 reacts slightly slower to changes in the input variables. Changes in
mass �ow and inlet temperature result in di�erent temperature gradients. When drops in
inlet temperature occur, like in the time interval between 8000 s and 10 000 s, see �g. 4.1, the
upper levels of the storage follow the inlet temperature. At the lower levels however, the e�ect
blurs out. The root mean square deviation (RMSD) between measured and simulated storage
temperature during charge is 7,72 K and the normalized root mean square deviation (NRMSD)
is about 2%

It can be observed that the simulation of the �rst layer’s temperature corresponds faster to
the inlet conditions than the measured temperature. The highest position of measurement is
only ambiguously to be identi�ed by construction drawings or from the outside of the thermal
storage. A linear course between inlet air temperature and the measurement of the �rst
measurement inside the thermal storage is assumed. Through comparison with measured data,
the positioning has been chosen for which the measurement corresponds to the simulation.
This approach can lead to an error in positioning as it is not clear that the temperature gradient
between the �rst measurement and the air temperature measured at the inlet is constant. It
could be a possibility that the �rst measurement is in reality constructed farther below than
assumed in the simulation.

Another explanation can be the small number of simulated layers between inlet and the
simulated layer paired up with the �rst measured layer. A possible way of improving that
deviation can be the inclusion of a heat transfer coe�cient between air and storage material
in eq. (3.7). This would deviate from the One-Temperature-Model proposed in Gall and lead
to the necessity of solving partial di�erential equations [22]. With that term implemented, a
raise in number of layers would result in a convergence to a solution and the upper layers
would not react as drastically to changes of inlet conditions. For this work, the simplicity
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Figure 4.3: Input variables ��St,Air and �St,Top of the thermal storage during full operation with storage
usage.

of the model is emphasized as the aim is to provide a model suitable for model predictive
control and therefore online optimization. The inclusion of partial di�erential equations would
lead to a coupled system of partial di�erential equations and ordinary di�erential equations.
That would require further numerical e�ort like the inclusion of the Finite Element Method
thereby increasing computation power requirements while decreasing numerical stability. The
accuracy of the chosen model however is adequate for its use in this work. For improvement,
this approach could be implemented with a careful selection of numerical solvers and their
integration in the overall model.

4.1.2 Full Operation

During full operation, the thermal storage can be used to level the inlet temperature and mass
�ow into the water steam cycle. For e�cient operation, it is desirable to achieve constant,
high inlet temperature into the steam cycle steam generation. In case of a weather change
like bypassing clouds, a mass �ow of cold air can be directed from the bottom of the thermal
storage to its top. The air is exiting at the top of the storage close to the temperature of the
highest layer adding to the mass �ow of hot air �owing towards the steam generation. The
�g. 4.4 shows the temperature curve of selected layers in the thermal storage during full
operation with storage usage while �g. 4.3 shows the corresponding input variables.

A rise in temperature in the upper layers of the storage can be observed until up to 5500 s
with a decreasing gradient, see �g. 4.4, in both measurements and simulation results. The
storage levels below layer 3 stay constant over the mentioned time interval. From that moment
on, the temperature inside the storage decreases for both measurement data and simulation
results in the upper layers. Close to the 5500 s mark, the mass �ow passes from positive to
negative values. A decrease of temperature in the upper storage levels as well as the decrease
of temperature at the top of the storage to storage temperatures can be observed. The sim-
ulated values for the lowest layer, layer 8, start rising up to the temperature on the bottom
of the storage at 6500. The measured values for layer 8, start rising up to the temperature
on the bottom of the storage at about 7000. The RMSD between measured and simulated
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Figure 4.4: Comparison of measured and simulated temperature curves of selected layers in the thermal
storage during full operation with storage usage. Measured data ( ) and simulated data
( ).

temperatures inside the storage during full operation is 12,75 K and the NRMSD is about 3%.
The positive gradient up to 5500 s is the result of a positive air mass �ow with high inlet

temperature at the top. When the mass �ow switches from positive to negative, the input
variables switches from �St,Top to �St,Bottom. Now the inlet to the storage is the temperature
measured below the lowest storage level and the inlet to the storage is the lowest level. The
temperature �St,Top becomes a result. The lowest levels do not change in temperature over
the entire interval, which is explained by two e�ects. Before 5500 s the thermocline has not
reached the lower levels and the hot air charging the storage, has transferred its heat to
the upper levels of the storage already. When the direction of the mass �ow changes, the
input variable becomes the temperature on the bottom of the storage. This temperature is
now in�uenced by the outlet temperature of the steam generator, rather than the storage
temperature of the lower levels. The increase of the measured temperature at the bottom is
caused by the warm air from the outlet of the steam generator, which is now directed into
the storage. This warm air causes the lower levels of the storage to slightly increase their
temperature. This e�ect can be observed in the temperature curve for layer 8 in �g. 4.4. The
faster reaction of the simulated storage temperatures to changes in input variables of the
layer closest to the inlet than measured can be explained by the same e�ects mentioned in
section 4.1.1. With slight deviation, the implemented model is able to replicate the real storage
behavior during full operation when the storage is in use.

In �g. 4.6, we can observe the temperature curves in selected storage layers during full
operation while the storage is not in use, meaning no mass �ow is being directed through the
storage either charging or discharging the thermal storage. The corresponding input variables
can be found in �g. 4.5 showing a mass �ow oscillating with small amplitudes around the
value zero. These �uctuations can be caused by measurement dynamics or a controller circle
resulting in a oscillation. During this speci�c operational state, large quantities of hot air are
passing by the top end of the storage, however, none of it is directed through the storage. An
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Figure 4.5: Input variables of the thermal storage during full operation without storage usage.

Figure 4.6: Comparison of measured and simulated temperature curves of selected layers in the thermal
storage during full operation with storage usage. Measured data ( ) and simulated data
( ).
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increase in the upper layers temperature can be observed in the operational data. The simu-
lated storage temperatures of the layer close to constant. The simulated temperature of the
third layer rises slightly over time.The RMSD between measured and simulated temperatures
inside the storage with no mass �ow measured inside the thermal storage is 11,03 K and the
NRMSD is about 3%.
A possible explanation for this e�ect could be an insu�cient accuracy of the mass �ow

sensors. The mass �ow through the thermal storage is computed by subtracting the mass �ow
through the steam generator from the mass �ow through the solar receiver. In this scenario, a
small mass �ow of hot air would pass through into the storage, heating up the ceramics while
no mass �ow is being recorded. When this computed mass �ow close to zero is considered, the
model is not able to reproduce the behavior as no mass �ow leads to no heat transfer through
convection. For comparison, see eq. (3.7). The slight increase of the lower levels, represented
by layer 3 in �g. 4.6, is caused by the thermal conduction within the storage. The upper levels
are higher in the simulation as in the operational data, causing the conduction term to show
its e�ect. The e�ect is stronger for the measured data, as the temperature of the upper levels
rise.

4.1.3 Bootstrap Method for Estimated Storage Parameters
In this section, the bootstrap method for the estimated parameters within the model of the
thermal storage is performed. The procedure for the implementation of the bootstrap method
is explained in section 2.5.5. The bootstrap method in this component is applied exemplary
for the other components. It can be conducted in analogy.

The parameters in this component that have been adjusted to �t the operational data are
the heat transfer coe�cients between storage and ambient environment �St,Amb,i, the heat
capacity of the storage media ��St and the heat conductivity �St. The e�ects of an uncertainty
in the temperature measurements inside the storage as well as an uncertainty of the mass
�ow through the storage and its e�ect of the estimated parameters is conducted. The starting
points for the parameter estimation have been constant for each iteration and have been
chosen according to realistic thermodynamic properties of the storage material.

A �gure illustrating the estimated parameters �St,Amb, ��St and �St over measurement uncer-
tainty of temperature sensors and the mass �ow inside the storage can be found in �g. 4.7 and
�g. 4.8 respectively. Con�dence intervals for � ± 2 have been included into the �gure. The
slope of the line �� describing the con�dence interval of the parameter � with respect to the
uncertainty � has been derived by following the approach below. In the equation below, the
original parameter estimation is denoted as �.

2� = � (�) = ±��� (4.1)

� 2 = 1� ��0 1�� (�� � �)2 � �� = ±�22 1� ��0 1�� (�� � �)2 (4.2)
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Figure 4.7: Estimated parameters �St,Amb, �St and ��St for � = 100 over uncertainties of thermo meters
in the thermal storage. Straight lines marking the con�dence interval of � = ±2

Figure 4.8: Estimated parameters �St,Amb, �St and ��St for � = 100 over uncertainties of the mass �ow
through the thermal storage. Straight lines marking the con�dence interval of � = ±2
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Figure 4.9: Correlation between heat transfer of the storage to the ambient �St,Amb and thermal con-
duction �St for temperature uncertainty (red) and mass �ow uncertainty (blue).

For each of the three parameters, it can be observed that the con�dence interval is becoming
larger with higher uncertainty of the measured variables. The variation of �St,Amb,i is larger
than the variation of �St, while �St is larger than ��St. This is the case for both mass �ow and
temperature uncertainty. The con�dence intervals dependent on the mass �ow uncertainty
are wider in comparison to the temperature uncertainty for all three parameters. In case of
the mass �ow uncertainty, found in �g. 4.8, it can be observed that the estimated parameters
are not symmetrically distributed around the original value. The heat transfer coe�cient is
systematically over estimated. The thermal conduction parameter is estimated lower than
the original value. A high estimated heat transfer corresponds with lower estimated heat
conductivity and vice versa. This phenomenon can be seen more clear in �g. 4.9. In this
graphic a straight line with the lowest squared error is depicted with the data points. The data
in �g. 4.9 qualitatively indicates a correlation.

The larger con�dence intervals for larger uncertainty is to be expected as the parameters
are �tted to a broader range of measured variables. The con�dence interval of heat conduction��St is close to insensitive to measurement uncertainty in both temperature sensors and mass
�ow. The highest inaccuracies caused by uncertainty are to be expected in the estimation of
the heat transfer coe�cient.

In the case of mass �ow uncertainty, the majority of estimated heat transfer coe�cients
lies above the original value with the majority of heat conduction parameters lying below the
original value correspondingly. For temperature uncertainty the parameters are estimated
symmetrically around the original parameter. For temperature uncertainty this indicates, that
the original parameter used in the boot strap method is close to the mean of the distribution.
In case of the mass �ow uncertainty there is a discrepancy between mean of the distribution
of estimated parameters in the boot strap method and the original parameter. This might
indicate that the original parameter describing the heat transfer, is in fact higher, than the
original estimation, while the heat conductivity is in fact lower.
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A possible explanation for the alpha-lambda correlation is given in this paragraph. The
heat transfer between storage and its environment is stronger at the hotter, upper levels of
the thermal storage and less energy needs to be transported within the storage to maintain
the right temperature in this section of the storage. Due to the smaller temperature di�erence
between wall and ambient at the lower levels, the higher heat transfer coe�cient is less
signi�cant and the heat loss does not need to be balanced by the energy received through
conduction in order to be coherent with measured data. Additional e�ects might be in play.

The accuracy of thermometers at the relevant temperature levels installed at the STJ is
denoted with ±0.5% which accounts for the parameters �St and ��St with a variance of less
than 1% deviation from the original parameter. The con�dence interval for heat transfer lies
at the given uncertainty on about 1% deviation from the original parameter. For the mass
�ow uncertainty the operational data shows �uctuations of up to 3.5%. For ��St the e�ects are
insigni�cant which allows the conclusion that this parameter is not fazed by changes in mass
�ow nor temperature uncertainty. The con�dence interval of �St lies at about 1% deviance
from the original parameter at 3.5% mass �ow uncertainty. The con�dence interval of �St lies
at about 5% deviance from the original parameter at 3.5% mass �ow uncertainty. This means
that the measurement inaccuracy of the mass �ow has a signi�cant in�uence on the accuracy
of the parameter estimation and this needs to be considered when assessing the accuracy of
this model.

4.2 Preheater Validation
In this section, the simulation results of the preheater are presented and discussed. The
model presented has been �t to operational data by adjusting the heat transfer coe�cients�Air, W and ��2�,� . They have been assumed as independent of mass �ow and temperature,
which is why they remain constant throughout the simulation. This decision is taken as the
temperature levels at the inlet and outlet remain in a narrow range during the operation. The
input variables into the preheater are found in �g. 4.10 and the simulation results together
with the corresponding operational data is found in �g. 4.11.

The outlet air temperature follows the data with a constant di�erence up to 7500 s. The
measured outlet temperature then drops with the simulation result not reaching the minimum
of that dip. It stays near to constant up to the change in mass �ow at 13 500 s where it rises
and the constant di�erence between measurement appears again. The simulated outlet water
temperature �uctuates with a high frequency around the measured temperature. The mean
of the simulation temperature rises in comparison to the measured value during the change
in air mass �ow. It then continues to correspond to operational data. The RMSD between
measured and simulated temperatures inside the preheater is 5,33 K and the NRMSD is 0.8%.

As changes in mass �ow are not considered in the heat transfer coe�cient, high frequency
�uctuations are translated into the outlet temperature. The air temperature is systematically
higher than measured. When the deviance between simulated and measured air temperature
decreases during the change in air mass �ow, the deviance between simulated and measured
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Figure 4.10: Input variables of the preheater model.

Figure 4.11: Simulation results of preheater plotted with operational data. Measured data ( ) and
simulated data ( ).
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water temperature increases with the simulated outlet water temperature becoming higher.
This indicates that heat loss to the environment is relevant in the energy balance. A corre-
sponding term could be included in the components model to mitigate this e�ect.

The thermal inertia in this component is assumed to be in the wall between the two media.
This simpli�cation contributes to inaccuracies as a substantial amount of thermal inertia is
caused by the water inside the preheater and the casing of the component as well. A more
accurate description is the separate balancing of inner energy in each media. This would lead
to a system of partial di�erential equations which is avoided in this study for reasons of model
reduction e�orts.

The assumption of a constant heat transfer coe�cient has been tested with several data sets
of di�erent operational days. It has been shown that for all regular modes of operation the
assumption is as accurate as for the chosen data set. Strong changes in the water mass �ow
during start or shut down or that caused by irregularities lead to large spikes in the simulated
outlet water temperature which are however not observed in reality. The RMSD does not
however, exceed 11 K for any observed data set.

4.3 Economizer Validation
In this section, the simulation results of the economizer are presented and discussed. The
model presented has been �t to operational data by adjusting the heat transfer coe�cients�Air, W and ��2�,� in the following manner.

0 = � �� ,�2� � �1 ���2
H2O (4.3)0 = � ���� ,� � �3� �� ,�2� (4.4)

To �t to data in this component, the SLSQP method has been applied to address the optimiza-
tion problem as the results have shown to be more accurate than the MHE in this particular
case. This could be caused by a good initial guess for the estimated parameters derived from
correlations listed in section 3.3. The input variables for the simulation can be found in �g. 4.12
and the results of the simulation together with the corresponding plant data can be found in
�g. 4.13.

The water outlet temperature accurately follows the operational data. The calculated air out-
let temperature is higher than the measured one and also experiences signi�cant �uctuations.
Especially during the change in air mass �ow at around 7500 s, the changes in temperature
are overemphasized in the simulation compared to the measurements. Additionally, the high
frequency oscillation of the air mass �ow is translated into the outlet air temperature of the
simulation, which is not observed in the measurements. The air outlet temperature spike
caused by the �uctuation in mass �ow at 3500 s can be clearly observed in measured data and
simulated data alike. It is pronounced more strongly in the simulation as the heat transfer is
not dependent on the air mass �ow which can be seen in eq. (4.3) and eq. (4.4). A similar event
can be observed at 7500 s with the simulated temperature under shooting the measurements.
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Figure 4.12: Input variables of economizer model.

Figure 4.13: Simulation results of economizer plotted with operational data. Measured data ( ) and
simulated data ( ).
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It can be observed, that the simulated outlet air temperature is consistently higher than the
measured temperature. The RMSD between measured and simulated temperatures inside the
storage during full operation is 7,46 K and the NRMSD is 1.7%.
The inaccuracy of the model can be caused by the simpli�cation of the driving temper-

ature di�erence to an explicit form. In reality, a higher mass �ow would result in a higher
heat transfer during these events and the temperature would therefore be less sensitive to
input changes. A similar e�ect can be observed at 7500 s. The decrease in mass �ow results
in an over proportional decrease in temperature. The heat transfer would reduce with the
driving temperature di�erence becoming smaller, thereby slowing the rise in temperature.
The temperature rises again when the water mass �ow adapts to the controls of the power
plant and the heat transfer is lowered, resulting in a decreased water outlet temperature and
an increased outlet air temperature. The e�ect can be also observed by the air mass �ow
changes at 13 500 s and 16 500 s. A heat transfer correlation dependent on the air mass �ow
could mitigate these e�ects. That would however, require an additional parameter in the
optimization problem leading to an additional non-linearity.

Just like in the preheater unit, the thermal inertia in this component is assumed to be in the
wall between the two media. This simpli�cation contributes to inaccuracies as a substantial
amount of thermal inertia is caused by the water inside the economizer and the casing of the
component as well. A more accurate description is the separate balancing of inner energy in
each media. This would lead to a system of partial di�erential equations which is avoided in
this study for reasons of model reduction e�orts.
The fact that the simulated temperature is consistently higher than the measured results,

excluding the mentioned e�ects at mass �ow changes, points to a missing heat sink in the
component’s model. A heat loss to the environment can be the cause of this observation. To
include this e�ect in the model, a corresponding term would need to be implemented. An
additional approach to increase the model’s accuracy would be the inclusion of ��20 and ����
into the optimization process. A simple linear implementation could be of the following form.��20 = �4���,�20 + (1 � �4)���� ,�20 (4.5)���� = �4���,��� + (1 � �4)���� ,��� (4.6)
This can help reduce the strong �uctuations of the outlet temperature as the driving tempera-
ture di�erence would in�uence the amount of heat that is being transferred. This however
would include an additional interdependence within the DAE system to be aware of.

4.4 Evaporator Validation
In this section, the results of the evaporator simulation are presented and discussed. During
the �tting process, a MHE has been used to identify a suitable combination of the evaporator’s
mass relevant for thermal inertia and a simpli�ed equation for the heat transfer. The complex
dependencies of water and steam properties within the heat transfer correlations presented in
section 3.3 have been shown to increase numerical instability of the simulation. To circum-
navigate these issues and to keep the calculation e�ort low, the rather complex equations for
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Figure 4.14: Input variables of the evaporator model.

Figure 4.15: Temperature curves over time of outlet temperatures of air and steam and the temperature
inside the evaporator. Measured data ( ) and simulated data ( ).

the calculation of the heat transfer coe�cients, see section 3.3, have been replaced by a more
simple correlation only dependent on the air mass �ow. For the heat transfer, an equation of
the form � = �1 ���2���,��� (4.7)

has been implemented with the two coe�cients �1 and �2 being subject to parameter optimiza-
tion. The correlation found in section 3.3 has been used to identify suitable starting values for
parameter �tting. In supplemental �g. 4.15, the temperature curves of the outlet mass �ows
as well as the temperature inside the evaporator are depicted. The temperature value of the
plant data has been derived from the pressure measurement inside the evaporator as phase
equilibrium inside the evaporator is assumed. The accompanying input variables can be found
in �g. 4.14. In �g. 4.15 the input variable ����,��,�2� is depicted together with the results for a
better comparison.
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The time frame for the validation shows variations in mass �ow and inlet temperature of
a usual operational day and has therefore been chosen to demonstrate the model’s ability
to follow the component’s dynamics. The measured and the simulated temperature of the
air at the outlet of the evaporator ����,��� ,��� rises with decreasing gradient up until 10 000 s.
It experiences a slight drop for measured data and simulated data alike at around 12 000 s
and a slight increase at 17 000 s it then decreases with increasing gradient. The simulated
temperature follows the measured data closely with small deviations at the beginning and at
the end of the interval as well as during the �uctuation in water inlet temperature around
second 12000. The measured evaporator temperature ���� rises up until 10 000 s. It experiences
a slight drop for measured data and simulated data alike at around 12 000 s and a slight increase
at 17 000 s. It then decreases with increasing gradient. The simulated temperature rises sharp
during the �rst 1000 s and continues to rise with a lower and further decreasing gradient. At
around 19 000 s it experiences an increase followed by a temperature drop. The RMSD between
measured and simulated temperatures inside the evaporator is 8,05 K and the NRMSD is 1.1%.
The evaporator temperature ���� never falls below the water inlet temperature and never

rises above the air temperature outlet in both measured and simulated data. It thereby stays in
a plausible temperature range throughout the given time span. The discrepancy of ����,��� ,���
at the beginning and at the end of the interval can be explained by the heat transfer being
not only dependent on the air’s mass �ow but also on the water’s mass �ow as well. Flow
characteristics in relation to the mass �ows will have impact on the heat transfer inside the
evaporator as well. Put simply, it can be assumed that with higher mass �ows and constant
diameters, higher velocities and thus increased heat transfers should be observed. With
lower water mass �ows �����,�2�,�� at the beginning of the interval and higher mass �ows
at the end, the heat transfer will also be lower at the beginning of the interval and higher
at the end. Therefore, the simulated temperature di�erence at the beginning of the inter-
val will be higher than themeasured one. In analogy, at the end of the interval, it will be smaller.

The driving temperature in this model has been calculated in an explicit form as shown
in eq. (3.20) to avoid a recursive loop in the solution of the DAE system. The logarithmic
temperature di�erence has been avoided by determining a mean between air and water inlet
temperature. This method di�ers from reality. A logarithmic temperature di�erence which
is also dependent on the outlet temperature of the air ����,��� ,��� would describe the driving
temperature di�erence more accurately. With the complex system of equations implemented
in the two-phase model, an implementation of a logarithmic di�erence would not have been
feasible as no convergence to a solution was achieved with the means of solving the DAE
system that have been applied in this particular simulation. The chosen explicit formulation
of the driving temperature di�erence ampli�es the e�ect of the inlet temperature of the water����,��,�2� on the heat transfer. This could explain the high sensitivity of the simulated outlet
air temperature ����,��� ,��� to the water inlet temperature.

A possibility of improving the model’s accuracy following that simpli�ed approach and keep
the explicit formulation can be the inclusion of a factor �3 weighing the inlet temperatures into
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the parameter optimization. The temperature di�erence can then be written in the following
form. �� = (�3����,��,��� � (1 � �3)����,��,�2�) � ���� (4.8)

The deviance between the simulated and measured value can be explained by the made
assumptions laid out earlier in this section and the assumptions of a perfect equilibrium made
to set up the system of equations of the two-phase model. The deviation is however acceptable
and in the range of only a few Kelvin. The improvement in numerical robustness to di�erent
sets of input variables are valued over the loss in accuracy and the model is able to reproduce
the component’s dynamic su�ciently well.

4.5 Super Heater Validation
In this section, the results of the two super heater simulations are presented and discussed. To
�t the simulation results to the operational data, a MHE has been performed to adjust the heat
transfer coe�cient. By altering the constants �1 and �2, the heat transfer and its dependency
on the air mass �ow is �t to operational data using the following equation.

0 = �� � �1� ���2
in,Air (4.9)

At the STJ, the two heat exchangers between hot air and steam are constructed within one
casing. A schematic illustration of the component can be found in �g. 3.2. Consequently,
only one air inlet �ow and one air outlet �ow is available for measurement. The validation
is therefore performed in combination of the two super heater models. The �tting for super
heater 2 is performed only by comparing the steam outlet temperature simulation results with
the measurements. The simulation results of the air outlet stream of super heater 2 have been
used as input variables of the air stream into super heater 1. Its �tting has been performed
penalizing the deviance of simulation results and measurements of both air outlet temperature
and steam outlet temperature. The input variables relevant for this system of components
are shown in �g. 4.16. In �g. 4.17, the simulation results of both super heaters are found. The
starting values for the algebraic variables have been set equal to the measured values at the
beginning of the simulated interval. For the analysis, a section with clear dynamics in inlet air
temperature and mass �ow has been chosen.

The steam outlet temperature of super heater 2 is shown in the upper graph of �g. 4.17.
The simulated temperature rises with the rise of the air inlet temperature into the super
heater while reacting faster to the temperature change than the measurements. The sim-
ulated data slightly overshoots the measured temperature. It follows a slow rise in inlet
temperature between 1500 s and 6500 s for the measured temperature. The simulated outlet
water temperature accurately reproduces the trend while oscillating around the measured
values with a small amplitude. Afterwards, the measured and simulated temperatures drops
and the simulation undershoots the measurements, reaching a temperature lower than the
measurements. Between 7000 s and 13 000 s, the steam outlet temperature remains constant
with the simulated temperature �uctuating around the measured values. From then on, the

57



4 Results and Validation

Figure 4.16: Input variables into the simulation of super heater 1 and super heater 2.

Figure 4.17: Simulation results over time of steam outlet temperature of super heaters. Measured data
( ) and simulated data ( ).
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simulation results deviate noticeably from the measurements showing an increase in outlet
temperature not recorded by the measurements. The RMSD of measured and simulated outlet
water temperature of super heater 1 is 12,03 K and a NRMSD of 1%. The RMSD of measured and
simulated outlet temperatures of water and air of super heater 1 is 15,08 K and a NRMSD of 1.9%

The simulated steam outlet temperature of super heater 1 can be found in the second graph
of �g. 4.17. The simulation is able to follow measurements while reacting more strongly to
changes in temperature then the real component. Fluctuations occurring in measurements
are ampli�ed. A deviance between simulation results and measurements can be observed in
the interval starting at 13 500 s with the simulated outlet temperature being higher than the
measurements.

The air outlet temperature of the super heaters can be found in the third graph of �g. 4.17.
A rise in outlet temperature can be observed between 1500 s and 6500 s where the simulation
shows a higher temperature than recorded by the measurements. A decrease in temperature
between 6500 s and 8500 s can be observed. The simulation follows the measured behavior
qualitatively, however, at higher temperatures.

The simulation is able to qualitatively react to changes in input variables as would be
expected of a heat exchanger. The simulation results have been shown to be more sensitive
to changes in input variables than the real component. This can be explained by the lack of
thermal inertia within the model of the simulation. While the casing and the water inside
the tube bundle has a relatively low mass, it levels out �uctuations in the input temperature.
The steam outlet temperature of super heater 2 remains nearly constant while the air mass
�ow drops and the steam mass �ow remains nearly constant as well. This shows that the
approach of mass �ow correlation of heat transfer is able to reproduce measured behavior of
the component. With a constant heat transfer and its implicit formulation, as chosen in this
model, a drop in the mass �ow would result in an increase in steam outlet temperature and a
drop in air outlet temperature. This e�ect is mitigated through the mass �ow dependency of
the heat transfer. The errors resulting from simpli�cation can be seen in the interval starting
at 13 500 s as the heat transfer is set too high. High air mass �ow results in a high heat transfer
and a too high steam outlet temperature in both super heaters. An appropriate inclusion of
the water mass �ow in the dynamic calculation of the heat transfer coe�cients as suggested in
section 3.3 would lead to a higher accuracy. Even an inclusion in data-based correlation could
lead to better results. A �tting including both mass �ows in that case is sensible only with
an available model of the entire steam cycle including control of mass �ows as operational
data water mass �ow and air mass �ow are dependent. Alternatively, a wide range of possible
inlet conditions would need to be considered in order to determine the behavior of the heat
exchangers from data.

In the third graph of �g. 4.17, the air outlet temperature is consistently simulated to high
up until 14 000 s. As the steam temperatures are closer to the measured values in this interval,
a di�erent heat sink needs to be considered. The heat transfer between heat exchanger casing
and the ambient has not been considered in this study. The super heaters are the hottest
component of the steam cycle resulting in highest heat loss to the environment in the real
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Figure 4.18: Input variables of steam turbine model.

plant. The data suggests considering these losses in a more comprehensive model if these
deviations need to be mitigated. Accordingly, the simulated air temperature is closer to the
measured values in the interval starting at 14 000 s while the steam temperatures deviates
more strongly.

4.6 Steam Turbine Validation
In this section, simulation results of the steam turbine model are compared to operational
plant data. The accuracy is discussed with respect to the ability to reproduce power production
and to response to control inputs. The model used for the simulation of the steam turbine can
be found in section 3.3.5. The control input for the steam turbine is the position of the turbine
control valve �TCV. A graphical illustration with the input variables into the steam turbine can
be found in �g. 4.18 and the accompanying results of the simulation together with operational
data are found in �g. 4.19. The validation data set has been chosen as it includes dynamics
during typical operation excluding start up and shut down. The parameters which have been
adjusted during the data �tting process are the isentropic e�ciency of the turbine �� , the heat
transfer between steam and turbine casing and the part of the turbine casing mass that is
involved in thermal inertia. While the turbine’s as well as the casing’s mass are known, it is
unclear if all of it is heated fast enough in a relevant time scale to be part of thermal inertia.
Starting values for the simulations have been chosen to be equal to the measurements in the
beginning of the time interval.

The mass �ow through the turbine is computed from all four input variables as shown in
eq. (3.40). It rises to its operating point within the �rst 500 s and then slowly �uctuates in that
region. It falls down to a lower value at 8500 s. In the �rst 2000 s and the last 2000 s, the mass
�ow is simulated slightly higher than it was measured. The simulated mass �ow follows the
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Figure 4.19: Simulation results over time of outlet temperature, produced electrical power and calcu-
lated mass �ow in the steam turbine. Measured data ( ) and simulated data ( ).

measurements accurately between 2000 s and 8000 s. The mass �ow qualitatively resembles
the course of the valve position. The RMSD of measured and simulated power output of the
steam turbine is 44 kW and a NRMSD of 4.4%
The temperature at the outlet of the turbine over time can be found in the middle graph

in �g. 4.19. The simulated outlet temperature drops under the measured values during the
�rst 2000 s. It then rises quickly to a maximum temperature measured at the turbine outlet.
It continues to rise slightly until 7000 s and then falls abruptly to the minimum of measured
values while slightly undershooting below the minimal measured values. The measured
temperature in turn rises slightly until 1000 s, remains constant until 3000 s and then rises
almost continuously to its maximum at 7000 s. It then falls back onto its minimum within the
time span between 8000 s and 10 000 s. The electricity output rises up to its operating point
and remains on that level apart from slow �uctuation up to 8500 s. It then decreases to a lower
level where it remains constant for the rest of the interval. The mass �ow corresponds to the
control valves behavior.

The inaccuracies at the beginning and the end of the interval overlap with the changes in
inlet temperature into the turbine. A term including the inlet temperature is part of eq. (3.40)
and could be the cause of this inaccuracy. To mitigate this e�ect, the term could be re�ned with
a constant exponent. The outlet temperature of the turbine model is more sensible to input
changes than the real component. While the outlet temperature of the real turbine rises slowly,
the simulated output rises and falls signi�cantly more abruptly. The choice of an explicit
driving temperature di�erence in the model instead of a more accurate, implicit one can be part
of the reason. The assumption of a constant heat transfer between the steam and the turbine
wall does not correspond to real e�ects and could contribute to the inaccuracy. Consequently
the casing of the model could be cause to more thermal inertia of the turbine than is displayed
in the model. The combination of higher mass �ow and lower outlet temperature results in
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a higher electricity output than measured during the interval up to 2000 s. In the interval
between 8000 s and 10 000 s the produced electricity is slightly under the measured values,
which is caused by the small simulated mass �ow. This e�ect is counteracted by the lower
simulated outlet temperature.
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5 Summary and Outlook

In this chapter, the procedure and contents of the work are summarized. Aspects of the
study are analyzed critically and suggestions for future research is given. Firstly the use of
polynomials for the water and steam properties is discussed. Secondly The use of the do-mpc
frame work for solution and optimization of the system is evaluated. Suggestions for accuracy
improvement of the system are given.

In this study thermal models of a solar tower power plant for the purpose of model based
control have been set up and �t to operational data of the solar tower in Jülich. Relevant
theoretical fundamentals and methods implemented in this study are presented in chapter 2.
Model reduction e�orts have been conducted in order to keep computational expenses down
for optimization processes and to mitigate possible numerical issues when solving the system
of equations. The sets of equation used to describe the components is found in chapter 3. The
systems of equations describing the dynamic behavior of the components has been simulated
using the do-mpc framework based on Casadi. For the automatic di�erentiation performed
in Casadi di�erentiable functions describing the thermodynamic properties of the �uids are
needed. The thermodynamic properties have been approximated using polynomial functions
and their accuracy has been evaluated for di�erent degrees and domains. The procedure and
analysis is presented in section 3.1.1. Parameters of the models have been chosen and adjusted
to �t the simulation to operational data. For that, a moving horizon estimation has been
performed and implemented in the framework do-mpc to solve the non linear problem and
determine a suited set of parameters. This set of parameters was re�ned by using sequential
quadratic least square programming implemented in SciPy-Minimize. The simulation results
are presented together with operational data and the performance of the model is evaluated
in chapter 4. The e�ects of the made simpli�cations are explained.

The approximation of water and steam properties with polynomials, has to be evaluated
critically in this work. In order to simplify the property functions and provide di�erentiable
functions for the automatic di�erentiation, polynomials have been chosen. The implementa-
tion and evaluation of their accuracy is found in section 3.1.1. In order to keep accuracy in an
acceptable range, the degree of these polynomials needs to be su�ciently high, see section 3.1.1.
In the used models, e.g., the two phase model found in chapter 5, the property functions are
part of larger functions, multiplying the results of polynomial approximations with each
other. This leads to expressions with even higher degree causing numerical instability in
components relying on the model. Oscillations in these functions, containing the multiplied
terms, can cause local minima which hinder the optimization process. To mitigate these e�ects,
a possibility to restrict the domain of validity of the polynomials was implemented. As can be
seen in section 3.1.1, the degree of the polynomial can be reduced with extensive knowledge
on the system. However, this method is elaborate as the expected state for each simulation
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would need to be narrowly estimated before hand and the accuracy of each trust region would
need to be evaluated individually. For the purpose of simulation and optimization a di�erent
approach should be chosen and great care should be taken for the choice of the property
functions. As functions implemented by IAPWS have up to 48 degrees, they are not suitable
for an implementation in do-mpc. A more complex formulation of polynomials as suggested
by Åberg or Goemans could be a possibility in solving this problem [65][64]. An entirely
data-driven surrogate model using neural networks or a comparable architecture can be a
possibility for improvement in both accuracy and numerical robustness. The problem of
accurate, di�erentiable water and steam properties needs to be addressed when joining the
components for a comprehensive model of the power plant.

The do-mpc frame work is a multi functional tool which integrates various solvers for
systems of equations, means for moving horizon estimation and model predictive control.
The documentation is detailed and readily available. Additionally it is based on Casadi which
allows an e�cient calculation through use of automatic di�erentiation. However, the use
of this frame work to solve the systems of equations resulting from the thermal models of
the presented components lead often to error messages which are hard to interpret. The
error would often point to the same line where the simulation time step was executed for a
numerous number of causes. By using the implemented solvers, it is often di�cult for the user
to �nd the source of the error in a large system of equations. Whether the cause is to be found
in a mistake in the formulation of an equation, starting conditions or the numerical structure
of the system is often di�cult to decide with information given by the frame work. A possible,
yet elaborate option would be to implement the solvers manually or hand pick the solvers for
the simulation, speci�cally with a focus on debugging. Especially for future students it can
be helpful to �nd problems in the code and engage in the underlying mathematics of solving
large systems of equations.

In case a more accurate model of the thermal storage is needed an improvement in accuracy
can be the implementation of a heat transfer between air and the ceramic. As mentioned in
section 4.1 the "One Temperautre Model" is used to avoid the occurrence of partial di�erential
equations. With methods of solving these equations the partial di�erential equations are
solved in a discrete manner which would thereby not increase numerical instability as only
additional equations would need to be solved at each time step. The additional computational
expense would need to be considered. In case a more precise model for the power block is
wanted, the numerous simpli�cations performed in this study need to be reevaluated. The
inaccuracy caused by these simpli�cations might be to signi�cant for speci�c applications
and improvement might be an aim for future studies. Implementing better suitable property
functions for water and steam and simultaneously implement more transparent means of
solving and optimizing the system, many simpli�cations might not be necessary to maintain
high numerical stability and keep low computational expense.

For a comprehensive model of the power plant the connection of the components is neces-
sary. The outlet streams of a component are then the input stream of the next component
downstream in the �ow chart. While the structure of the code and the modular nature of the
the models allows a simple implementation of the connection, the complexity of the system of
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equations will rise drastically when connecting components. Reducing the polynomial degree
of the polynomials to one can be a possibility to reduce the numerical instability of the system
and facilitate the process, compare section 3.1.1. However, an intense study of the simulated
operational state would be necessary and the range of operational states would be limited
with this method. It is recommended to �nd and test a more appropriate representation of the
thermodynamic properties of water and steam. In addition, it can be helpful to investigate
further methods for solving the system of equations, where the tracking of errors is more
accessible. With larger systems of equations the possibilities for errors and their sources grow.
An alternative frame work or a self programmed solver can help the set up of the complete
dynamic model. A transfer of the simulation model to a frame work like do-mpc facilitating
optimal control and parameter estimation would still be an option when the modular structure
of equations, variables and solver is kept. It is to mention, that the parameter identi�cation
might need to be re�ned when the complete model of the system is set up. The applied
methods for parameter identi�cation have shown to be e�ective and can be used to identify
the parameters.
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Appendix: Two phase equilibrium model for a
single fluid system

Assumptions

� = �liq = �gas = �steel (.1)� = ���� = �gas(= �steel) (.2)
Boundary conditions ���� = �� ����� +�� ��� (.3)

���� = �� ��� (.4)

Parameters

{� ,�steel, �steel} = ����� . (.5)
Di�erential equations

���� = � ���� � + ��liq�� � �gas�gas � �liq�liq��liq�liq �� � �liq�liq�� + ���liq�liq �� � �gas�gas�� +�� �steel,k�steel,k (.6)

��liq�� = � ���� � + ����liq�2gas � + �liq�2liq�� ����1�liq + 1�gas (.7)

� = � ���� �
p,liq

+������T,liq
� ����� � = � ���� �

v,liq
+������T,liq

� � (.8)

� = � ���� �
p,gas

+������T,gas
� ����� � = � ���� �

v,gas
+������T,gas

� � (.9)

Algebraic equations

{�liq, �gas, �liq, �gas} = � (� ) (.10)�
���� �

p,liq
,���� �

p,gas
,���� �

T,liq
,���� �

T,gas

� = � (� ) (.11)�
���� �

v,liq
,���� �

v,gas
,���� �

T,liq
,���� �

T,gas

� = � (� ) (.12)
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