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1 Introduction

One of the key factors in the determination of gear reliability, and by
extension, transmission life, is the dynamic loading on the gear teeth. The
most important criterion in the estimation of gear reliability is ensuring safety
throughout its lifetime. This reliability becomes more crucial in helicopters
and aircraft transmissions because the safety risk is high and transmission
failure could be catastrophic. Gears have also been employed in aeroengines
to improve the engine efficiency by increasing the propulsion efficiency. A
planetary gear system reduces the shaft’s speed from the turbine to the fan,
which allows the low-pressure (LP) shaft to run at higher rotational speed
[1]. The lower fan speed offers higher bypass ratios, resulting in better fuel
consumption and noise reduction (Figure 1). Also, double helical gears are
usually preferred over spur gears because the former offers significantly higher
load carrying capacity without the problem of axial thrust as in helical gears.
[2]

Figure 1: Comparison between conventional turbofan and geared turbofan
architecture [1]

To understand gear design, it is important to study the dynamic response
caused by gear meshing and the vibrations resulting from it. Due to cyclic
and irregular loading, these vibrations may lead to tooth pitting and cracking
[3]. Tooth fracture is one of the main failure forms in gears. Under normal
circulatory loading conditions, fatigue cracks occur at tooth root and prop-
agate gradually [4]. Hence, the load carrying capacity is to be studied for
minimizing tooth wear. The objective of this current work is to determine
the crack propagation in a gear subject to dynamic loading and investigating

1



vibrations to characterize influence of the crack. Therefore, mathematical
models are needed to evaluate the dynamic behavior of the system under
loading and propagating crack.

This study is a summary of methodology progress being followed to esti-
mate the crack propagation path in a three-gear system- a planetary gear
between two sun gears (Figure 2). A simplification of problem steps is done
to understand the body dynamics as per the loading conditions. An overview
of the significance of crack propagation studies and the state-of-the-art simu-
lation techniques is required for this simplification. The effectiveness of these
methods, the advantages and shortcomings are summarized. The study then
moves its course to the process of designing a healthy gear as a prerequisite
to crack propagation study. A simpler system of gears is taken into consid-
eration first to study the loading and vibration characteristics. Finally, to
understand how a multi degree of freedom system works, a numerical model
of spring mass damper with two degrees of freedom is set up.

Figure 2: Reference gear setup

2 Motivation

Gear faults can usually occur due to fatigue, spalling or pitting caused
by wear, load fluctuations, backlash etc. [5]. This severely reduces actual
strength of the gears and prompts crack growth. Fatigue cracks may appear
in the region of highest stresses, whose location can be determined based
on numerical analysis, meshing force variability, point of application and its
direction [6]. So, an understanding of the tooth failure mechanism is needed
to design more reliable gears. Numerical methods are one of the techniques
to study crack initiation and propagation and are discussed here.
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3 State of the Art

A study by Jelaska and Glodez [7] uses a computational model with re-
spect to bending fatigue in a gear tooth root, where the fatigue process is
divided into crack initiation and propagation period. The fatigue crack ini-
tiation threshold is determined, with the assumption being that the initial
crack is located at the point of largest stresses in the tooth root. The study
uses Linear Elastic Fracture Mechanics to describe the crack growth rate.
The crack length for crack propagation from the initiation to the critical
crack length is numerically estimated using the Finite Element Method with
FRANC2D. The FE mesh around the initial crack in a gear tooth root is
shown in Figure 3. In the numerical computations, it has been assumed that
Linear Elastic Fracture Mechanics, a tool for life expectancy estimation of
cracked components [8], is not valid below some threshold crack length. The
crack extension angle is the predicted according to the Maximum Tensile
Stress criterion.

Figure 3: Finite element mesh around initial crack in a gear tooth [7]

A number of studies have focused on the effect of crack on bending mesh
stiffness. Chaari and Fakhfakh [9] analyze the effect of a tooth crack on the
bending stiffness, with shape of the crack approximated as a straight line to
simplify the problem. It is observed that gear mesh stiffness decreases and
maximum effect of tooth crack is observed when load is applied at addendum
circle of the defective tooth.

A study by Chen and Shao [10] describes an analytical model to investigate
the effect of gear tooth crack on mesh stiffness, considering crack propagation
both along and through tooth width. Tooth deflections are calculated by
potential energy method based on beam theory. Besides tooth deflection,
it has been found that fillet-foundation deflection also influences stiffness.
The mesh stiffness plots with varying crack lengths are illustrated below. It
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is apparent from Figure 4 that maximum stiffness reduction is encountered
when the cracked tooth of pinion is just going to engage.

Figure 4: Mesh stiffness with different crack length along tooth width [10]

A study by Shao [4] uses cracked beam theory to analyze the gear dynamic
characteristics. It considers the tooth as a cantilever beam (Figure 5) and
devises a three-dimensional finite element numerical analytical model. The
dynamics natural characteristics of gear structure with crack are investigated,
e.g., natural frequency, vibration shape, dynamic stress and the effects with
different lengths and positions are simulated. A theoretical foundation is

Figure 5: Model of cracked gear tooth [4]

established for identifying gear crack and lay a good foundation for further
crack detection through acoustic characteristics analysis. A mathematical
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model for cracked gear is set up based on the Hu-Washizu variation integral
principle with boundary conditions set on the principle that the strain energy
density increases for a beam dynamic system.

A study by Endeshaw and Osire [3] discusses a foundation with a dynamic
model of a one-stage gearbox, a finite element method, and a degradation
model for the estimation of fatigue crack propagation in gear. The six degrees
of freedom gearbox is modeled on MATLAB. Potential energy method used
to perform the mesh stiffness calculation. In this method, total potential en-
ergy stored in mesh gear system includes four components: Hertzian energy,
bending energy, shear energy and axial compressive energy, which can be
used to calculate the corresponding mesh stiffness [11]. The force calculation
considers the maximum torque values used in the dynamic modeling.

As, the paper focuses on estimation of crack propagation, meshing around
the crack tip (Figure 6) is emphasized to obtain accurate nodal displacements
near crack tip from displacement correlation method. Model generation and
solving for nodal displacements has been done on ANSYS, with the assump-
tion being that the accuracy of the nodal displacements is not affected by
the non-homogeneity of the mesh. The framework followed is summarized in
the flowchart in Figure 7.

Figure 6: Finite element model for: (a) cracked gear tooth; and (b) singular
element at the crack tip [3]

A recent work by Chen and Huangfu [12] considers the complex founda-
tion structure with the real spatial crack propagation path under partial load
simulated by Extended Finite Element Method (XFEM). For the XFEM, the
crack is constructed by cohesive segment method which includes mainly three
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Figure 7: Framework for fatigue crack propagation in APDL- ANSYS Para-
metric Design Language [3]

factors- the initial damage criterion, the direction criterion and damage evo-
lution criterion. First, the maximum principal stress at crack location is de-
rived from the Finite Element Model. When initial identification parameter
of damage satisfies the limit discriminant coefficient relation, a new cohesive
segment is inserted in the next propagation step.

4 Problem Formulation

Before delving into crack propagation, it is essential to design a healthy
gear pair model. A planetary helical gear system is quite complex to begin
with. To understand the dynamic response, a number of studies have focused
on simplification to a spur gear system, which are discussed in the next
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section.

5 Study and Analysis

In a study by Rezaei and Poursina [13], analytical equations are derived for
spur gear pair. As helical gears are taken into consideration, a helical tooth
is divided into several independent thin spur tooth slices and mesh stiffness is
calculated (Figure 8). The slices are considered with no connections between
them, making this study limited to gears with low helix angles. The spur
gear is considered as a beam according to the potential energy method and
the axial, bending and shear and fillet-foundation stiffness for each gear is
calculated. The analytical results are then compared with the Finite Element
Method in ABAQUS software.

Figure 8: (a) Helical tooth; (b) sliced thin spur teeth [13]

Lumped parameter models have widely been used in gear pair modeling.
These usually involve the assumption of shafts and bearings to be rigid and
representation of gear mesh with a parallel combination of spring and damper
system. The models can be extended to include static or dynamic transmis-
sion error, backlash and a time-varying mesh stiffness. The numerical sim-
ulations can then be solved using Runge-Kutta method or other integration
methods. Also, the vibration levels significantly change between a constant
load conditions and time-varying load conditions and constant damping and
time-varying damping conditions.

A robust analytical framework has been well illustrated by Robert Parker
[14] for modeling and understanding planetary gear dynamics and examine
some factors affecting gear vibration. A lumped parameter model has been
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derived for spur planetary gears including mesh stiffness variation and trans-
mission error excitation, which has been considered valid for general epicyclic
gears with any number of planets. So, this is a generalized study that can
be used as a fundamental tool for specialized cases. The natural frequency
spectra and vibration modes have been analyzed, with cases including di-
ametrically opposed planets. Eigensensitivities are obtained from vibration
mode properties. Finally, the parametric instabilities caused by time-varying
mesh stiffness are investigated. The modal properties are used to identify the
effects of contact ratios and mesh phasing on parametric instabilities. This
study has been performed on a spur gear model for two-dimensional analysis,
as helical gears require a three-dimensional analysis.

A multi-mesh system will make the oscillations become more complex.
Such a system has been studied by Jiang and Shao [15], where to illus-
trate complex oscillation phenomena, an eight degree of freedom non-linear
dynamic model of a multi-mesh gear (Figure 9) is developed to study the
responses of the system. Interactions between these mesh stiffness variations
at the two meshes are analyzed.

Figure 9: Dynamic model of the multi-mesh gear system [15]

This work is particularly interesting to the cause of the current study as it
also involves a gear between two diametrically opposite sun gears. The mesh
combinations are simulated as spring-damper pairs and the effect of friction is
neglected here with the added assumption that the mean load is high and the
dynamic load is insufficient to cause tooth separations (no contact loss). The
mess stiffness variation occurs due to the alternating engagement of single
tooth pairs and double tooth pairs. This study also uses the Runge-Kutta
4th and 5th order algorithm with a fixed time step to numerically integrate
the governing equations.
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It is advantageous to have a comparison between analytical and Finite
Element Method for analysis of gear dynamics. A study by Ambarisha and
Parker [16] has shed some light on this comparison. The work examines
the nonlinear dynamic behavior of spur planetary gears using two models of
lumped-parameter model and a finite element model. The two-dimensional
model represents the gears as lumped inertias, the gear meshes as nonlin-
ear springs with tooth contact loss and periodically varying stiffness due to
changing tooth contact conditions, and the supports as linear springs (Figure
10). The governing equation can be given by:

Mẍ+ Cẋ+K(x, t)x = F (t) (1)

Figure 10: Planetary gear lumped-parameter analytical model [16]

Mesh stiffness variation excitation, corner contact, and gear tooth contact
loss are all intrinsically considered in the FE analysis. Finite element-contact
analysis software Calyx, which is specialized for gear dynamics is used to
model the planetary gears. The software uses combined surface integral and
finite element solution, which reduces the number of finite elements and
facilitates analysis with reasonable run times. Mesh stiffness variation due
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to change in number of teeth in contact, contact due to elastic deformation
of gear teeth, contact loss are intrinsically modeling in FE model. The only
additional inputs to gear geometry and material properties are input torque
and the gear speed. As transmission error is also a computed output, there
is no need to assume a static transmission error. A huge advantage of this
model is that it reduces the number of assumptions.

The final steady-state response at a particular speed is used as the initial
condition for the next speed. The equation (1) is solved using a fourth or-
der Runge-Kutta integration method. Responses from the dynamic analysis
using analytical and FE models are successfully compared qualitatively and
quantitatively. These comparisons validate the effectiveness of the lumped-
parameter model to simulate the dynamics of planetary gears. A similar
approach will be helpful to validate the analytical model for simpler models
considered in this case, which will be focused on at a later stage of the study.

5.1 Spur-gear pair with time-variant loading

A research by Yousfi [17] identifies damping model in the gear system with
time-varying stiffness and time-varying excitation forces. The model consists
of a spur gear pair with time-variant loading (Figure 11). The two differential
equations of gear system can be given by Newton’s laws of motion.

Figure 11: Dynamic model of a spur-gear pair system[17]

I1
d2θ1
dt2

+R1c(t)(R1
dθ1
dt

− R2
dθ2
dt

) + R1k(t)(R1θ1 − R2θ2)) = T1(t) (2)

I2
d2θ2
dt2

− R2c(t)(R1
dθ1
dt

− R2
dθ2
dt

)− R2k(t)(R1θ1 − R2θ2)) = −T1(t) (3)
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where R1 and R2 are the radii of the two gears, m1 and m2 are the two
masses, I1 and I2 are the moments of inertia, θ1 and θ2 are the two rotation
degrees of freedom.

The mesh-stiffness variation is presented using the square waveform as
follows:

k(t) =

{
Kmax .... for 0 < t < (εα − 1)Te

Kmin .... for (εα − 1)Te < t < Te

(4)

where Te is the meshing period, ϵα is the contact ratio and Kmax and Kmin

are the extreme values of stiffness. Rewrite equation (2) and (3) with Me as
equivalent mass and dynamic transmission error as y

y = R1θ1 −R2θ2 (5)

Me
d2y

dt2
+ c(t)

dy

dt
+ k(t)y = Me(

R1

I1
+

R2

I2
)T1(t) (6)

Me =
I1I2

I1R2
2 + I2R2

1

(7)

In non-dimensional form, the equation can be written as:

d2y

dt2
+ C(t)

dy

dt
+K(t)y = F (t) (8)

F (t) =
T1(t)R1

I1
+

T1(t)R2

I2
(9)

where F(t) is the time-varying external excitation, K(t) is the time-
varying rigidity and C(t) is the unknown damping. A constant piecewise
model (Figure 12) is presented for damping, where the damping is consid-
ered constant in each defined time interval.

C(t) =



C0 .... for T0 < t < T1

C1 .... for T1 < t < T2

.

.

Cn−1 .... for Tn−1 < t < Tn

(10)

The damping values are then solved by the integral method, where Eq. 8
is integrated with respect to time. The unknown parameters of the integral
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Figure 12: Piecewise Model of the observed response and damping C(t) [17]

method are obtained using the linear least squares method in matrix form.
The idea is to transform the observed data by the integral operator, which is
created by MATLAB. The evaluation of time-varying stiffness presented in
the paper (Figure 13) or damping evaluation is outside the scope of this in-
ternship. In this study, the performance of the proposed method of damping
calculation is validated based on a simulated example. The free response is
simulated using second order Runge-Kutta procedure.

Figure 13: Time-varying mesh stiffness [17]
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5.2 Spring Mass Damper System

A similar methodology is used in this study to observe the dynamic behav-
ior of a spring mass damper system. The system is considered to replicate
the gear mesh, which is often represented by a parallel connection of a spring
damper system. Figure 14 shows a 2DOF Mass spring damper system. The
system is subjected to an external force on mass m1 in the outward direction.

Figure 14: Two mass spring damper system

The parameters of the system have been summarized in Table 1. The

Table 1: Spring damper system parameters

Parameter Symbol Block 1 Block 2 Unit
Mass m 3 15 kg

Spring Constant k 10 100 N/m
Damping Ratio ζ 0.02 0.1 Ns/m

Initial Displacement x 0 0 m

equations of motion for the two masses can be given by:

m1ẍ1 + ẋ1(c1 + c2)− c2ẋ2 + x1(k1 + k2)− k2x2 = F (11)

m2ẍ2 + c2ẋ2 − c2ẋ1 + k2x2 − k2x1 = 0 (12)

Substituting second order terms to get a system of first-order Ordinary
Differential Equations
u1 = x1 and u2 = ẋ1

w1 = x2 and w2 = ẋ2

Rewriting the equations of motion,

u̇2 =
1

m1

(−(c1 + c2)u2 − c2w2 + (k1 + k2)u1 − k2w1 + F ) (13)

ẇ2 =
1

m2

(−c2w2 + c2u2 − k2w1 + k2u1) (14)

13



In addition to the Euler method, State space representation method is
tested. The state space is a control method that can reflect the changes
of internal dynamic characteristics and the relationship between the input
state and externa factors. It is a suitable method for solving complex dy-
namic problems of multi-degree of freedom systems with multiple inputs and
multiple output variables, nonlinear systems and time-varying systems [18].
The state space representation can be given as:

u̇1

u̇2

ẇ1

ẇ2

 =


0 1 0 0

−k1
m1

−c1
m1

k1
m1

c1
m1

0 0 0 1
k1
m2

c1
m2

−(k1+k2)
m2

−(c1+c2)
m2



u1

u2

w1

w2

+


0
1
m1

0
0

F (15)

The simulations are performed on Python to get the displacement, velocity
and acceleration responses against time (Figure 15).

Figure 15: Positions, velocities and accelerations of the masses

We can see the decaying response and the stability region for the two
masses. There is also an option to observe the step response of the system
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in absence of the external force and providing only initial displacements to
the two blocks. In addition, the state space representation and Euler method
do not provide different results here(Figure 16). However, Euler method will
not work for more complicated systems, as the method is only first order
convergent and very small time steps (0.001s here)are required to achieve
satisfactory results [19]. As a number of models have performed the equation
solving methodology with Runge-Kutta 4th order, it will be advantageous to
compare the Euler and state space representation with Runge-Kutta method
(as a part of future study).

Figure 16: Comparison of State space and Euler method

The hanning cut signal (Figure 17) is being used here for leakage protection
with good amplitude accuracy. The advantage of Hanning Window is that
it reduces the side lobes. It has good frequency resolution and is better for
identifying smaller-magnitude components from the larger ones [20]. The
filter coefficients of a Hanning window is characterized by the formula [21]:

w(n) = 0.5(1− cos(2π
n

N
)), 0 ≤ n ≤ N (16)

where length of window is N + 1.
We can see from Figure 17 that the Hanning window is able to suppress

discontinuity in the frequency analysis by tapering the signal soothly towards
zero at the start and end of the recording window, which is necessary for
receiving a reasonable FFT analysis. If a window function is not used, a
non-zero start and end value can deliver incorrect results in investigating
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Figure 17: Hanning cut signal

a continuous time signal. The zeros and poles of the dynamic system are
plotted to get eigenvalues, and establish stability criteria (Figure 18). As
the system differential equation represents the transfer function, its roots
define the system poles and effectively the system response. So, the transfer
function poles are the roots of the equation and also the eigenvalues of the
state space system matrix [22].

A few inferences can be drawn from the location of poles from the plot
in Figure 19. First, the eigenvalues of the system in Eq. 15 are calculated,
given as follows:

[-6.02720084+0.j
-0.14261096+1.8026355j
-0.14261096-1.8026355j
-1.12757724+0.j]

The real poles on the left-half of the plane signify an exponentially decay-
ing component in the response. The other two poles are complex conjugate
pair generate a response component of a decaying sinusoid, where ampli-
tude and frequency is determined by initial conditions. The zero-pole plot is
particularly informative in establishing the relation between pole locations,
natural frequency and damping ratio. The natural frequency is the length
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Figure 18: Influence of pole position on system response [23]

Figure 19: Zeros and poles of the system

of the vector from the origin to either of the complex poles. The imaginary
part of the pole is the “damped natural frequency”; this is the frequency of
oscillation when the poles are excited. The real part of the poles sets the
rate at which the oscillation envelope decays [24].
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6 Conclusion

This study is a summary of some of the work done in modeling gear dy-
namics, including some simplifications done to study the segments of the de-
sired system better. A numerical model for studying multi-degree of freedom
system is established. There is a need to experiment with different method-
ologies (time-integration methods like Euler, Euler-Cromer, Runge-Kutta,
state space etc.) to compare them for the ease and accuracy of modeling
strategies. Analytical models have been the focus of this study because the
computational cost with using only Finite Element models is very high. In
future study, a semi-analytic method coupled with FEM will furnish better
results.

18



7 References

[1] A. M. Tobi and A. Ismail, “Development in geared turbofan aeroengine,”
in IOP Conference Series: Materials Science and Engineering, vol. 131,
p. 012019, IOP Publishing, 2016.

[2] K. Kawasaki, I. Tsuji, and H. Gunbara, “Manufacturing method of dou-
ble helical gears using multi-axis control and multitasking machine tool,”
in International Gear Conference, pp. 86–95, 2014.

[3] H. B. Endeshaw, S. Ekwaro-Osire, F. M. Alemayehu, and J. P. Dias,
“Evaluation of fatigue crack propagation of gears considering uncertain-
ties in loading and material properties,” Sustainability, vol. 9, no. 12,
p. 2200, 2017.

[4] R. Shao, P. Jia, and F. Dong, “Dynamic characteristics of cracked gear
and three-dimensional crack propagation analysis,” Proceedings of the
Institution of Mechanical Engineers, Part C: Journal of Mechanical En-
gineering Science, vol. 227, no. 6, pp. 1341–1361, 2013.

[5] P. Sopcik and D. O’Sullivan, “How sensor performance enables
condition-based monitoring solutions,” 5 Making Sense of Sounds, or
How AI Can Boost Your Machines’ Uptime, p. 45, 2019.

[6] J. Maczak and M. Jasinski, “Model-based detection of local defects in
gears,” Archive of Applied Mechanics, vol. 88, no. 1, pp. 215–231, 2018.

[7] D. T. Jelaska, S. Glodez, and S. Podrug, “Numerical modelling of the
crack propagation path at gear tooth root,” in International Design
Engineering Technical Conferences and Computers and Information in
Engineering Conference, vol. 37025, pp. 201–207, 2003.

[8] H. D. Bui, J. Leblond, and N. Stalin-Muller, “Background on fracture
mechanics,” 2001.

[9] F. Chaari, T. Fakhfakh, and M. Haddar, “Analytical investigation on
the effect of gear teeth faults on the dynamic response of a planetary
gear set,” Noise Vibration Worldwide, vol. 37, no. 8, pp. 9–17, 2006.

[10] Z. Chen and Y. Shao, “Dynamic simulation of spur gear with tooth
root crack propagating along tooth width and crack depth,” Engineering
failure analysis, vol. 18, no. 8, pp. 2149–2164, 2011.

19



[11] Z. Wan, H. Cao, Y. Zi, W. He, and Y. Chen, “Mesh stiffness calculation
using an accumulated integral potential energy method and dynamic
analysis of helical gears,” Mechanism and Machine Theory, vol. 92,
pp. 447–463, 2015.

[12] K. Chen, Y. Huangfu, Z. Zhao, H. Ma, and X. Dong, “Dynamic model-
ing of the gear-rotor systems with spatial propagation crack and compli-
cated foundation structure,” Mechanism and Machine Theory, vol. 172,
p. 104827, 2022.

[13] M. Rezaei, M. Poursina, S. H. Jazi, and F. H. Aboutalebi, “Calculation
of time dependent mesh stiffness of helical planetary gear system using
analytical approach,” Journal of Mechanical Science and Technology,
vol. 32, no. 8, pp. 3537–3545, 2018.

[14] R. G. Parker, J. Lin, and T. L. Krantz, “Modeling, modal properties,
and mesh stiffness variation instabilities of planetary gears,” tech. rep.,
2001.

[15] H. Jiang and Y. Shao, “Dynamic analysis of a multi-mesh gear sys-
tem with mesh stiffness variation,” in International Design Engineering
Technical Conferences and Computers and Information in Engineering
Conference, vol. 55928, p. V005T11A014, American Society of Mechan-
ical Engineers, 2013.

[16] V. K. Ambarisha and R. G. Parker, “Nonlinear dynamics of planetary
gears using analytical and finite element models,” Journal of sound and
vibration, vol. 302, no. 3, pp. 577–595, 2007.

[17] N. Yousfi, B. Zghal, A. Akrout, L. Walha, and M. Haddar, “Estimation
of the damping model of a spur gear pair system including a time-varying
loading,” Comptes Rendus. Mecanique, vol. 350, no. G2, pp. 255–267,
2022.

[18] Z. Cao, Y. Chen, G. Li, L. Zang, D. Wang, Z. Qiu, and G. Wei, “Dy-
namic simulation and experimental study of electric vehicle motor-gear
system based on state space method,” Machines, vol. 10, no. 7, p. 589,
2022.

[19] S. Linge and H. P. Langtangen, Programming for Computations-Python:
A Gentle Introduction to Numerical Simulations with Python 3.6.
Springer Nature, 2020.

20



[20] D.-J. Jwo, I.-H. Wu, and Y. Chang, “Windowing design and perfor-
mance assessment for mitigation of spectrum leakage,” in E3S Web of
Conferences, vol. 94, p. 03001, EDP Sciences, 2019.

[21] V. Giurgiutiu, Structural health monitoring: with piezoelectric wafer ac-
tive sensors. Elsevier, 2007.

[22] J. Rommes and N. Martins, “Computing transfer function dominant
poles of large-scale second-order dynamical systems,” SIAM Journal on
Scientific Computing, vol. 30, no. 4, pp. 2137–2157, 2008.

[23] B. Lohmann, “Skriptum regelungstechnik,” 2017.

[24] M. T. Thompson, “Review of signal processing basics,” Intuitive Analog
Circuit Design, pp. 15–52, 2014.

21


		2022-09-12T17:12:14+0200
	Augsburg
	Olga Riemer




