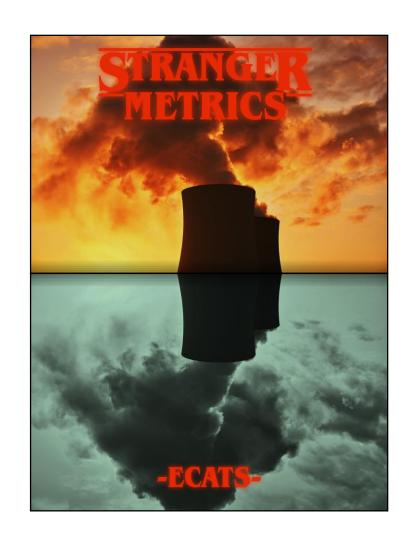
SELECTING A SUITABLE CLIMATE METRIC FOR AVIATION

ECATS Conference | 26th October 2023, Delft


Liam Megill, DLR-PA & TU Delft Kathrin Deck, TU Delft Volker Grewe, DLR-PA & TU Delft

Overview of Climate Metrics

- Purpose: To relate non-CO₂ effects to their consequences on the climate and/or on society – "shortcut" between emissions and impacts
- Choice of climate metric is vital for effective policy
- Aviation non-CO₂ emissions are particularly complex due to their highly varying atmospheric lifetimes and efficacies, their dependence on emission altitude and location and their high degree of uncertainty
- → **No consensus** on most appropriate metric

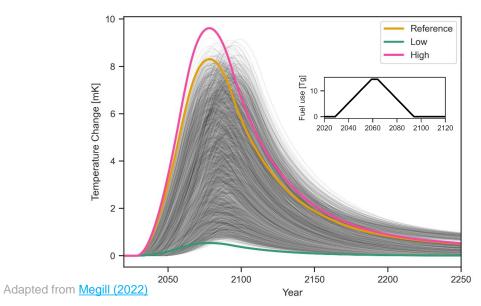
 $GWP_{100} > 0$ warming!

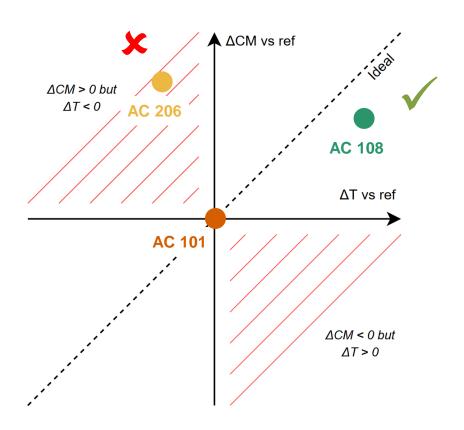
GWP₂₀ < 0 cooling?

Climate Metrics Used

		RF-based	ERF-based	ΔT-based
t _o t _o +H	Endpoint	RFI		GTP
t _o t _o +H	Integrated	GWP		iGTP, ATR
	"Starred"	GWP*	EGWP*	

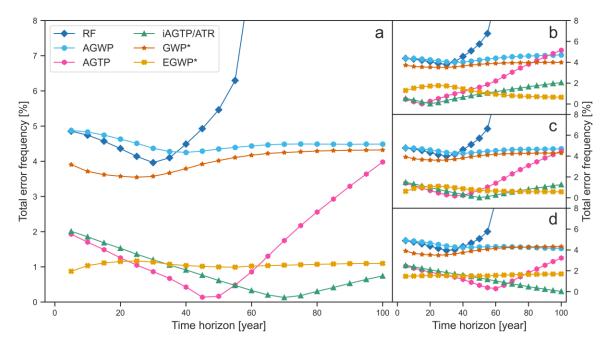
Climate Metric Requirements


Climate metrics shall:


- 1. Neuturally represent the chosen climate indicator (in this case: temperature change);
- 2. Be temporally stable;
- 3. Be compatible with existing climate policy;
- 4. Be transparent and simple to understand and implement

REQ 1: Climate Metric Neutrality (1)

- Aim: identify inherent biases within each climate metric for different technologies or changes in aircraft design or trajectory
- Method: 10 000 future aircraft concepts created using a Monte Carlo simulation and analysed using AirClim v2.1
- Pairwise comparison of all aircraft to gauge neutrality against (peak and average) temperature change



REQ 1: Climate Metric Neutrality (2)

- We are looking for low error frequencies and time horizon independence
- RF: ill-suited at higher time horizons
- AGWP and GWP*: largely linear response, particularly for H > 60 yr
- AGTP: highly dependent on time horizon; fully dependent on the shape of the temperature response
- ATR: low error frequency but clear minimum
- EGWP*: very stable behaviour

From Megill et al. (2023 [preprint])

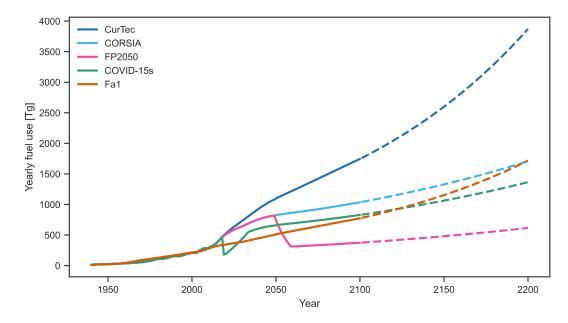
Climate indicators:

a. = Peak temperature

b. = 20-year average temp.

c. = 50-year average temp.

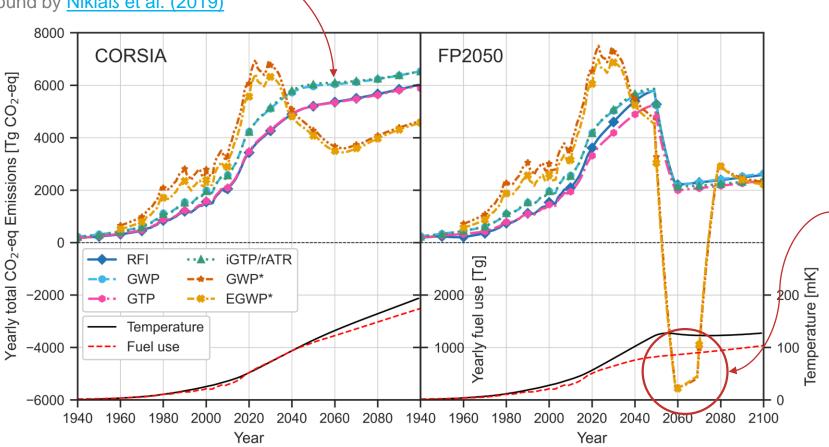
d. = 100-year average temp.


REQ 2: Temporal Stability (1)

- Aim: analyse the performance of climate metrics for accounting CO₂-eq emissions for the whole aviation industry (policy-level)
- Method:
 - Perform AirClim simulations for different aviation fuel trajectories (right), assuming all fuel is Jet-A1
 - Calculation performed by:

$$E_{CO_2-eq}(t) = RMET_{100}(t) \times E_{CO_2}(t)$$

where $RMET_{100}(t)$ is the relative metric (e.g. GWP) with a time horizon of 100 years

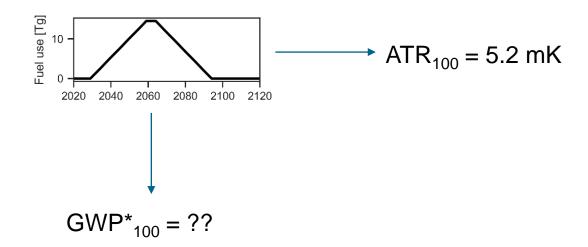

Fuel scenarios adapted from Grewe et al. (2021)

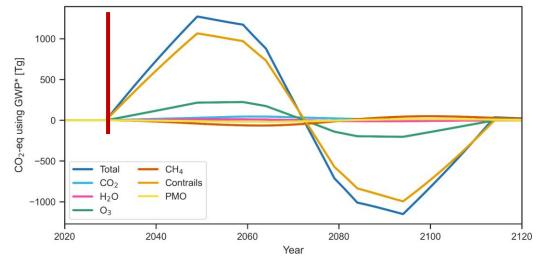
REQ 2: Temporal Stability (2)

GWP and ATR produce similar results for total

CO₂-eq ¹. This may reduce the political capital required to change from GWP to ATR. This is also found by Niklaß et al. (2019)

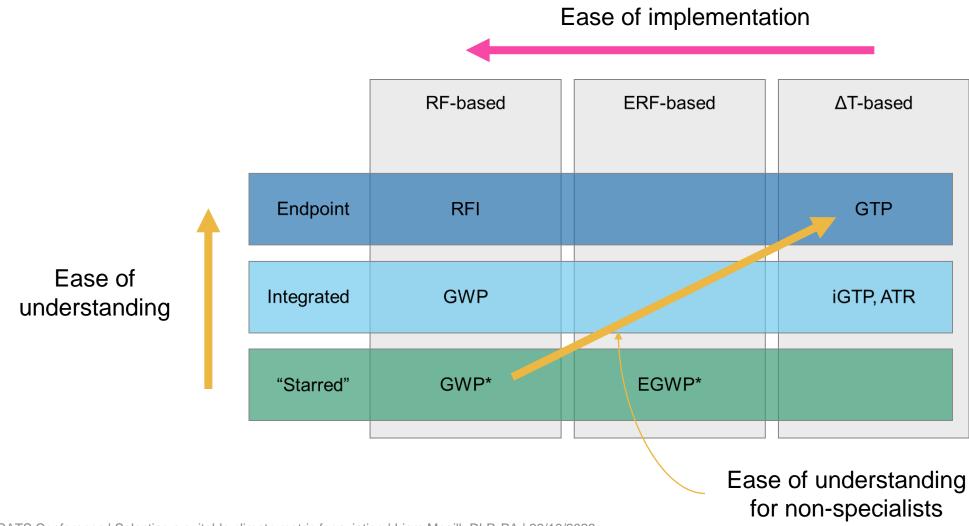
If a policymaker was to look at (E)GWP* CO₂-eq emissions between the years of 2050 and ~2080, they would find negative emissions. This is problematic!


From Megill et al. (2023 [preprint])


¹ the very close similarity is likely model-dependent due to the relative importance of different emission species impacts (primarily NO_x and contrails) to the total

REQ 3: Compatibility with Climate Policy

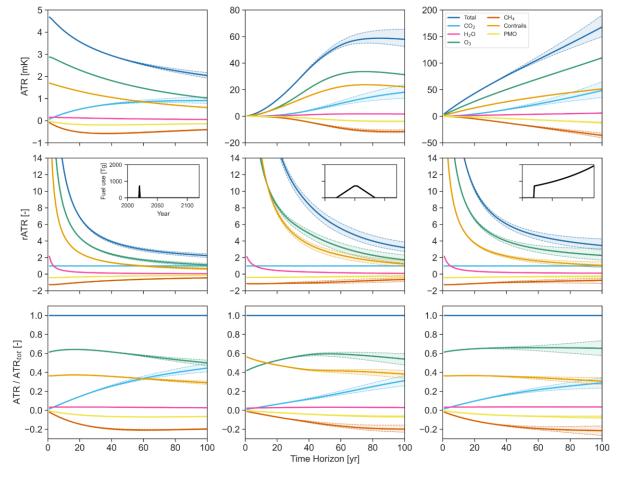
- All conventional climate metrics RF, GWP, GTP, iGTP and ATR – can be used in existing climate policy.
- The GWP* method does not provide a single value and effectively has a second time horizon.
- → The GWP* is itself essentially a micro climate model, not a metric (cf. <u>Meinshausen</u> <u>et al., 2022</u>)



Adapted from Megill et al. (2023 [preprint])

REQ 4: Climate Metric Transparency

Overview: Choice of Climate Metric*


Climate Metric	REQ 1 Neutrality	REQ 2 Stability	REQ 3 Compatibility	REQ 4 Transparency	Notes
RF		-	-	+	
GWP (reference)	0	0	0	0	
GTP	-	-	0	+	
iGTP	++	0	-	0	More complex unit than ATR
ATR	++	0	0	0	Best overall
GWP*	0				
EGWP*	+++				

*trade-off only representative

Choice of Climate Metric and Time Horizon

- Ideally, a time horizon is selected where the gradient of the ATR or rATR values with respect to the time horizon is low: The larger the gradient, the more important the choice of time horizon.
- Results (right) show that the ATR generally requires a longer time horizon to properly account for the delay in the temperature response of the atmosphere (generally >70 years)

From Megill et al. (2023 [preprint])

Conclusions & Discussion

- All climate metrics have inherent biases and favour certain aircraft designs over others
- The choice of climate metric is always the result of a trade-off. Based on our requirements,
 we recommend the ATR for aviation policy and aircraft design.
- ...but what about the time horizon?
 - \rightarrow We recommend using > 70 years, e.g. ATR₁₀₀
- The total CO₂-eq emissions calculated by the rATR₁₀₀ and GWP₁₀₀ for current aircraft are similar and would enable a **timely introduction of the ATR** in aviation policy. This would allow a more accurate assessment of novel aviation fuels and aircraft designs in the future.
- Open questions & further research:
 - Climate metrics for individual flights, e.g. contrail avoidance
 - Policy implications of using ATR
 - Suitable models for non-CO₂ in ETS & CORSIA

Liam Megill
DLR Institute of Atmospheric Physics
TU Delft Faculty of Aerospace Engineering

E: liam.megill@dlr.de / w.a.megill@tudelft.nl

T: +49 8153 281 991

QUESTIONS?

Impressum

Topic: Selecting a Suitable Climate Metric for Aviation

4th ECATS Conference 2023, 24-26 October 2023 in Delft,

The Netherlands

Date: 2023-10-25

Author: Liam Megill

Institute: Institute of Atmospheric Physics

Image credits: All images "DLR (CC BY-NC-ND 3.0)" unless otherwise stated.

Climate stripes CC-BY 4.0 Ed Hawkins (University of Reading);

biodiversity stripes CC University of Derby.