Signal Dependent Non-Linearity Calibration of an Imaging **Spectrometer**

Andreas Baumgartner^{*1}, Thomas Schwarzmaier¹

¹German Aerospace Center (DLR), Remote Sensing Technology Institute (IMF) *andreas.baumgartner@dlr.de

Motivation

- Use of light-addition method for non-linearity calibration as it does not depend on assumptions or reference detectors
- Convectional setups that use the light-addition method have one lamp with a single light path and fixed variable aperture pairs for light attenuation
- The achievable radiances are too low to cover the • entire field of view (FOV) and apertures of typical imaging spectrometers while measuring with operational integration times of < 20 ms
- It is difficult to check whether covering one aperture changes the amount of light that falls through the other aperture

BAyLIS (Broadband Attenuable Light Source) In contrast to conventional setups

- Designed for imaging spectrometers \bullet
- Stepless and synchronous attenuation from 350 nm • to 2500 nm using motorized iris shutters
- High intensity by using two light paths and 2 x 250 W ٠ lamps with F/1
- Covers entire HySpex VNIR-1600 aperture and FOV
- Beam shutter a/b influence on light level from light ۲ path b/a (< 0.02 %) is testable by turning lamp a/b off

BAyLIS Calibration

Before sensor calibration $\rightarrow L_a \approx L_b$

- 1. Relative lamp spectra matching: Change lamp a and b currents
- 2. Absolute intensity calibration: Adjust iris shutters

HySpex VNIR-1600

- Pushbroom imaging spectrometer
- 160 channels: 420 nm 1000 nm ۲
- 1600 spatial pixels: 17° field of view ۲
- Two 12 bit ADCs: left + right detector half •

Meas.	Beam shutter		Signal
step	а	b	Signal
1	closed	closed	<i>S</i> (0)
2	open	closed	$S(L_a)$
3	closed	open	$S(L_{\rm b})$
4	open	open	$S(L_{\rm a}+L_{\rm b})$

Light-Addition Method

For linear systems, the sum of individual

signals $S(L_a)$ and $S(L_b)$ caused by the

the sum of both radiances $S(L_a + L_b)$:

• $\alpha \neq 1 \rightarrow$ sensor response is non-linear

Chained α -values \rightarrow non-linearity β :

 α : relation between signal levels

 $S(L_{\rm a}) \approx S(L_{\rm b})$ and $S(L_{\rm a} + L_{\rm b})$

radiances L_a and L_b is equal to the signal of

 $\frac{S(L_{a} + L_{b})}{S(L_{a}) + S(L_{b})} = \alpha$

 $\beta_i = \prod_{k=1}^i \alpha_k, \quad \beta_0 = 1$

Signal axis of β -curve is exponentially spaced

Additional β -curves by changing start signal

Combining β -curves \rightarrow contiguous β -curve

 β as function of the non-linear signal S^{nl} can

be used for non-linearity correction:

•

Detailed description of the setup and the calibration results: Andreas Baumgartner. 'Traceable Imaging Spectrometer Calibration and Transformation of Geometric and Spectral Pixel Properties'. October 2021. doi: 10.48693/38.

