

TECHNO- ECONOMIC AND ECOLOGICAL ASSESSMENT OF SYNTHETIC FUELS PRODUCTION USING SUSTAINABLE CARBON AND HYDROGEN

Can e-fuels replace fossil fuels for a future global sustainable transport?

<u>Ralph-Uwe Dietrich</u>, Sandra Adelung, Felix Habermeyer, Simon Maier, Moritz Raab, Yoga Rahmat, Julia Weyand (DLR e.V., www.DLR.de/tt)

• DLR.de • Slide 2 • Dietrich, et. al • Techno- economic and ecological assessment of synthetic fuels production using sustainable carbon and hydrogen •CCM-2023 • Paris • October 2023

Techno- economic and ecological assessment of synthetic fuels production using sustainable carbon and hydrogen

Agenda

- Motivation
 - Why and how to do techno-economic and –ecological assessment (TEEA) @ DLR
 - TEEA methodology
- Assessment examples
 - Technical
 - Economic
 - Ecological
- Conclusion
 - Global e-fuel assessment for German transport
 - (personal view) Possible e-fuels impact on global transport Germany as role model?
 - (personal view) Outlook: progress from 2023 onwards?

2023: Climate Change undeniable

 2023 Wildfires: Canada, Chile, Gran Canary, Greece, Hawaii,....^[1]

[1] https://en.wikideia.org/wiki/Category:2023_natural_disasters
 [2] Photo by: Anthony Quintano/ anthonyquintano.com,

Canada Wildfire Smoke Consumes New Jersey and New York City, June 7 2023, https://www.flickr.com/photos/quintanomedia/52959378738/ - 52959378738.jpg

2023 Flooding (just Europe): Bosnia-Herzeg., Italy, Croatia, Austria, Slowenia, Norway, Spain, Greece, Bulgaria, Turkey,

[3] https://de.wikipedia.org/wiki/%C3%9Cberschwemmungen_in_Europa_2023[4] Photo NEWS5/dpa,

Nuremberg, Germany, cars under bridge after flooding August 18 2023,

• DLR.de • Slide 4 • Dietrich, et. al • Techno- economic and ecological assessment of synthetic fuels production using sustainable carbon and hydrogen •CCM-2023 • Paris • October 2023

European aviation CO₂ emissions Response: SAF for CO₂ abatement

[1] European Aviation Environmental Report 2019, https://www.easa.europa.eu/eaer/system/files/usr_uploaded/219473_EASA_EAER_2019_WEB_LOW-RES.pdf [2] S. Csonka, Aviation's Market Pull for SAF, https://www.caafi.org/focus_areas/docs/CAAFI_SAF_Market_Pull_from_Aviation.pdf. • DLR.de • Slide 5 • Dietrich, et. al • Techno- economic and ecological assessment of synthetic fuels production using sustainable carbon and hydrogen •CCM-2023 • Paris • October 2023

Assessment of e-fuels for sustainable transport sector

GHG-Abatement / t_{CO2-eq.}/a

• DLR.de • Slide 6 • Dietrich, et. al • Techno- economic and ecological assessment of synthetic fuels production using sustainable carbon and hydrogen •CCM-2023 • Paris • October 2023

Assessment of e-fuels for sustainable transport sector

GHG-Abatement / t_{CO2-eq.}/a

Techno-economic and ecological assessment (TEEA) @ DLR

Economic evaluation

CO₂

Techno-economic and ecological assessment (TEEA) @ DLR

Economic evaluation

Techno-economic and ecological assessment (TEEA) @ DLR

• DLR.de • Slide 10 • Dietrich, et. al • Techno- economic and ecological assessment of synthetic fuels production using sustainable carbon and hydrogen •CCM-2023 • Paris • October 2023

Techno-economic and ecological assessment (TEEA) @ DLR

• DLR.de • Slide 11 • Dietrich, et. al • Techno- economic and ecological assessment of synthetic fuels production using sustainable carbon and hydrogen •CCM-2023 • Paris • October 2023

TEEA @ DLR

[1] Albrecht et al. (2016) A standardized methodology for the techno-economic evaluation of alternative fuels – A case study, Fuel, 194: 511-526
 [2] Mutel (2017) - Brightway: An open source framework for Life Cycle Assessment, Journal of Open Source Software, 2(12): 236
 [3] Wernet, G et al. (2016) The ecoinvent database version 3 (part I): overview and methodology. The International Journal of Life Cycle Assessment, 21(9): 1218–1230.

• DLR.de • Slide 12 • Dietrich, et. al • Techno- economic and ecological assessment of synthetic fuels production using sustainable carbon and hydrogen • CCM-2023 • Paris • October 2023

3 generic Fischer-Tropsch based Sustainable Aviation Fuels (SAF) concepts Power-to-Liquid

• DLR.de • Slide 13 • Dietrich, et. al • Techno- economic and ecological assessment of synthetic fuels production using sustainable carbon and hydrogen •CCM-2023 • Paris • October 2023

3 generic Fischer-Tropsch based Sustainable Aviation Fuels (SAF) concepts Biomass-to-Liquid

• DLR.de • Slide 14 Dietrich, et. al
 Techno- economic and ecological assessment of synthetic fuels production using sustainable carbon and hydrogen
 •CCM-2023
 • Paris
 • October 2023

3 generic Fischer-Tropsch based Sustainable Aviation Fuels (SAF) concepts

Power&Biomass-to-Liquid

TECHNICAL ASSESSMENT OF SAF (PTL)

• DLR.de • Slide 16 • Dietrich, et. al • Techno- economic and ecological assessment of synthetic fuels production using sustainable carbon and hydrogen •CCM-2023 • Paris • October 2023

Technical Assessment: Power-to-Liquid

Methodology: Experimentally validated flowsheet ⁽⁵⁾

(1) D. Leckel, M. Liwanga-Ehumbu (2006): Diesel-Selective Hydrocracking of an Iron-Based Fischer–Tropsch Wax Fraction (C 15 – C 45) Using a MoO 3 -Modified Noble Metal Catalyst

(2) D. Vervloet et al. (2012): Fischer-Tropsch reaction-diffusion in a cobalt catalyst particle: aspects of activity and selectivity for a variable chain growth probability

(3) Roussanaly et al. (2017): Techno-economic analysis of MEA CO2 capture from a cement kiln- impact of steam supply scenario

(4) Schmidt et al. (2017): Future cost and performance of water electrolysis:: An expert elicitation study

• DLR.de • Slide 17 • Dietrich, et. al • Techno- economic and ecological assessment of synthetic fuels production using sustainable carbon and hydrogen •CCM-2023 • Paris • October 2023

Technical Assessment: Power-to-Liquid

Methodology: Experimentally validated flowsheet ⁽⁵⁾

(1) D. Leckel, M. Liwanga-Ehumbu (2006): Diesel-Selective Hydrocracking of an Iron-Based Fischer–Tropsch Wax Fraction (C 15 – C 45) Using a MoO 3 -Modified Noble Metal Catalyst

(2) D. Vervloet et al. (2012): Fischer–Tropsch reaction–diffusion in a cobalt catalyst particle: aspects of activity and selectivity for a variable chain growth probability

(3) Roussanaly et al. (2017): Techno-economic analysis of MEA CO2 capture from a cement kiln- impact of steam supply scenario

(4) Schmidt et al. (2017): Future cost and performance of water electrolysis:: An expert elicitation study

17

• DLR.de • Slide 18 • Dietrich, et. al • Techno- economic and ecological assessment of synthetic fuels production using sustainable carbon and hydrogen •CCM-2023 • Paris • October 2023

Technical Assessment: Power-to-Liquid

(1) D. Leckel, M. Liwanga-Ehumbu (2006): Diesel-Selective Hydrocracking of an Iron-Based Fischer–Tropsch Wax Fraction (C 15 – C 45) Using a MoO 3 -Modified Noble Metal Catalyst

(2) D. Vervloet et al. (2012): Fischer–Tropsch reaction–diffusion in a cobalt catalyst particle: aspects of activity and selectivity for a variable chain growth probability

(3) Roussanaly et al. (2017): Techno-economic analysis of MEA CO2 capture from a cement kiln- impact of steam supply scenario

(4) Schmidt et al. (2017): Future cost and performance of water electrolysis:: An expert elicitation study

18

• DLR.de • Slide 19 • Dietrich, et. al • Techno- economic and ecological assessment of synthetic fuels production using sustainable carbon and hydrogen •CCM-2023 • Paris • October 2023

Technical Assessment: Power-to-Liquid

(1) D. Leckel, M. Liwanga-Ehumbu (2006): Diesel-Selective Hydrocracking of an Iron-Based Fischer–Tropsch Wax Fraction (C 15 – C 45) Using a MoO 3 -Modified Noble Metal Catalyst

(2) D. Vervloet et al. (2012): Fischer-Tropsch reaction-diffusion in a cobalt catalyst particle: aspects of activity and selectivity for a variable chain growth probability

(3) Roussanaly et al. (2017): Techno-economic analysis of MEA CO2 capture from a cement kiln- impact of steam supply scenario

(4) Schmidt et al. (2017): Future cost and performance of water electrolysis:: An expert elicitation study

19

• DLR.de • Slide 20 • Dietrich, et. al • Techno- economic and ecological assessment of synthetic fuels production using sustainable carbon and hydrogen •CCM-2023 • Paris • October 2023

Technical Assessment: Power-to-Liquid

Process Parameter dependent Material / Energy Efficiency ⁽⁵⁾

$\frac{\dot{m}_{\rm C5+}LHV_{\rm C5+}}{P_{\rm elektrolysis} + P_{\rm MEA} + P_{\rm compressor}}$ $\dot{n}_{\rm C,C5+}$ *й*_{Н,С5+} $\eta_{\rm C} =$ $\eta_{\rm H}$ = $\eta_{\rm PtL} =$ $\dot{n}_{\rm H, elektrolysis}$ $\dot{n}_{\rm C,feedstock}$ 36.1% 36.2% 35.8% 82.4% 83.7% 35.3% 900 82.2% 82.2% 900 23.6% 23.6% 23.6% 23.1% 900 36.2% 35.5% 875 35.5% 36.3% 875 82.3% 82.4% 82.8% 84.5% 875 23.8% 23.7% 23.6% 22.8% 34.6% 83.1% 35.7% 36.4% 36.4% 82.6% 85.1% 850 850 82.4% 850 23.9% 23.9% 23.7% 22.2% 36.5% 36.3% 32.8% 82.8% 83.7% 85.8% 825 35.8% 825 82.5% 825 23.9% 23.6% 21.1% 24.0% 83.1% 84.3% 800 36.0% 36.6% 36.0% 29.7% 82.5% 86.7% 800 800 24.2% 24.0% 23.4% 19.0% 35.0% 775 82.8% 83.7% 85.1% 775 775 36.2% 36.5% 24.3% 24.0% 22.8% 33.1% 750 36.2% 750 82.9% 84.3% 85.9% 750 23.8% 21.6% 36.3% 24.4% 35.2% 29.0% 85.1% 725 36.4% 725 83.2% 86.7% 725 24.5% 23.3% 19.0% 33.1% 86.0% 700 700 83.4% 700 22.0% 36.4% 24.6% 675 28.0% 675 83.9% 86.8% 36.3% 675 24.6% 18.8% 650 84.5% 650 36.0% 650 24.5% 85.3% 625 34.9% 625 625 24.0% 86.3% 600 32.0% 600 22.5% 600 5 10 25 10 25 5 10 25 5 1 **RWGS** press. / bar **RWGS** press. / bar RWGS press. / bar Higher recycle rate to RWGS Less water formation increases High H efficiency plus low compression

increases C efficiency

Less water formation increases H efficiency High H efficiency plus low compression demand maximizes PtL efficiency

¹Adelung, S. and Dietrich, R.-U. (2022). Impact of the reverse water-gas shift operating conditions on the Power-to-Liquid fuel production cost. Fuel.

RWGS Temperatur / °C

ECONOMICAL ASSESSMENT OF SAF (PTL)

• DLR.de • Slide 22 • Dietrich, et. al • Techno- economic and ecological assessment of synthetic fuels production using sustainable carbon and hydrogen •CCM-2023 • Paris • October 2023

Economical Assessment of Power-to-Liquid process

Process Parameter dependent Net Production Costs [1] / NPC in €2019/kgC5+

	RWGS pressure / bar					
	1	5	10	25		
600	3.52					
625	3.24					
650	3.15					
675	3.11	3.91				
700	3.10	3.37				
725	3.10	3.18	3.78			
750	3.10	3.10	3.36			
775	3.11	3.07	3.19			
800	3.12	3.06	3.12	3.71		
825	3.13	3.06	3.08	3.41		
850	3.14	3.07	3.07	3.26		
875	3.15	3.08	3.08	3.19		
900	3.16	3.09	3.09	3.18		
	900 875 850 825 800 775 750 725 700 675 650 625 600	900 3.16 875 3.15 850 3.14 825 3.13 800 3.12 775 3.11 750 3.10 725 3.10 700 3.10 675 3.11 650 3.15 625 3.24 600 3.52	900 3.16 3.09 875 3.15 3.08 850 3.14 3.07 825 3.13 3.06 800 3.12 3.06 775 3.11 3.07 750 3.10 3.10 725 3.10 3.18 700 3.10 3.37 675 3.11 3.91 650 3.15 625 625 3.24 600 600 3.52 1	900 3.16 3.09 3.09 875 3.15 3.08 3.08 850 3.14 3.07 3.07 825 3.13 3.06 3.08 800 3.12 3.06 3.12 775 3.11 3.07 3.19 750 3.10 3.10 3.36 725 3.10 3.18 3.78 700 3.10 3.37 675 675 3.11 3.91 650 625 3.24 600 3.52		

H₂-Input: 4.1€/kg_{H2}

Minimum

• DLR.de • Slide 23 • Dietrich, et. al • Techno- economic and ecological assessment of synthetic fuels production using sustainable carbon and hydrogen •CCM-2023 • Paris • October 2023

3.16

3.15

3.14

3.13

3.12

3.11

3.10

3.10

3.10

3.11

3.15

3.24

3.52

1

Economical Assessment of Power-to-Liquid process

Process Parameter dependent Net Production Costs [1] / NPC in €2019/kgC5+

= lower NPC

1.90 1.82 1.82 1.89 900 900 1.82 1.81 1.89 875 1.90 875 850 1.89 1.81 1.81 1.91 850 ပ္ ပ္ 825 1.89 1.81 1.82 1.99 825 Temperature / Temperature / 800 1.88 1.84 2.15 1.81 800 775 1.88 1.82 1.88 775 750 1.88 1.85 1.98 750 725 1.88 2.22 1.90 725 RWGS -RWGS 700 1.88 2.01 700 675 1.90 2.33 675 650 1.93 650 625 2.00 625 600 2.19 600 10 25 1 5 **RWGS** pressure / bar

H₂-Input: 2.3 €/kg_{H2}

H₂-Input: 4.1€/kg_{H2}

3.09

3.08

3.07

3.06

3.06

3.07

3.10

3.18

3.37

3.91

5

3.09

3.08

3.07

3.08

3.12

3.19

3.36

3.78

10

RWGS pressure / bar

3.18

3.19

3.26

3.41

3.71

25

H₂-Input: 7.6 €/kg_{H2}

		RWGS pressure / bar					
		1	5	10	25		
	600	6.09					
	625	5.66					
r	650	5.52					
Ň	675	5.47	6.98				
N N	700	5.47	6.01				
el	725	5.47	5.68	6.83			
npe	750	5.49	5.54	6.05			
erat	775	5.5	5.49	5.73			
nre	800	5.53	5.48	5.6	6.76		
-	825	5.55	5.49	5.54	6.16		
5	850	5.57	5.50	5.53	5.87		
	875	5.60	5.53	5.54	5.74		
	900	5.63	5.55	5.56	5.7		

Minimum

¹Adelung, S. and Dietrich, R.-U. (2022). Impact of the reverse water-gas shift operating conditions on the Power-to-Liquid fuel production cost. Fuel.

• DLR.de • Slide 24 • Dietrich, et. al • Techno- economic and ecological assessment of synthetic fuels production using sustainable carbon and hydrogen •CCM-2023 • Paris • October 2023

Economical Assessment of Power-to-Liquid process

H₂-Input: 2.3 €/kg_{H2}

Process Parameter dependent Net Production Costs ^[1] / NPC in €₂₀₁₉/kg_{C5+}

H₂-Input: 7.6 €/kg_{H2}

= lower NPC

H₂-Input: 4.1€/kg_{H2}

ENVIRONMENTAL ASSESSMENT OF SAF (PBTL)

• DLR.de • Slide 26 • Dietrich, et. al • Techno- economic and ecological assessment of synthetic fuels production using sustainable carbon and hydrogen •CCM-2023 • Paris • October 2023

FLEX

Environmental Assessment of Biomass-to-Liquid versus Power&Biomass-to-Liquid Application

FlexCHX project has received funding from the European Union's Horizon 2020 research and innovation Programme under Grant Agreement No 763919

BtL with ASU:

- high heat demand
- Iow renewable power

PBtL with electrolyzer :

- no heat demand
- Low GWP power available

[1] Habermeyer, et. al (2021). Techno-economic analysis of a flexible process concept for the production of transport fuels and heat from biomass and renewable electricity. Front. Energy Res., Nov. 2021 | Volume 9 | Article 723774

Environmental Assessment of Biomass-to-Liquid versus Power&Biomass-to-Liquid Application

Global Warming Potential (GWP)^[1]

FlexCHX project has received funding from the European Union's Horizon 2020 research and innovation Programme under Grant Agreement No 763919

100 [2] **Global warming potential** 80 [gco2-eq./MJFT-product] 60 40 20 0 **BtL PBtL** Fossil fuel reference Biomass harvesting Biomass transport Process electricity Electrolyzer electricity

 Transportation: 100 km (oneway) by truck (69 g_{CO2-eq.}/(t*km))

- Biomass: Harvesting forest residues (19.7 g_{CO2-eq.}/kg)
- Electricity: Finnish grid (68.6 g_{CO2-eq.}/kWh)

[1] Habermeyer, et. al (2021). Techno-economic analysis of a flexible process concept for the production of transport fuels and heat from biomass and renewable electricity. Front. Energy Res., Nov. 2021 | Volume 9 | Article 723774
[2] European Union (2018) "Directive 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the promotion of the use of energy from renewable sources (recast)", Official Journal of the European Union

27

FLEX

Environmental Assessment of Biomass-to-Liquid versus Power&Biomass-to-Liquid Application

FlexCHX project has received funding from the European Union's Horizon 2020 research and innovation Programme under Grant Agreement No 763919

- Transportation: 100 km (oneway) by truck (69 g_{CO2-eq.}/(t*km))
- Biomass: Harvesting forest residues (19.7 g_{CO2-eq.}/kg)
- Electricity: Finnish grid (68.6 g_{CO2-eq.}/kWh)

Conclusion

REDII target accomplished @ FLEXCHX base case

[1] Habermeyer, et. al (2021). Techno-economic analysis of a flexible process concept for the production of transport fuels and heat from biomass and renewable electricity. Front. Energy Res., Nov. 2021 | Volume 9 | Article 723774
[2] European Union (2018) "Directive 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the promotion of the use of energy from renewable sources (recast)", Official Journal of the European Union

• DLR.de • Slide 29 • Dietrich, et. al • Techno- economic and ecological assessment of synthetic fuels production using sustainable carbon and hydrogen •CCM-2023 • Paris • October 2023

Environmental Assessment of Biomass-to-Liquid versus Power&Biomass-to-Liquid Application

Global Warming Potential (GWP)

FlexCHX project has received funding from the European Union's Horizon 2020 research and innovation Programme under Grant Agreement No 763919

100 RED II fossil fuel^[1] Global warming potential 80 [gco2-eq./MJFT-product] -BtL ----PBtL 60 40 RED II 65% limit 20 0 50 100 150 200 250 300 350 0 Electricity GWP [g_{CO2-eq.}/kWh]

REDII 65 % limit can be reached for all depicted electricity grid mixes for BtL

Biomass: (19.7 g_{CO2-eq.}/kg) Transport: 69 g_{CO2-eq.}/(t*km)

[1] European Union (2018) "Directive 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the promotion of the use of energy from renewable sources (recast)", Official Journal of the European Union • DLR.de • Slide 30 • Dietrich, et. al • Techno- economic and ecological assessment of synthetic fuels production using sustainable carbon and hydrogen •CCM-2023 • Paris • October 2023

Environmental Assessment of Biomass-to-Liquid versus Power&Biomass-to-Liquid Application

Global Warming Potential (GWP)

FlexCHX project has received funding from the European Union's Horizon 2020 research and innovation Programme under Grant Agreement No 763919

REDII 65 % limit can be reached for all depicted electricity grid mixes for BtL

PBtL requires electricity with GWP <120 g_{CO2-eq.}/kWh to reach REDII 65 % limit

[1] European Union (2018) "Directive 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the promotion of the use of energy from renewable sources (recast)", Official Journal of the European Union

Environmental Assessment of Biomass-to-Liquid versus Power&Biomass-to-Liquid Application

FlexCHX project has received funding from the European Union's Horizon 2020 research and innovation Programme under Grant Agreement No 763919

REDII 65 % limit can be reached for all depicted electricity grid mixes for BtL

PBtL requires electricity with GWP <120 g_{CO2-eq}/kWh to reach REDII 65 % limit

PBtL could have lower GWP than BtL with Swedish grid mix

[1] European Union (2018) "Directive 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the promotion of the use of energy from renewable sources (recast)", Official Journal of the European Union

FINDINGS: E-FUELS COMPETITIVENESS

Global e-fuel assessment for German transport

BEniVer

Begleitforschung Energiewende im Verkehr

Energy transition in the Transport sector (EiT) – Beniver: Scientific supervision

- EiT: funding 99 Mio. € | 16 projects | 100+ partner
- Renewable electricity based fuels for aviation, road transport and shipping

Cluster	Fuels in focus	Application
C3-Mobility	synth. Gasoline, DME, OME_{3-5} , Methanol, Butanol, Octanol	$\diamond \diamond$
CombiFuel	Hythan (Hydrogen + Methane)	\$
E2Fuels	Methanol, OME ₃₋₅ , Methan, Hythan	
FlexDME	Dimethylether (DME)	\$
ISystem4EFuel	synth. Diesel, OME ₃₋₅	\$
KEROSyN100	synth. Jet fuel	~
LeanStoicH2	Hythan (Hydrogen+ Methane)	- 7
MEEMO	Methanol	\$
MENA-Fuels	(Import strategies from MENA region)	
MethQuest	Methan, Methanol, Hydrogen	
NAMOSYN*	OME, Methylformiat (MeFo), Dimethylcarbonat (DMC)	\$
PlasmaFuel	synth. Diesel	
PowerFuel	synth. Jet fuel	~
SHARC	(Smart energy management in harbors)	_
SolareKraftstoffe	synth. Gasoline	\$
SynLink	synth. Diesel, synth. Jet fuel, Methanol	

- BEniVer Scientific supervision of "Energy transition in the transport sector (EiV)"
- BEniVer funding 9 Mio. € (8 partner)
- Goal: Multicriterial assessment of different options for GHG abatement in transport

• DLR.de • Slide 34 • Dietrich, et. al • Techno- economic and ecological assessment of synthetic fuels production using sustainable carbon and hydrogen •CCM-2023 • Paris • October 2023

Standardization efforts – Make e-fuel options comparable

TE(E)A framework (comparing "apples with apples")^[1]

- (Renewable) Electricity
 - Production cost, taxes, fees
 - Availability, fluctuation
- H₂
 - Type of electrolyzer, efficiency, investment costs
- CO₂

- Source, capture process, availability
- General plant / economic parameters
 - Size, location, year of construction, lifetime
 - Equipment cost data base, cost factors (FCI, OPEX, ...), CEPCI, interest rate

BEniVer

Begleitforschung Energiewende im Verkehr

Assumpt	V3.2*	
Base year	2018	
Electricit	y €/MWh	55.7
H_2	€/t	4'742
CO ₂	€/t	69
Power	MW _e	300
Full-load	hours	8'000

Global e-fuel assessment – technical efficiencies

EiT: Comparing generic fuels / designer fuels

	SNG	MeOH	FT	OME ₃₋₅	DMC	MeFo
Production: technical						
η_{PtX} [%]	59	53	40	42	47	52
η_{EtX} [%]		51	41	38	39	46

• DLR.de • Slide 36 • Dietrich, et. al • Techno- economic and ecological assessment of synthetic fuels production using sustainable carbon and hydrogen • CCM-2023 • Paris • October 2023

Global e-fuel assessment – Summary

EiT: Comparing generic fuels / designer fuels

	SNG	MeOH	FT	OME ₃₋₅	DMC	MeFo		
Production: technical								
η_{PtX} [%]	59	53	40	42	47	52		
η_{EtX} [%]		51	41	38	39	46		
	Production: economics & environment							
NPC [€ ₂₀₁₈ /MWh _{LHV}]	192	204	321	360	329	298		
GHG (an	d more environment	al impact criteria): pr	ovided by	BEniVer gleitforschung Energiewende im Verkehr	Larnan Ir Thermodysamic International Inter	Diltat durch synthetische Kraftstoffe		
	Applic	cation: too many para	ameters, no systema	tic, no monetary ass	sessment			
Application parameter examples	 Heavy truck conversion Methane slip 	 Used in China Low vapor pressure Further conversion in Europe? 	 Certified sustainable jet fuel 	 Better combustion Blending ratio? 	 Better combustion Blending ratio? 	 Better combustion Blending ratio? 		

• DLR.de • Slide 37 • Dietrich, et. al • Techno- economic and ecological assessment of synthetic fuels production using sustainable carbon and hydrogen • CCM-2023 • Paris • October 2023

Global e-fuel assessment – Summary

EiT: Comparing generic fuels / designer fuels

	SNG	MeOH	FT	OME ₃₋₅	DMC	MeFo	
Production: technical							
η_{PtX} [%]	59	53	40	42	47	52	
η_{EtX} [%]		51	41	38	39	46	
		Product	tion: economics & er	nvironment			
NPC [€ ₂₀₁₈ /MWh _{LHV}]	192	204	321	360	329	298	
GHG (and more environn act criteria): provided by file (BERIVER), Editorschung Energiewende im Verkehr), IT IN ACHEN (MARKEN (MARKEN)), IN ACHEN (MARKEN (MARKEN)), Editorschung Energiewende im Verkehr App arameters, no systematic, no monetary assessment							
Application parameter examples	Plication trameter camples Even if e-methane, e-methanol are somewhat cheaper to produce, there will be no competitiveness with fossil fuels (compare ≈ 5 €/MWh crude oil) CO₂-certificates prizes need to reach 1'000+ €/t 						

CONCLUSION: E-FUELS FOR TRANSPORT?

• DLR.de • Slide 39 • Dietrich, et. al • Techno- economic and ecological assessment of synthetic fuels production using sustainable carbon and hydrogen •CCM-2023 • Paris • October 2023

E-fuels options for global transport Simple pictograms

■ Present (2018 → 2023)

Future Dream (2018)

• DLR.de • Slide 40 • Dietrich, et. al • Techno- economic and ecological assessment of synthetic fuels production using sustainable carbon and hydrogen • CCM-2023 • Paris • October 2023

E-fuels options for global transport Simple pictograms

■ Present (2018 → 2023)

 Future Dream (2018)
 EiT Questions

• DLR.de • Slide 41 • Dietrich, et. al • Techno- economic and ecological assessment of synthetic fuels production using sustainable carbon and hydrogen •CCM-2023 • Paris • October 2023

E-fuels options for global transport Simple pictograms

■ Present (2018 → 2023)

• Future Dream (2018) EIT Questions $\xrightarrow{e^{-}}$ $\xrightarrow{e^{-}}$ $\xrightarrow{e^{-}}$ $\xrightarrow{e^{-}}$ $\xrightarrow{e^{-}}$ $\xrightarrow{e^{-}}$ $\xrightarrow{e^{-}}$ $\xrightarrow{e^{-}}$ $\xrightarrow{e^{-}}$

Reality Check 2023

• DLR.de • Slide 42 • Dietrich, et. al • Techno- economic and ecological assessment of synthetic fuels production using sustainable carbon and hydrogen •CCM-2023 • Paris • October 2023

E-fuels options for global transport Simple pictograms

■ Present (2018 → 2023)

- Future Dream
 (2018)
 EiT Questions
- Reality Check 2023
 EiT Q&A
 EiT Q&E
 EiT Q&E
 EiT Q&E

• DLR.de • Slide 43 • Dietrich, et. al • Techno- economic and ecological assessment of synthetic fuels production using sustainable carbon and hydrogen •CCM-2023 • Paris • October 2023

E-fuels options for global transport Simple pictograms

■ Present (2018 → 2023)

- Future Dream
 (2018)
 EiT Questions

Outlook: Transport beyond 2023

- Maximize mileage from green electrons
 - Favor public over private transport
 - Favor rail over road / air transport
 - Favor electric over hydrogen over ICE
- Invent new / better electric locomotion
 - Efficient public transport
 - New e-bikes, -cars, -trucks, -planes, -ships
 - Smart connection between transport options
- Don't ignore the legacy fleet
 - Instant drop-in fuels blending mandate
 - Little electrification in marine and aviation
 - Maximize GHG abatement at minimal cost

THANK YOU FOR YOUR ATTENTION ! Questions?

45

Moritz Raab, Felix Habermeyer, Nathanael Heimann, Julia Weyand, Simon Maier, Sandra Adelung, Francisco Moser, Yoga Rahmat, <u>Ralph-Uwe Dietrich</u>