
Prep
rin

t
Visualizing Source Code as Comics Using

Generative AI
David Heidrich

Institute for Software Technology
German Aerospace Center (DLR)

Weßling, Germany
david.heidrich@dlr.de

Andreas Schreiber
Institute for Software Technology
German Aerospace Center (DLR)

Köln, Germany
andreas.schreiber@dlr.de

Abstract—The architecture and inner structure of software is
often only implicitly available in the form of its source code and
thus not tangible and intuitively easy to understand for non-
programmers and laymen. Our goal is to create visualizations as
automatically as possible, with which such people can neverthe-
less understand the software or parts of the software and get a
feel for the structure of the software and how its methods work.
Especially for newcomers to software projects, for management
or even for students and pupils, it can be helpful to get a non-
technical insight into the software.

We use the concept of visualizing information as comics to
present aspects of the software as strikingly as possible, as
comics are an effective way to present complex systems and
interrelationships for certain target groups. For this purpose,
we present a method to generate comics from source code. Our
semi-automated process is based on generating a prompt for an
LLM from source code, which in turn generates a prompt for
a comic image generation using the text-to-image model Stable
Diffusion. We show that generative AI methods can be used to
rapidly generate human-compatible artistic representations from
source code. However, further research is needed to validate the
understandability of the results.

Index Terms—visualization, software visualization, comics,
generative ai, stable diffusion

I. INTRODUCTION

Visualizing complex systems using comics is an effective
way to communicate difficult scenarios and messages to an au-
dience (e.g., in science communication [1]). Some techniques
for visualizing complex systems with comics are:

• Understand perception and cognition: A solid understand-
ing of perception and cognition is vital to creating good
visualizations.

• Simplify details: Sometimes details can get in the way
of understanding complex systems. It is important to
simplify and focus on the most important aspects.

• Use comic strips: Comic strips can be used to repre-
sent certain activities in a complex system, such as the
provenance of personal health data [2] or to visualize and
communicate changes in dynamic networks [3].

• Highlight trends and patterns: Visualization is a powerful
tool that can clarify complex messages and highlight
trends or patterns in lots of data.

• Use modular information design: A modular approach to
information design can help anyone visualize complex
issues in an attractive and innovative way.

Overall, the goal of visualizing a complex system is to make
sense of people’s experiences in the context of the whole [4].
A benefit of using comics to visualize complex systems is
that by combining visualization with metaphors and character-
driven narratives, comics have the potential to make complex
information more accessible and engaging [1].

In our work, we aim to apply the concept of visualizing
information as comics to software visualization to present
aspects of software in a striking way. We present a method
for generating comics from source code. Our semi-automatic
process is based on generating a prompt for a pre-trained Large
Language Model (LLM) from the source code, which in turn
generates a prompt for a comic image generation using a text-
to-image stable diffusion model. The background information
and our contributions are structured as follows:

• We give a brief overview of software visualization and
methods of generative AI as far as it is relevant for our
work. (Section II).

• We describe the method, illustrate it with an example and
discuss the preliminary result (Section III).

II. BACKGROUND

A. Software Visualization

Software visualization [5] can help humans (e.g. developers)
to understand complex software systems or to get insights
into their behavior and quality properties. For example, visu-
alizations are often used to understand source code [6], such
as through various types of diagrams that depict the source
code and its structure in an easy-to-understand way.Other
use cases for software visualization includes areas such as
becoming familiar with an unfamiliar software system [7] or
performing reverse engineering and, maintenance and debug-
ging tasks [8]–[10].

B. Generative AI

Generative artificial intelligence (AI) enables machines to
create content similar to that created by humans. It is capable
of creating novel, original, and coherent outputs based on
patterns it has learned from its input data. This growing set
of tools augments human creativity by, for example, creating
realistic images [11], creating realistic videos [12], writing
persuasive text [13], or composing music [14].

Prep
rin

t
An increasing number of open-source LLMs focus on

software engineering tasks, such as code generation (e.g.,
StarCoder) or comprehension (e.g, StarChat Alpha).

III. GENERATING COMICS FROM SOURCE CODE

Our semi-automated method of converting source code to
comics uses two different generative AI methods. We use
the transformer-based language model GPT-4 [15] for text
generation and the latent text-to-image diffusion model Stable
Diffusion [11] for image generation1.

Our method consists of four steps (see Figure 1):

(1) Preparation The designer creates instructions for the
LLM.

(2) Text Generation The LLM generates prompts from
the instructions.

(3) Image Generation The stable diffusion checkpoint
generates the individual frames (i.e., comic per region).

(4) Finalization The result is finalized, for example, up-
scaling, denoising, and detailing (e.g., speech bubbles).

In the preparation step, the designer chooses the detail level
of the resulting visualization and prepares the text prompts for
the text generation. For example in a C# software project,
each comic frame could represent a class, which gives an
overview of the namespace, or each comic frame could rep-
resent a method, which gives an overview of the class. Note
that—especially for bigger software systems—we must also
consider the available context length of the used LLM, which
determines the maximum length of an instruction (i.e., the
amount of source code that we can process). In the following
we will focus on representing methods with comic frames.
After selecting the detail level, the designer prepares the text
prompts. Note that the text prompt starts with the command
Explain to a five year old, which is commonly used to simplify
the output [16]. To get a description of the character, which
should be based on properties of the selected class, we use:
Explain the functionality of the following C#
class to a five year old. Explain the class as
it is a cartoon character. Map important pro-
perties of the source code to visuals of the
cartoon character. Give a detailed description
of the cartoon character.
[INSERT CLASS SOURCE CODE]

To get a description for each frame, which should be
based on the properties of the child components, we use the
following statement:
Convert every method of the class to a comic
frame. Every frame should explain to the five
year old what is happening in the method.
Describe every frame in detail. The character
you just described should be in every frame.

1In practice, we use the Stable Diffusion web UI https://github.
com/AUTOMATIC1111/stable-diffusion-webui with the style checkpoint
Counterfeit-V3.0 https://civitai.com/models/4468/counterfeit-v30 (based on
the Stable Diffusion 1.5 base-model https://huggingface.co/runwayml/
stable-diffusion-v1-5)

The training data of current LLMs, such as GPT-4, does not
contain knowledge about text prompts for image generation.
Hence, until future LLMs can directly generate the prompts
for image generation, we extract stable diffusion prompts from
GPT-4’s output by hand. Here, the artist can also add more
details and some default stable diffusion prompts, like master-
piece or beautiful. We then use the text prompts to generate
the individual comic frames inside the Stable Diffusion web
UI. We use the img2img Inpaint feature to first draw a mask
on the area where the comic frame should be created and
then generate the specific comic frame. Here the artist can
generate multiple outputs using different seeds and select the
image that they like the best. They repeat the process for each
comic frame until the basic comic is complete. To finalize the
comic, the artists can upscale the comic and add more details,
like method names or speech bubbles.

A. An Illustrative Example—A Comic Picture for a C# Con-
structor Class

As an example, we applied the method to visual-
ize a constructor class of the open-source C#-based soft-
ware system IslandViz VR [17], [18]: The constructor
DockGOConstructor has 214 lines of code and contains
5 methods. It is responsible for creating and placing dock
GameObjects into the visualization. The first instruction given
to GPT-4 consisted of 4, 220 tokens. While GPT-4 can han-
dle this request with a maximum context length of 8, 192
tokens [19], this request would already exceed the limit of,
for example, current LLAMA models with a maximum context
length of 2048 tokens [13]. Our first instruction resulted in the
following GPT-4 output:

This class, called DockGOConstructor, is like
a super builder cartoon character. Let’s call
him "Builder Bob". Bob is not just any builder
though; he’s a magical builder who can create
and place "docks" around little islands.
These docks represent connections to other is-
lands, showing who needs help from whom.

Builder Bob has a few tools and features that
help him do his job.

1. **Tool belt (private variables)**:
Builder Bob has a tool belt with his important
tools. He has a ’status’ tool that tells him
if he’s working, resting, or done with his
work. Then he has a ’cb’ tool, which is like a
special phone to call his boss when he’s
finished his work. [...]

2. **Special abilities (methods)**:
Builder Bob has some cool abilities or actions
he can perform [...]

So, if you think about it, Builder Bob is real-
ly cool. He not only builds things but also
organizes them perfectly so everyone can reach
who they need to. He’s the magical builder
hero of our cartoon adventure!

Pr
ep
ri
nt

Fig. 1. The generation process from source code to comics steps (1)–(4). Dotted arrows indicate non-automated steps.

Fig. 2. Output for character description using four different seeds.

From this description, we then extracted the character
prompts: best quality, 1man, (((magical builder))) with tool
belt and phone, islands and docks in background and generated
results using this prompt (Fig, 2). Our next step was to give
GPT-4 the second instruction. This resulted in the following
output:

1: Start Method
The first panel shows Builder Bob just waking

up, stretching, and yawning. He’s ready to
start the day. He looks at his status watch,
which reads "Idle", signifying he’s ready to
go. He checks his big bag labeled
"VisualizationContainer" to ensure it’s empty
and ready to fill. He also takes out his dock-
List notepad, flips through it to ensure it’s
blank, ready for a new day of work.

Panel 2: Construct Method
In this panel, we see a line of cartoon islands
eagerly waiting for Builder Bob. Bob receives
a list of islands and a special phone (the ’cb’
tool). He sets his status watch to "Working"
and announces to everyone, "Started with Dock-
GameObject construction!". He waves his hand,
and we see a sparkling magic swirl around it,
symbolizing the start of his magical coroutine
to construct docks for all islands.

Panel 3: ConstructAll Method - Part 1
Builder Bob is now seen hard at work. There’s
a magical portal in front of him, from which
one island at a time appears. Bob is building
docks one after another. Each time he finishes
a dock, the island with its new dock disappears
back into the portal, and a new one appears.

Panel 4: ConstructAll Method - Part 2
Now, Bob is linking the docks together. He’s
depicted drawing magical arrows from one is-
land’s dock to another’s, illustrating the
connections between them. Once he’s done, he
makes a triumphant "Finished with Dock-Game-
Object construction!" announcement, sets his
status watch to "Finished", and uses his ’cb’
phone to inform his boss that he’s done.

Prep
rin

t
Panel 5: FindSuitablePosition2D Method
This panel features Bob with a magical compass
and a map, surrounded by islands and docks.
There’s a humorous sequence of him using the
compass to find the perfect spot for a new
dock. Each time he thinks he has found a spot,
a comic-style "BONK!" appears as the compass
refuses the position, until finally, it gives
a big "DING!", indicating the perfect spot.

Panel 6: ConstructDockGO Method
The final panel is a culmination of all the
previous panels. Builder Bob, using his magical
powers, creates a dock, adjusts its size, and
places it in the perfect spot (as identified
in the previous panel). This panel is filled
with magic, excitement, and a sense of achieve-
ment, as Bob successfully completes his task.
[...]

We then extracted the comic frame prompts from this output
(Table I) and generated the individual comic frames. To do
this, we started with an empty white image and used the
img2img Inpaint function to mask out the area where the
frame should be and then generated a batch of potential frames
(Fig. 3). We then selected one of the generated images and
repeated the process from there. Finally, we scaled up the
images resolution and added details in form of method names
and speech bubbles, based on GPT-4’s description. At the end,
the final comic (Fig. 4) shows the individual activities that the
class can perform, with the class itself corresponding to the
main character of the comic.

TABLE I
PROMPTS USED TO GENERATE THE EXAMPLE COMIC FRAMES.

Frame Image Generation Prompt

1
(best-quality:0.8), 1man, (((magical builder))) with
tool belt, waking up, sunrise, looking at notepad, big
bag, docks and little islands in background

2
(best-quality:0.8), 1man, (((magical builder))) with
tool belt waving his hand, (islands in background),
phone, sparkling magic swirl

3 (best-quality:0.8), 1man, (((magical builder))) with
tool belt, islands appearing from (magical portal)

4
(best-quality:0.8), 1man, (((magical builder))) with
tool belt linking docks together, islands in back-
ground, arrows

5
(best-quality:0.8), 1man, (((magical builder))) with
tool belt, magical compass, map, surrounded by
islands

6
(best-quality:0.8), 1man, (((magical builder))) with
tool belt placing a dock in the perfect spot, magic,
proud, happy

B. Discussion of Preliminary Results

Our method is capable of semi-automatically generating
comics from source code. While we have automated most of
the comic creation process, it still keeps the creator in the loop.
In stable diffusion, the use of different seeds produces a wide
range of overall similar images. This preserves the creative
freedom of the designer who can choose from multiple outputs

Fig. 3. Output for the first frame using four different seeds.

while also making sure that important details are present in the
output. However, repeatedly asking the same question in GPT-
4, i.e., using different seed, results in distinctly different GPT-4
outputs. In out example, we always used the first output. But
asking for the character again resulted in an octopus character
for the second request and a duck pirate character in the third
request. This indicates the need for more detailed instructions
in order to achieve more coherent GPT-4 outputs.

To allow creators without prompting experience to generate
the stable diffusion prompts, we could automate more steps,
such as extracting stable diffusion prompts from GPT-4 output
by using an instruction that explains the concept of stable
diffusion prompting. This, however, requires a long enough
content length. Additionally, we could reduce the number of
user inputs further by inserting all prompts at once by using
regional prompting [20].

To validate the methodology and our results, we could
conduct user studies with software developers rating comics
created by artists with no technical experience. Alternatively,
since our methodology allows software developers to cre-
ate such comics themselves, we could also compare design
choices (e.g., which frame did they think fitted best) between
the two user groups.

IV. CONCLUSION AND FUTURE WORK

Combining multiple generative AIs holds great promise for
improving software visualization. As LLMs are trained on
more recent data and image generation models become capable

Prep
rin

t

Fig. 4. The final comic shows strikingly the individual activities that the
class can perform. The class itself corresponds to the main character. You can
see how the class starts a new day, how it starts creating new objects, how
it makes islands appear in front of it, how it chooses a position on a world
map, and how it stands on the final dock casting spells.

of displaying coherent text within their generated images, we
plan to fully automate the generation process. We also plan to
replace GPT-4 with an open source language model.

We also want to explore the use of generative AI to automat-
ically generate code flow diagrams or data flow diagrams based
on source code. This could reduce manual effort and ensure
a more accurate, up-to-date representation of the software

system. Such dynamic visualizations could even adapt in
real time, which would be invaluable for understanding and
debugging complex software behavior as it is being built.
Additionally, generative AI could also generate content for
visualization systems or learning and support environments
based on gamification or serious games [21].

REFERENCES

[1] M. Farinella, “The potential of comics in science communication,”
journal of Science Communication (JCOM), vol. 17, no. 1, 2018.

[2] A. Schreiber and R. Struminski, “Visualizing the provenance of personal
data using comics,” Computers, vol. 7, no. 1, 2018.

[3] B. Bach, N. Kerracher, K. W. Hall, S. Carpendale, J. Kennedy, and
N. Henry Riche, “Telling stories about dynamic networks with graph
comics,” in Proceedings of the 2016 CHI Conference on Human Factors
in Computing Systems, ser. CHI ’16. New York, NY, USA: ACM, 2016,
pp. 3670–3682.

[4] D. Bihanic and T. Polacsek, “Models for visualisation of complex infor-
mation systems,” in 2012 16th International Conference on Information
Visualisation, 2012, pp. 130–135.

[5] L. Bedu, O. Tinh, and F. Petrillo, “A tertiary systematic literature review
on software visualization,” in 2019 Working Conference on Software
Visualization (VISSOFT), 2019, pp. 33–44.

[6] B. A. Price, R. M. Baecker, and I. S. Small, “A principled taxonomy
of software visualization,” Journal of Visual Languages & Computing,
vol. 4, no. 3, pp. 211–266, 1993.

[7] L. von Kurnatowski, D. Heidrich, N. Güden, A. Schreiber, H. Polzin, and
C. Stangl, “Analysing and visualizing large aerospace software systems,”
in ASCEND 2021, 2021, p. 4082.

[8] E. R. Gansner and S. C. North, “An open graph visualization system
and its applications to software engineering,” Software: practice and
experience, vol. 30, no. 11, pp. 1203–1233, 2000.

[9] R. Koschke, “Software visualization in software maintenance, reverse
engineering, and re-engineering: a research survey,” Journal of Software
Maintenance and Evolution: Research and Practice, vol. 15, no. 2, pp.
87–109, 2003.

[10] D. Holten, “Hierarchical edge bundles: Visualization of adjacency re-
lations in hierarchical data,” IEEE Transactions on visualization and
computer graphics, vol. 12, no. 5, pp. 741–748, 2006.

[11] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-
resolution image synthesis with latent diffusion models,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR), June 2022, pp. 10 684–10 695.

[12] U. Singer, A. Polyak, T. Hayes, X. Yin, J. An, S. Zhang, Q. Hu, H. Yang,
O. Ashual, O. Gafni et al., “Make-a-video: Text-to-video generation
without text-video data,” arXiv preprint arXiv:2209.14792, 2022.

[13] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux,
T. Lacroix, B. Rozière, N. Goyal, E. Hambro, F. Azhar, A. Rodriguez,
A. Joulin, E. Grave, and G. Lample, “Llama: Open and efficient
foundation language models,” 2023.

[14] A. Agostinelli, T. I. Denk, Z. Borsos, J. Engel, M. Verzetti, A. Caillon,
Q. Huang, A. Jansen, A. Roberts, M. Tagliasacchi et al., “Musiclm:
Generating music from text,” arXiv preprint arXiv:2301.11325, 2023.

[15] OpenAI. (2023) GPT-4. [Online]. Available: https://openai.com/
[16] K. Jeblick, B. Schachtner, J. Dexl, A. Mittermeier, A. T. Stüber,

J. Topalis, T. Weber, P. Wesp, B. Sabel, J. Ricke et al., “Chatgpt makes
medicine easy to swallow: An exploratory case study on simplified
radiology reports,” arXiv preprint arXiv:2212.14882, 2022.

[17] M. Misiak, A. Schreiber, A. Fuhrmann, S. Zur, D. Seider, and L. Nafeie,
“Islandviz: A tool for visualizing modular software systems in virtual
reality,” in 2018 IEEE Working Conference on Software Visualization
(VISSOFT). IEEE, 2018, pp. 112–116.

[18] M. Misiak, Rawi85, and A. Schreiber, “Dlr-sc/island-viz: Islandviz 1.0,”
Oct. 2018. [Online]. Available: https://doi.org/10.5281/zenodo.1464633

[19] OpenAI. (2023) Models documentation. [Online]. Available: https:
//platform.openai.com/docs/models/gpt-4

[20] hako mikan. (2023) Regional prompter. [Online]. Available: https:
//github.com/hako-mikan/sd-webui-regional-prompter

[21] R. Gökmen, D. Heidrich, A. Schreiber, and C. Bichlmeier, “Stereotypes
as design patterns for serious games to enhance software comprehen-
sion,” in 2021 IEEE Conference on Games (CoG), 2021, pp. 1–3.

