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Abstract. Active learning is particularly of interest for semantic seg-
mentation, where annotations are costly. Previous academic studies fo-
cused on datasets that are already very diverse and where the model
is trained in a supervised manner with a large annotation budget. In
contrast, data collected in many driving scenarios is highly redundant,
and most medical applications are subject to very constrained annotation
budgets. This work investigates the various types of existing active learn-
ing methods for semantic segmentation under diverse conditions across
three dimensions - data distribution w.r.t. different redundancy levels,
integration of semi-supervised learning, and different labeling budgets.
We find that these three underlying factors are decisive for the selection
of the best active learning approach. As an outcome of our study, we
provide a comprehensive usage guide to obtain the best performance for
each case. It is the first systematic study that investigates these dimen-
sions covering a wide range of settings including more than 3K model
training runs. In this work, we also propose an exemplary evaluation task
for driving scenarios, where data has high redundancy, to showcase the
practical implications of our research findings.

Keywords: Active Learning · Semantic Segmentation.

1 Introduction

The objective of active learning is the reduction of annotation cost by selecting
those samples for annotation, which are expected to yield the largest increase
in the model’s performance. It assumes that raw data can be collected in abun-
dance for most large-scale data applications, such as autonomous driving, but
annotation limits the use of this data. Semantic segmentation is particularly
costly, as it requires pixel-level annotations. Active learning is, besides weakly
supervised and semi-supervised learning, among the best-known ways to deal
with this situation.

In a typical deep active learning process, a batch of samples is acquired from
a large unlabeled pool for annotation using an acquisition function and is added
* These authors contributed equally to this work.
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Table 1: We study active learning (AL) methods for semantic segmentation over
3 dimensions - dataset distribution, annotation budget, and integration of semi-
supervised learning (SSL-AL). Green cells denote newly studied settings in this
work. Previous AL works correspond to the grey cells. This work provides a
guide to use AL under all shown conditions.

Dataset↓ Annotation Budget
Low High

Supervision → AL SSL-AL AL SSL-AL
Diverse 3 3 3 3

Redundant 3 3 3 3

to the training scheme. This sampling is done over multiple cycles until an ac-
ceptable performance is reached or the annotation budget is exhausted. The
acquisition function can be either a single-sample-based acquisition function,
where a score is given to each sample individually or a batch-based acquisition
function, where a cumulative score is given to the whole selected batch. Existing
active learning methods for semantic segmentation assign the score to the sample
either based on uncertainty [15,25,35] or representational value [34,35,37]. Most
AL methods in the literature are evaluated on datasets like PASCAL-VOC [10],
Cityscapes [6], and CamVid [1]. The shared attribute between these AL bench-
mark datasets is that they are highly diverse, as they were initially curated to
provide comprehensive coverage of their corresponding domains. This curation
process, however, is a sort of annotation because it is typically not feasible in an
entirely automated way.

State-of-the-art active learning methods for segmentation have been evalu-
ated only in a particular experimental setup - highly diverse benchmark datasets
with a comparatively large annotation budget; see Table 1. We seek answers to
specific missing questions not captured by previous works.
1. How do different active learning methods perform when the dataset
has many redundant samples? Samples with highly overlapping information
are referred to as redundant samples, for example, the consecutive frames of
a video. Many commonly used segmentation datasets were originally collected
as videos for practical reasons, e.g., Cityscapes, CamVid, BDD100k [40]. Since
active learning methods were only tested on filtered versions of these datasets,
their applicability on redundant datasets is open and highly relevant.
2. What happens when the initial unlabeled pool is also used for
training along with annotated samples using semi-supervised learn-
ing (SSL)? For image classification, many works [13,18,26,28] have shown that
integration of SSL into AL is advantageous. For semantic segmentation, this
combination is not well studied.
3. What happens when the annotation budget is low? Which meth-
ods scale best in such low-budget settings? Semantic segmentation an-
notations can be expensive for specific applications, especially in the medical
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domain. Therefore, it is critical to understand the behavior of the various active
learning methods in low-budget settings.

In this work, we report the results of an empirical study designed to find
answers to the above-raised questions. We study 5 existing active learning meth-
ods across the three dimensions as mentioned above - subject to different data
distributions w.r.t. redundancy in the dataset, including the integration of semi-
supervised learning, and under low as well as large annotation budget settings,
as shown in Table 1. The outcome of this study yields new insights and provides,
as the major contribution of this work, a guideline for the best selection of avail-
able techniques under the various tested conditions. Additionally, we show that
active learning in a low annotation budget setting can be particularly volatile,
even nullifying the complete need for it in some cases. This further emphasizes
the importance of knowing the underlying data distribution.

We also suggest a new evaluation task (A2D2-3K) for driving scenarios based
on the highly redundant A2D2 dataset, which is closer to the raw data collection
scheme. The experiment outcome on this task aligns with the findings of our
study for redundant dataset type with a high annotation budget setting and
shows that there is a strong case for using active learning in this context.

2 Deep Active Learning

We briefly review the state of the art in deep active learning as relevant for
our study. In particular, we review the available acquisition methods, the special
considerations for segmentation, and the integration of semi-supervised learning.

The acquisition methods can be categorized into single-sample-based and
batch-based approaches. They assess the value of new samples for selecting in-
dividually and collectively as a batch, respectively.

Single sample acquisition takes the top b samples according to the score
of the acquisition function to select a batch of size b. Several methods follow this
selection scheme based on either epistemic uncertainty or representation score.
For example, uncertainty-based methods try to select the most uncertain samples
to acquire a batch. Many methods, such as EquAL [15], Ensemble+AT [24], and
CEAL [36], estimate uncertainty based on the output probabilities. Epistemic
uncertainty, estimated using Entropy [32], is often used a as strong baseline in
several active learning works [15,29,33]. Some methods, namely BALD [17] and
DBAL [12] employed a Bayesian approach using Monte Carlo Dropout [11] to
measure the epistemic uncertainty. Representation-based methods aim to select
the most representative samples of the dataset that are not yet covered by the
labeled samples. Numerous adversarial learning-based methods utilize an aux-
iliary network to score samples based on this measure, including DAAL [37],
VAAL [35], and WAAL [34]. For our study, we employ Entropy, EquAL, and
BALD to represent single-sample acquisition methods due to their direct appli-
cability to segmentation tasks.

Batch-based acquisitionmethods acquire the whole batch of size b to max-
imize cumulative information gain. Sener et al. [31] formulated the acquisition
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function as a core-set selection approach based on the feature representations.
It is a representation-based approach that selects the batch of samples jointly
to represent the whole data distribution. BatchBALD [23] is a greedy algorithm
that selects a batch of points by estimating the joint mutual information between
the whole batch and the model parameters. This method was also proposed to
remedy the mode collapse issue, where the acquisition function collapses into
selecting only similar samples (see Section 4.1 for details). However, it is limited
to simple image classification datasets like MNIST [8] since its computation com-
plexity grows exponentially with the batch size. Some more recent batch-based
methods include k-MEANS++ [41], GLISTER [21], ADS [19], but these meth-
ods only evaluate on image classification tasks. For the study, we selected the
Coreset method [31] to represent batch-based methods due to its effectiveness,
simplicity, and easy scalability to the segmentation task.

2.1 Active Learning for Semantic Segmentation

When applied to semantic segmentation, active learning methods must choose
which area of the image is to be considered for the acquisition: the full im-
age [35], superpixels [2], polygons [15,27], or each pixel [33]. Our study uses the
straightforward image-wise selection and annotation procedure.

Most existing methods for segmentation are based on the model’s uncertainty
for the input image, where the average score over all pixels in the image is used to
select top-k images. Entropy [32] (estimated uncertainty) is a widely used active
learning baseline for selection. This function computes per-pixel entropy for the
predicted output and uses the averaged entropy as the final score. EquAL [15]
determines the uncertainty based on the consistency of the prediction on the
original image and its horizontally flipped version. The average value over all
the pixels is used as the final score. BALD [17] is often used as baseline in
existing works. It is employed for segmentation by adding dropout layers in the
decoder module of the segmentation model and then computing the pixel-wise
mutual information using multiple forward passes. Coreset [31] is a batch-
based approach that was initially proposed for image classification, but it can
be easily modified for segmentation. For e.g., the pooled output of the ASPP [4]
module in the DeepLabv3+ [5] model can be used as the feature representation
for computing distance between the samples. Some other methods [22,34,35] use
a GAN model to learn a combined feature space for labeled and unlabeled images
and utilize the discriminator output to select the least represented images. Our
study includes Entropy, EquAL, BALD, and Coreset approaches for the analysis,
along with the random sampling baseline. In this work, these methods are also
studied with the integration of semi-supervised learning.

2.2 Semi-supervised Active Learning

Active learning uses a pool of unlabeled samples only for selecting new samples
for annotation. However, this pool can also be used for semi-supervised learn-
ing (SSL), where the objective is to learn jointly from labeled and unlabeled
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samples. The combination of SSL and AL has been used successfully in many
contexts, such as speech understanding [9,20], image classification [13,27,28,31],
and pedestrian detection [30]. Some recent works have also studied active learn-
ing methods with the integration of SSL for segmentation, but their scope is
limited only to special cases like subsampled driving datasets [29] or low label-
ing budget [27], both cases with only single-sample acquisition methods. Our
work provides a broader overview of the integration of SSL and active learning
for the segmentation task. We study this integration over datasets with different
redundancy levels, under different labeling budgets, and with single-sample and
batch-based methods.

Integration of SSL and AL. A successful integration can also be conceptu-
ally explained based on the underlying assumption of semi-supervised learning
and the selection principle of the active learning approach. According to the
clustering assumption of SSL, if two points belong to the same cluster, then
their outputs are likely to be close and can be connected by a short curve [3].
In this regard, when labeled samples align with the clusters of unlabeled sam-
ples, the cluster assumption of SSL is satisfied, resulting in a good performance.
Consequently, to maximize semi-supervised learning performance, newly selected
samples must cover the unlabeled clusters that are not already covered by la-
beled samples. Only acquisition functions that foster this coverage requirement
have the potential to leverage the additional benefits that arise from the inte-
gration of semi-supervised learning. A batch-based method, e.g., Coreset, selects
samples for annotations to minimize the distance to the farthest neighbor. By
transitivity, such labeled samples would have a higher tendency to propagate
the knowledge to neighboring unlabeled samples in the cluster and utilize the
knowledge of unlabeled samples using a semi-supervised learning objective and
help boost the model performance. Similar behavior can also be attained using
other clustering approaches that optimize for coverage.

3 Experimental Setup

3.1 Tested Approaches

In our study, we test five active learning acquisition functions as discussed in Sec-
tion 2, including Random, Entropy, EquAL, BALD, and Coreset. Here Entropy,
EquAL, and BALD approach represent single-sample, and Coreset represents
the batch-based approach. All methods select the whole image for annotation.
To leverage the unlabeled samples, we use the semi-supervised learning s4GAN
method [26]. We consider s4GAN method because it is a simple method that
performs close to state-of-the-art methods and works out of the box. We also
test another SSL approach, U2PL [38], and find that conclusions do not vary
based on the SSL method selection. We pair all the used active learning ap-
proaches with SSL using this approach. This is marked by the suffix ‘-SSL’ in
the experiments. In particular, we train the model using an SSL objective, which
impacts the resulting model and hence the acquisition function.
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3.2 Datasets

Active learning methods are often evaluated on PASCAL-VOC and Cityscapes
datasets. In this work, we also test on an additional driving dataset, A2D2 and
further curate relevant dataset pools from it for extensive experimentation.

Cityscapes [6] is a driving dataset used to benchmark semantic segmenta-
tion tasks. The dataset was originally collected as videos from 27 cities, where
a diverse set of images were selected for annotation. Due to this selection,
Cityscapes is considered a diverse although it was derived from videos. As we will
see in the results, the nature of the active learning method changes due to pre-
selection. We find pre-filtering, as done in Cityscapes, is sub-optimal compared
to directly applying active learning on the raw data (see Section 4.4).

PASCAL-VOC [10] is another widely used segmentation dataset. We use
the extended dataset [16], which consists of 10582 training and 1449 validation
images. It contains a wide spectrum of natural images with mixed categories like
vehicles, animals, furniture, etc. It is the most diverse dataset in this study.

A2D2 [14] is a large-scale driving dataset with 41277 annotated images from
23 sequences. It covers an urban setting from highways, country roads, and
three cities. We map the 38 A2D2 categories to the 19 classes of Cityscapes
for our experiments. A2D2 provides annotations for every ∼ 10th frame in the
sequence and contains a lot of overlapping information between frames. It is
highly redundant. We utilize 40135 frames from 22 sequences for creating our
training sets and one sequence with 1142 images for validation. The validation
sequence ‘20180925_112730 ’ is selected based on the maximum class balance.

A2D2 Pools. To obtain a more continuous spectrum between diverse and
redundant datasets, we created five smaller dataset pools by subsampling the
A2D2 dataset. Each pool comprises 2640 images, which is comparable in size to
the Cityscapes training set. Four pools are curated by subsampling the original
dataset, while the fifth pool is created by augmentation. The first four pools,
denoted by Pool-Xf (where X is 0, 5, 11, and 21), were created by randomly
selecting samples and X consecutive frames for each randomly selected sample
from the original A2D2 dataset. Pool-0f contains only randomly selected images.
We assume that the consecutive frames contain highly redundant information.
Therefore, the pool with more consecutive frames has higher redundancy and
lower diversity. The fifth pool, Pool-Aug, contains augmented duplicates in place
of the consecutive frames. We create five duplicates of each randomly selected
frame by randomly cropping 85% of the image and adding color augmentation.

Diverse vs. Redundant datasets. PASCAL-VOC can be easily tagged as
diverse, and A2D2 original and A2D2-Pool-5f/11f/21f can be tagged as redun-
dant. However, it is hard to put a redundant/diverse tag for many datasets in
the middle of the spectrum. Cityscapes and A2D2-Pool-0f fall in this spectrum
since they are curated by sparsely selecting from large video data. We consider
them as diverse for our study since they behave like diverse datasets. Quantify-
ing dataset redundancy is a novel research question that emerged with this work
and remains part of future work.
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3.3 Experiment Details

Implementation details. We used the DeepLabv3+ [5] architecture with the
Wide-ResNet38 (WRN-38) [39] backbone for all experiments. The backbone
WRN-38 is pre-trained using ImageNet [7]. WideResNet is a more efficient and
better backbone as compared to ResNet-101. Therefore, we use it for all our
experiments. We run all methods on 3 random seeds and report the mean per-
formance. All other training details and hyperparameter information is included
in the Supplementary. Since the BALD method requires the introduction of
Dropout layers into the architecture, we segregate the methods into two cate-
gories: with Monte Carlo Dropout (MCD) and without Monte Carlo Dropout
layers. Random, Entropy, EquAL, and Coreset are without MCD. BALD is based
on a MCD network. Since the models used in the two categories are not exactly
comparable due to different architectures, we also show the fully-supervised per-
formance for both with MCD (100% MCD) and without MCD (100%) architec-
tures.
Evaluation scheme. We evaluate the methods across different data budget
settings, denoted by I−S, where I is the initial label budget, S is the sampling-
label budget, and I, S indicates the percentage of the dataset size. Images are
sampled randomly to fulfill the initial label budget. For the subsequent steps,
images are sampled using the AL acquisition function up to the allowed sampling-
label budget. We test datasets with 10-10, 5-5, and 2-2 budget settings.
Evaluation metrics. We use mean Intersection over Union (mIoU) to eval-
uate the performance of the model at each AL cycle step. For the evaluation
of the active learning method, we use two metrics: Area Under the Budget
Curve (AUC@B) and mean Intersection over Union at a budget B (mIoU@B).
AUC@B is the area under the performance curves. It captures a cumula-
tive score of the AL performance curve up to a budget B, where B is the
percentage of the labeled dataset size. For the experiments on A2D2 pools,
we use B=50 in the 10-10 setting. For PASCAL-VOC, we run three exper-
iments with B=10, 25, and 50 in 2-2, 5-5, and 10-10 settings, respectively.
For Cityscapes, we experiment with B=50 in the 10-10 setting. mIoU@B re-
ports the performance of the model after using a certain labeling budget B. We
report performance at an intermediate labeling budget to see the ranking of
the AL methods. Dataset-pools / code for all experiments are available here -
https://github.com/sud0301/best_practices_ALSS

4 Results

Here, we answer the three questions raised in Section 1 concerning the behav-
ior of active learning methods w.r.t data distribution in terms of redundancy,
integration of semi-supervised learning, and different labeling budgets. For each
experiment, we compare random, single-sample, or batch-based acquisition.

4.1 Impact of Dataset Redundancy

https://github.com/sud0301/best_practices_ALSS
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Table 2: Active Learning results on Cityscapes, A2D2 Pool-0f, PASCAL-VOC.
AUC@50 and mIoU@30 metrics are reported. A denotes Acquisition method
type. S and B denotes the single-sample and batch-based acquisition.

A AL Method SSL Cityscapes A2D2 Pool-0f VOC 5-5 VOC 10-10
Metric → mIoU AUC mIoU AUC mIoU AUC mIoU AUC

S Random 7 58.90 23.29 48.48 19.20 70.70 13.92 72.13 28.85
S Entropy 7 61.83 24.25 52.40 20.37 70.38 13.94 73.72 29.1
S EquAL 7 62.41 24.32 52.50 20.35 69.14 13.82 73.40 29.03
B Coreset 7 60.89 23.89 51.14 19.88 70.85 13.96 73.63 29.06
S Random-SSL 3 60.72 23.85 49.69 19.60 72.57 14.36 75.33 29.87
S Entropy-SSL 3 60.61 23.93 50.80 19.90 73.36 14.51 76.08 30.01
S EquAL-SSL 3 60.26 23.96 51.08 20.02 73.39 14.55 75.89 30.06
B Coreset-SSL 3 63.14 24.47 51.49 20.02 72.88 14.46 75.91 30.03
- 100% 7 68.42 27.37 56.87 22.75 77.00 15.40 77.00 30.80

Table 3: Active Learning results on A2D2-Pool5f, A2D2-Pool11f, A2D2-Pool-
21f, and A2D2-PoolAug. AUC@50 and mIoU@30 metrics are reported. S and B
denotes the single-sample and batch-based acquisition, respectively.

A AL Method SSL Pool-5f Pool-11f Pool-21f Pool-Aug
Metric → mIoU AUC mIoU AUC mIoU AUC mIoU AUC

S Random 7 47.58 18.69 44.61 17.76 44.52 17.67 43.80 17.15
S Entropy 7 49.96 19.48 47.43 18.52 46.08 18.21 44.51 17.33
S EquAL 7 49.50 19.29 47.14 18.44 46.32 18.18 44.24 17.29
B Coreset 7 50.08 19.44 47.72 18.69 46.68 18.38 44.70 17.54
S Random-SSL 3 47.92 19.03 45.25 18.02 46.27 18.19 44.17 17.29
S Entropy-SSL 3 48.78 19.31 47.53 18.56 46.93 18.43 44.50 17.47
S EquAL-SSL 3 48.80 19.28 46.50 18.39 47.11 18.54 44.81 17.56
B Coreset-SSL 3 50.44 19.69 48.99 19.01 47.62 18.69 45.81 17.74
- 100% 7 53.25 21.30 48.85 19.54 49.23 19.69 46.03 18.41
With MC-Dropout decoder
S BALD 7 50.40 19.29 47.85 18.74 46.78 18.57 45.53 17.80
S BALD-SSL 3 50.33 19.62 47.34 18.61 47.06 18.57 45.16 17.72
- 100%-MCD 7 53.82 21.53 50.86 20.34 50.43 20.17 46.62 18.65

Figure 1 and Table 2 shows the results on Cityscapes and A2D2 Pool-0f. For
both datasets, the single-sample (S) method, EquAL, performs the best in the
supervised-only setting. Table 2 also shows the results obtained on the PASCAL-
VOC dataset in 5-5 and 10-10 settings. Single-sample-based methods perform
the best in the 10-10 setting, whereas Coreset performs the best in the 5-5 AL
setting by a marginal gap w.r.t. random baseline. Figure 1 and Table 3 shows the
results for the redundant datasets. The batch-based Coreset method consistently
performs the best in all four datasets in the supervised-only setting.

Diverse datasets need a single-sample method and redundant datasets need
a batch-based method. We observe that the order of best-performing models
changes based on the level of redundancy in the dataset. Single-sample-based ac-
quisition functions perform best on diverse datasets, whereas batch-based acqui-
sition functions perform best on redundant datasets. We attribute this reversed
effect to the mode collapse problem, where, for redundant datasets, single-sample
acquisition methods select local clusters of similar samples. Diverse datasets are
devoid of this issue as they do not possess local clusters due to high diver-
sity across samples. Therefore, the diversity-driven acquisition is not critical
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(c) A2D2:Pool-11f
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Fig. 1: Results on diverse and redundant datasets. Active Learning performance
curves on diverse datasets - Cityscapes and A2D2 Pool-0f, and redundant
datasets - A2D2 Pool-11f and Pool-Aug. The X-axis shows the percentage of
labeled datasets. The methods which utilize MC-Dropout in their network ar-
chitecture are marked with ∗.

for diverse datasets. This observation is consistent for PASCAL-VOC, where
single-sample-based uncertainty-type methods perform better than batch-based
and random methods in the high-budget setting. The difference between the
methods is only marginal here since most acquired samples add ample new in-
formation due to the highly diverse nature of the dataset. This difference further
diminishes w.r.t. random baseline with a lower labeling budget (e.g. 5-5) since
any learned useful bias also becomes weaker. The observations for the 5-5 setting
tend towards a very low-budget setting which is further analysed in Section 4.3.

Mode collapse analysis. Here, we analyse and visualize the above mentioned
model collapse issue. Mode collapse in active learning refers to the circumstance
that acquisition functions tend to select a set of similar (redundant) samples
when acquiring batches of data [23]. This can occur when a single-sample acqui-
sition function gives a high score to at least one of the similar samples in the set.
Since similar samples have highly overlapping information, all samples in the set
receive a high score. Thus, all similar samples tend to be selected, causing this
collapse. Since the selected samples are all very similar, their annotation does
not add much more value to the model than if a single sample was added.



10 S. Mittal and J. Niemeijer et al.

(a) Coreset (Batch) (b) Entropy (Single) (c) Mode collapse (Single-sample AL)

Fig. 2: TSNE plots of (a) Coreset and (b) Entropy functions for A2D2 Pool-21f.
The yellow points are feature representation from the unlabeled set, the violet
point are the acquired points. The batch-based approach has good selection cov-
erage, whereas the single-sample approach selects similar samples from clusters.
Figure (c) shows acquired redundant samples from the violet clusters in (b).

Table 4: Results on A2D2-Pool-0f (diverse) and A2D2-Pool-11f (redundant) in
10-10 budget setting using another SSL [38] method.

A AL Method SSL A2D2 Pool-0f A2D2 Pool-11f
mIoU@30 AUC@50 mIoU@30 AUC@50

S U2PL-Random 3 48.32 18.86 44.64 17.60
S U2PL-Entropy 3 50.43 19.65 45.86 18.11
B U2PL-Coreset 3 49.51 19.06 46.28 18.23

We provide a qualitative analysis of the mode collapse issue on the redundant
A2D2 Pool-21f. We plot the feature representations using t-SNE to show the
selection process for a single-sample-based Entropy function and batch-based
Coreset function, shown in Figure 2. It shows that Entropy acquisition selects
many samples within local clusters, which are similar samples with overlapping
information. This yields a suboptimal use of the annotation budget. In contrast,
Coreset acquisition has a good selection coverage and avoids this mode collapse.

In this work, we argue that mode collapse is a common issue in many real-
world datasets, containing similar samples. A good acquisition function for such
datasets must be aware of the batch’s diversity to address the mode collapse
issue. It is largely ignored due to the narrow scope of existing AL benchmarks
like PASCAL-VOC and Cityscapes, which only cover diverse datasets.

4.2 Systematic Integration of SSL

For all redundant datasets, the Coreset-SSL approach consistently performs the
best; see results in Table 3. For diverse datasets, SSL integration is also helpful,
but there is no consistent best approach. For the PASCAL-VOC dataset, single-
sample based methods with SSL show the best performance, shown in Table 2.
For Cityscapes, Coreset-SSL outperforms all other approaches; see Table 2. For
A2D2-Pool0f, Coreset-SSL improves over Coreset, but the single-sample acqui-
sition method BALD approach shows the best performance.
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Table 5: Active Learning results on PASCAL-VOC and A2D2 Pool-0f in 2-2 set-
ting. AUC@10 and mIoU@6 metrics are reported. A denotes Acquisition method
type. S and B denotes the single-sample and batch-based acquisition.

A AL Method SSL PASCAL-VOC 2-2 A2D2 Pool-11f 2-2
Metric → mIoU@6 AUC@10 mIoU@6 AUC@10

S Random 7 66.41 5.22 37.74 2.93
S Entropy 7 66.33 5.11 36.37 2.92
S EquAL 7 65.04 5.13 37.28 2.97
B Coreset 7 66.24 5.19 39.63 3.10
S Random-SSL 3 68.60 5.37 36.46 2.90
S Entropy-SSL 3 67.26 5.31 36.70 2.93
S EquAL-SSL 3 67.44 5.31 36.31 3.06
B Coreset-SSL 3 68.03 5.35 39.20 3.06
- 100% 7 77.00 6.16 48.85 3.91

Redundant datasets favour the integration of batch-based active
learning and semi-supervised learning. The batch-based acquisition func-
tion Coreset always profits from the integration of SSL. Coreset aligns well with
the SSL objective since Coreset selects samples from each local cluster, thus
covering the whole data distribution. This assists SSL in obtaining maximum
information from the unlabeled samples, as discussed in Section 2.2. This effect
is especially strong in the redundant A2D2 pools, where Coreset-SSL always
improves over Coreset and also shows the best performance. In contrast, SSL
integration for single-sample methods is either harmful or ineffective, except for
the PASCAL-VOC dataset. Interestingly, in Pool-11f, some Coreset-SSL meth-
ods even outperform the 100% baseline with less than 30% labeled data. This
indicates that some labeled redundant samples can even harm the model , pos-
sibly due to data imbalance. For Cityscapes, SSL with Coreset yields significant
improvement, and SSL even changes the ranking of the methods. We see that
EquAL performs the best in the supervised-only setting, whereas Coreset-SSL
surpasses all methods. This slight anomaly in the case of Cityscapes happens
because the advantage due to the combination of SSL and batch-based method
is greater than the advantage of using single-sample methods in non-redundant
datasets. For diverse PASCAL-VOC, all methods align well with SSL. All meth-
ods perform well with no clear winner method since all selection criteria select
samples providing good coverage of the data distribution.

We tested another latest SSL method called U2PL [38] to show that our
observations are not specific to one SSL method. Table 4 shows results on A2D2-
pool-0f (diverse) and A2D2-Pool-11f (redundant) datasets. The behavior of the
new U2PL methods is similar to the results seen for previous SSL method.

4.3 Low Annotation Budget

Active learning is volatile with a low budget. Experimenting with PASCAL-
VOC in the 2-2 budget setting (see Table 5), Random-SSL performs the best,
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i.e., semi-supervised learning without active learning component. We believe that
active learning fails in this setting because it fails to capture any helpful bias
for selection in such a low-data regime with diverse samples. Our observations
in this low-budget setting confirm and provide a stronger empirical support for
similar behavior observed in [27]. For A2D2 Pool-0f (see Table 5) and Cityscapes
in the 2-2 setting, the single-sample acquisition performs the best, while its SSL
integration is detrimental. These methods possibly learn some useful bias due to
the specialized driving domain. For redundant datasets in low budget settings,
batch-based acquisition is still the most effective way. However, SSL does not
contribute any additional improvements due to insufficient labeled samples to
support learning from unlabeled samples. Overall, we observe a highly volatile
nature of active learning in conjunction with a low budget. The ideal policy
transitions from random selection towards the batch-based acquisition, as the
dataset redundancy goes from low to high. Other result tables are included in
the supplementary.

4.4 An exemplar case study: A2D2-3K task

Previous active learning works on semantic segmentation cover only the combina-
tion of a diverse dataset and a high annotation budget. In contrast, the collected
raw data can be quite redundant, like in video datasets. To study this missing
redundant setting, we propose a new active learning task A2D2-3K for segmen-
tation based on the A2D2 dataset. The new task is to select 3K images (similar
size to Cityscapes) from the original A2D2 dataset (∼40K images) to achieve
the best performance. We select 3K images using active learning in 3 cycles with
1K images each. We compare 5 acquisition functions, including Random, En-
tropy, and Coreset, along with SSL integration. Such video datasets are often
manually subsampled based on some prior information like time or location, and
then used for active learning. Therefore, we also include two such baselines - (a)
where 3K samples are uniformly selected based on time information, denoted
as Uniform, and (b) where every fifth sample is first selected uniformly to se-
lect ∼ 8K samples and then applied with Entropy acquisition function, denoted
as Uniform(@5)+Entropy. The second approach is closer to previously used ac-
tive learning benchmarks in the driving context. Results are shown in Table 6.
We find that the batch-based Coreset-SSL method performs the best, discussed
in Section 4.2, while the subsampling-based approaches are sub-optimal. This
makes an excellent case for active learning in datasets with high redundancy, as
active learning filters the data better than time-based subsampling methods.

5 Conclusion

This work shows that active learning is indeed a useful tool for semantic segmen-
tation. However, it is vital to understand the behavior of different active learning
methods in various application scenarios. Table 7 provides an overview of the
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Table 6: AL results on the proposed A2D2-3K task. S and B denotes the single-
sample and batch-based acquisition. Uniform refers to temporal subsampling
selection process and (@5) means every 5th frame.

A AL Method without SSL with SSL
mIoU AUC mIoU AUC

B Uniform 57.75 — 58.93 —
S Random 56.14 5.35 57.57 5.53
S Entropy 60.16 5.53 59.91 5.61
B Coreset 60.30 5.55 61.13 5.72
S Uniform (@5) + Entropy 60.40 5.66 59.63 5.59
- 100% 66.65 6.64 — —

.
Table 7: Overview showing the best performing AL method for each scenario.
Single and Batch refer to single-sample and batch-based method, and Random
refers to random selection. Suffix -SSL refers to semi-supervised learning.

Dataset ↓ Annotation Budget
Low High

Sup. → AL SSL-AL AL SSL-AL
Diverse Random Random-SSL Single Single-SSL
Redundant Batch Batch Batch Batch-SSL

best performing methods for each scenario. Our findings indicate that single-
sample-based uncertainty is a suitable measure for sample selection in diverse
datasets. In contrast, batch-based diversity-driven measures are better suited
for datasets with high levels of redundancy. SSL is successfully integrated with
batch-based diversity-driven methods. However, it can have a detrimental im-
pact when combined with single-sample-based uncertainty acquisition functions.
Active learning with low annotation budgets is highly sensitive to the level of
redundancy in the dataset. These findings have been missing in method devel-
opment, which are optimized only for a few scenarios. The results of this study
facilitate a broader view on the task with positive effects in many applications.
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