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Abstract. The climate system and its spatio-temporal changes are strongly affected by modes of long-term
internal variability, like the Pacific decadal variability (PDV) and the Atlantic multidecadal variability (AMV).
As they alternate between warm and cold phases, the interplay between PDV and AMV varies over decadal to
multidecadal timescales. Here, we use a causal discovery method to derive fingerprints in the Atlantic–Pacific
interactions and to investigate their phase-dependent changes. Dependent on the phases of PDV and AMV, dif-
ferent regimes with characteristic causal fingerprints are identified in reanalyses in a first step. In a second step,
a regime-oriented causal model evaluation is performed to evaluate the ability of models participating in the
Coupled Model Intercomparison Project Phase 6 (CMIP6) in representing the observed changing interactions
between PDV, AMV and their extra-tropical teleconnections. The causal graphs obtained from reanalyses de-
tect a direct opposite-sign response from AMV to PDV when analyzing the complete 1900–2014 period and
during several defined regimes within that period, for example, when AMV is going through its negative (cold)
phase. Reanalyses also demonstrate a same-sign response from PDV to AMV during the cold phase of PDV.
Historical CMIP6 simulations exhibit varying skill in simulating the observed causal patterns. Generally, large-
ensemble (LE) simulations showed better network similarity when PDV and AMV were out of phase compared
to other regimes. Also, the two largest ensembles (in terms of number of members) were found to contain re-
alizations with similar causal fingerprints to observations. For most regimes, these same models showed higher
network similarity when compared to each other. This work shows how causal discovery on LEs complements
the available diagnostics and statistical metrics of climate variability to provide a powerful tool for climate model
evaluation.
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1 Introduction

Modes of natural climate variability from interannual to
multidecadal timescales have large effects on regional and
global climate with important socio-economic impacts. De-
spite their importance, systematic evaluation of climate mod-
els and their simulation of internal variability remains a chal-
lenging task (Eyring et al., 2019). The available observa-
tional datasets are not only short in time; they also hold
considerable uncertainties that arise from errors in the data
record during the pre-satellite era (Phillips et al., 2014; Fa-
sullo et al., 2020; Eyring et al., 2021). Generally, in order
to test their performance, the models are often compared to
reanalysis datasets based on observations. This approach is
key to estimating the ability of models to correctly simu-
late internal variability. An evaluation study by Fasullo et al.
(2020) showed a systematic improvement in the represen-
tation of modes of climate variability through the differ-
ent phases of the Coupled Model Intercomparison Project
(CMIP), where models largely capture the statistical prop-
erties of these modes (e.g., timescale, autocorrelation, spec-
tral characteristics and spatial patterns). However, across the
CMIP archive, comparisons with observations also reveal re-
markable systematic errors. These are errors that have only
little or no improvement due to the complexity of the cli-
mate system and the difficulty of assigning a specific cause
to a specific systematic error or bias (Stouffer et al., 2017;
Fasullo et al., 2020; Eyring et al., 2021).

It is therefore a priority to go beyond spatial and spectral
properties and to apply new approaches that reveal whether a
climate model correctly simulates the observed lagged tele-
connections between remote regions. Here, causal discovery
methods provide a way to estimate such dynamical climate
dependencies from data time series (Ebert-Uphoff and Deng,
2012; Runge et al., 2019b; Runge, 2020; Runge et al., 2019a;
Nowack et al., 2020). Causal graphs help not only to assess
the degree to which a climate model recreates well-defined
connections within the climate system but also to determine
if specific phenomena are simulated for the right reasons. As
the nature of these connections and phenomena is supposed
to vary depending on the state of multidecadal processes
of internal climate variability, we investigate the causal re-
lations not only for the complete historical period but also
for shorter, state-dependent timescales that define different
regimes of dependencies.

In this study, we utilize a regime-oriented causal analy-
sis on indices of dominant modes of long-term variability
over the Atlantic and Pacific to investigate the interactions
between the two basins in CMIP Phase 6 historical simu-
lations (CMIP6; Eyring et al., 2016) and in large ensem-
bles (LE) and to compare those results to reanalysis data.
To do so, we first calculate the two leading modes of multi-
decadal coupled (ocean–atmosphere) climate variability over
the Pacific and Atlantic: Pacific decadal variability (PDV)
and Atlantic multidecadal variability (AMV). PDV, encom-

passing a symmetric variability pattern over the North and
South Pacific (Mantua et al., 1997; Chen and Wallace, 2015),
with an El Niño–Southern Oscillation (ENSO)-like decadal
variability over the tropical Pacific extending over the en-
tire Pacific basin (Nitta and Yamada, 1989; Zhang et al.,
1997; Meehl et al., 2013), can be defined by Pacific sea
surface temperature (SST) anomaly fields. Its influence, on
the other hand, expands well beyond the Pacific, affecting
regional- and global-scale climate on decadal timescales. Its
temporal evolution is characterized by an interannual and
decadal variability, with some pronounced shifts, notably
the extensively studied 1976–1977 transition (Zhang et al.,
1997; Power et al., 1999; Mantua et al., 1997; Arblaster
et al., 2002; Meehl et al., 2009). In particular, Ebbesmeyer
et al. (1991) identified dramatic changes in the North Pa-
cific biota and climatic variables during that period. The pos-
itive PDV phase dominated during the period from the mid-
1970s through the late 1990s, while the following period of
global-warming hiatus entailed a switch to the negative phase
(Meehl et al., 2016; Fyfe et al., 2016). The second dominant
pattern of internal multidecadal variability, the AMV, acts on
the North Atlantic region. Sometimes referred to as the At-
lantic Multidecadal Oscillation (AMO, Kerr, 2000), AMV is
characterized by a dipole SST variability pattern featuring
opposite-sign anomalies between the tropical North Atlantic
and South Atlantic (Cassou et al., 2021). Index time series of
the observed AMV pattern show that the mode goes through
preferred phases for multidecadal periods, with the positive
phase persisting since the late 1990s to nowadays. The AMV
was also discovered to have significant socio-economic and
climate impacts, particularly on the Indian summer monsoon,
North American and European summer climate, and hurri-
canes over the Atlantic (Folland et al., 1986; Sutton and Hod-
son, 2005; Knight et al., 2006; Zhang and Delworth, 2006; Si
and Hu, 2017; Yan et al., 2017).

Previous research focused on Atlantic–Pacific interactions
suggests that changing forcing mechanisms can be applied
by one basin to the other (d’Orgeville and Peltier, 2007; Wu
et al., 2011; Kucharski et al., 2016; Nigam et al., 2020). Ob-
servational analyses concluded that the multidecadal com-
ponent of the negative PDV phase can lag the positive
AMV phase by about a decade (Zhang and Delworth, 2007;
d’Orgeville and Peltier, 2007). The literature suggests a
PDV–AMV link through a tropical pathway, where increas-
ing Atlantic temperatures instigate a La-Niña-like cooling in
the equatorial Pacific and a consequent weakened Aleutian
low in the north (McGregor et al., 2014; Kucharski et al.,
2016; Li et al., 2016; Ruprich-Robert et al., 2017). Meehl
et al. (2021a) showed that the Atlantic and Pacific are mu-
tually and sequentially interactive and are connected mainly
through the atmospheric Walker circulation with some extra-
tropical contributions. Components of the PDV in that study
were found to be linked to Aleutian-low variability associ-
ated with the Pacific–North American (PNA) pattern (Wal-
lace and Gutzler, 1981), a prominent mode over the Northern
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Figure 1. Framework for the regime-oriented causal model evaluation. (a) Gridded SST and SLP data used to calculate indices for AMV,
PDV, PNA and PSA1 modes of climate variability. Diagnostics from the NCAR Climate Variability Diagnostic Package for large ensembles
(CVDP-LE) produce the time series of these indices and their associated spatial patterns (regression maps). (b) We first, as a sanity check,
compare the CMIP6 model-simulated SST (for AMV and PDV) and SLP (for PNA, PSA1) regression maps to those from reanalysis be-
fore (c) using the time series of the four indices for the regime-oriented causal analysis. Here, we define different regimes depending on the
sign of the 13-year low-pass-filtered AMV and 11-year low-pass-filtered PDV time series. For every regime, we run PCMCI+ to estimate
instantaneous and lagged links between nodes representing the time series of the indices calculated in (a) from the reanalyses and model
data. In this schematic example, there are four indices, with node color indicating auto-correlation, and there is a causal link (solid black
arrow) between index 2 and indices 1 and 3, and then there is a causal link between indices 3 and 4. The method identifies and removes
spurious links (see dashed black arrows) between indices 1 and 4 or between indices 2 and 4. Unitless representative time lags are labeled on
each causal link, where index 1 lags index 2 by one time step (depending on the temporal resolution of the time series – here, it is yearly),
index 3 lags index 2 by three time steps, and index 4 lags index 3 by one time step. Applying the method to the time series in (a) provides (d)
dataset- and regime-specific causal fingerprints in a similar format to the schematic in (c), which can be used for model evaluation and inter-
comparison. We calculate annual averages from the monthly time series of PDV and AMV provided by CVDP-LE. This way, the data frame
is fit for multi-year and decadal causal estimations. In addition to the subtraction of global mean temperatures in the CVDP-LE calculation
of PDV and AMV, the causal networks are estimated after linearly detrending the time series of the four indices to ensure their stationarity.
The estimated causal dependencies (links) are hence assumed to be a mixture of internal variability and time-varying anthropogenic forcing
(mainly from aerosols).

Hemisphere extra-tropics, with a quadrupole anomaly field
of 500 hPa geopotential height (H500) that can influence the
subtropical North Atlantic. Teleconnections to the Southern
Hemisphere were also noted by Meehl et al. (2021a), involv-
ing the Pacific–South American (PSA) pattern that ends up
influencing the subtropical South Atlantic. Another study in-
volving coupled model simulations from Zhang et al. (2018)
agreed with Meehl et al. (2021a) and showed that the PSA,
which can be thought of as the South Pacific counterpart
of PNA, generates a forcing that translates into the South-
ern Hemisphere component of PDV. To assess these possible
extra-tropical connections, in addition to PDV and AMV, we

include in our causal discovery study indices for both PNA
and PSA modes. The indices of the latter modes are both
based on sea-level pressure (SLP) anomalies. PSA is gen-
erally expressed through two modes; in this study, we use
PSA mode 1 (PSA1) index as the second empirical orthog-
onal function (EOF) of area-weighted SLP anomalies in the
South Pacific (Mo and Higgins, 1998, see Methods).

Figure 1 shows the various steps of our regime-oriented
causal model evaluation approach presented in this paper,
which we organize as follows: Sect. 2 describes methods
(Sect. 2.1) and data (Sect. 2.2) that were used in this study.
In Sect. 2.1.1, we present the package used to generate the
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indices and spatial patterns of the different modes of cli-
mate variability. This is followed by an introduction to the
causal discovery method (Sect. 2.1.2) and the framework for
the regime-oriented causal model evaluation (Sect. 2.1.3).
In Sect. 2.1.4, we introduce the causal network comparison
method via calculation of F1 scores. The analyzed reanalysis
datasets and CMIP6 models used in this study are listed in
Sect. 2.2. The results (Sect. 3) start with a correlation analy-
sis to compare the SST and SLP regression maps associated
with the CMIP6-simulated time series of AMV, PDV, PNA
and PSA to those from reanalysis data (Sect. 3.1). As the
causal analysis only uses time series information of the cal-
culated indices, this comes as a sanity check to measure the
similarity between the observed and simulated spatial pat-
terns associated with the index time series. This is followed
by Sect. 3.2, where we show the causal networks from reanal-
ysis data during different regimes. These serve as a reference
for the regime-oriented causal model evaluation in the sub-
sequent Sect. 3.3. We discuss the results in Sect. 3.4 before
closing the paper with a summary in Sect. 4.

2 Methods and data

2.1 Methods

2.1.1 Climate Variability Diagnostic Package

Developed by the National Center for Atmospheric Research
(NCAR), the Climate Variability Diagnostic Package for
large ensembles (CVDP-LE) provides an analysis tool for
the evaluation of the major modes of internal climate vari-
ability tailored for large-ensemble climate models (Phillips
et al., 2020). It includes diagnostics to compute indices for
the major modes of coupled and large-scale atmospheric cli-
mate variability. The package also offers comparison metrics
for the spatial and temporal patterns with respect to reference
observational datasets.

For the indices of our selected modes of climate vari-
ability (see enumeration below), we use the diagnostic re-
sults computed from the CMIP6 LE historical simulations
and from reanalysis data over the 1900–2014 period. These
are calculated by the CVDP-LE and are publicly available
as Network Common Data Format (NetCDF) files on the
Community Earth System Model (CESM) Climate Vari-
ability and Change Working Group’s (CVCWG) CVDP-LE
data repository under https://www.cesm.ucar.edu/projects/
cvdp-le/data-repository, last access: 15 March 2023. We use
index time series and their associated spatial patterns (SST
regression maps for AMV and PDV, PSL regression maps
for PNA and PSA1). The indices used in this analysis are
computed by the CVDP-LE package as follows:

1. PDV index (sometimes referred to as the PDO index) is
defined as the standardized principal-component (PC)
time series associated with the leading EOF of area-
weighted monthly SST anomalies over the North Pacific

region (20–70◦ N, 110◦ E–100◦W) minus the global
mean (70◦ N–60◦ S), which is effectively detrending the
data. (Mantua et al., 1997)

2. AMV index (sometimes referred to as the AMO in-
dex) is defined as monthly SST anomalies averaged over
the North Atlantic region (0–60◦ N, 80–0◦W) minus
the global mean (60◦ N–60◦ S), which is effectively de-
trending the data. (Trenberth and Shea, 2006)

3. The Pacific–North American pattern (PNA) is the lead-
ing EOF of area-weighted sea-level pressure (SLP)
anomalies over the region (20–85◦ N, 120◦ E–120◦W).
We use time series constructed from yearly winter
(December–January–February; DJF) means.

4. The Pacific–South American pattern mode 1 (PSA1) is
the second EOF of area-weighted SLP anomalies south
of 20◦ S (Mo and Higgins, 1998). We use time series
calculated from annual means (ANN).

The idea behind subtracting the global mean in the defi-
nition of the SST-based modes, PDV and AMV, is to reduce
potential effects of external greenhouse gas (GHG) forcing.
The space- and time-varying aerosol forcing, however, is ex-
pected to contribute to the Atlantic and Pacific SST vari-
ability represented by the calculated AMV and PDV indices
(Booth et al., 2012; Smith et al., 2016; Watanabe and Tatebe,
2019; Meehl et al., 2021a). According to their CVDP-LE def-
initions above, the calculations of PNA and PSA1 do not in-
clude any detrending. This is because, in models, the exter-
nally forced component of these SLP-based modes (unlike in
the SST-based ones) can generally be neglected when com-
pared to the internally generated component (Deser et al.,
2012; Phillips et al., 2020). Thus, we presume that the afore-
mentioned indices calculated by CVDP-LE, although not ex-
hibiting a trend, are a combination of internal variability and
external aerosol forcing. This is true for model-simulated in-
dices and the ones calculated from reanalysis data (with the
exception of the observed PSA1 time series which include
a noticeable trend – not shown). To compare the simulated
spatial patterns to the observed ones (Sect. 3.1), we corre-
late the regression maps associated with the time series of
the indices as they are calculated by the CVDP-LE (see enu-
meration above). Only prior to applying the causal discov-
ery algorithm (Sect. 2.1.2) do we further remove any linear
trend that might still be present in the data to ensure station-
arity. Moreover, as the focus of the paper revolves around
causal pathways on decadal (multi-year) timescales, we per-
form annual averages of the AMV and PDV time series, as
they are computed based on monthly means by the CVDP-
LE. Hence, for all results to be presented in this paper, we
maintain the presumption that the calculated climate vari-
ability indices (eventually their spatial patterns and causal
fingerprints) represent a mixed response of internally gener-
ated variability and external aerosol forcing.
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2.1.2 PCMCI+ algorithm

For the regime-oriented causal analysis, we use a Python
package called Tigramite, freely available at https://github.
com/jakobrunge/tigramite, last access: 17 March 2023, de-
signed to efficiently estimate causal graphs from time series
datasets. The causal discovery framework within Tigramite
is called PCMCI (Peter Clark Momentary Conditional Inde-
pendence) (Runge et al., 2019b). Its suitability for the chal-
lenges of time series data, as studied here (mainly high di-
mensionality due to the number of variables and time lags, as
well as autocorrelation), was studied in Runge et al. (2019b);
Runge (2020). While the PCMCI framework is also suitable
for nonlinear dependencies, in this paper we focus on linear
relationships and use an extended version of PCMCI called
PCMCI+ that can detect not only lagged (time lag τ > 0) but
also contemporaneous (τ = 0) causal links (Runge, 2020).

PCMCI+ consists of two principal phases: a skeleton dis-
covery phase and an orientation phase. Considering a time-
dependent system (Xt) of N variables Xt = (X1

t , . . .,X
N
t ),

the skeleton discovery starts by first applying the PC1
Markov set discovery algorithm, which is based on the PC
algorithm (named after its inventors, Peter Spirtes and Clark
Glymour), on a completely connected graph. The iterative
PC1 algorithm tests, for every lagged pair of nodes (vari-
ables;Xit−τ ,X

j
t ), whether they are conditionally independent

of efficiently selected conditions of other lagged variables; if
so, the algorithm removes the adjacency between them. The
lagged conditions at this stage serve to estimate for each vari-
able Xjt a superset of lagged parents B̂−t (Xjt ) for which the
adjacencies are oriented by time order. In this step, there can
still be spurious links due to contemporaneous confounders.
Hence, in the second skeleton discovery step, contempora-
neous conditions are iterated over in momentary conditional
independence (MCI) tests implemented with partial correla-
tion:

Xit−τ ⊥X
j
t |S, B̂−t

(
X
j
t

)
\
{
Xit−τ

}
, B̂−t−τ

(
Xit−τ

)
, (1)

where B̂−t (Xjt ) are the lagged conditions of X
j
t , and

B̂−t−τ (Xit−τ ) are the (time-shifted) lagged conditions of Xit−τ
obtained in the first step. By iterating through subsets S ⊂
Xt of contemporaneous adjacencies, the algorithm fully re-
moves spurious links. The partial correlation tests assume
a t statistic with degrees of freedom given by the effective
sample size n− 2− |S, B̂−t (Xjt )\

{
Xit−τ

}
, B̂−t−τ (Xit−τ )|. The

result is a graph with lagged and contemporaneous adjacen-
cies. Lagged adjacencies are oriented by time order, since
causation can only go forward in time. This skeleton phase
is followed by a collider orientation phase, which further
orients contemporaneous links based on unshielded triples
Xit−τ−X

k
t −X

j
t , where τ ≥ 0. IfXkt is not part of the separat-

ing set S that makesXit−τ andXjt independent, then the triple
is oriented as Xit−τ →Xkt ←X

j
t . Further contemporaneous

links are then oriented such that the graph does not include

cycles (see rules R1–R3 in Runge, 2020). The resulting graph
then contains directed lagged and contemporaneous links but
also unoriented adjacencies indicating that the collider and
orientation rules could not be applied (Markov equivalence)
or a conflicting adjacency where different rules are conflict-
ing, for example, due to finite sample issues. For visualiza-
tion purposes, the estimated time series graph is then aggre-
gated in a process graph (Fig. 2) that summarizes the causal
dependencies and their time lags. The link strength can be
estimated in different ways – for example, as standardized
(causal) regression coefficients (Runge et al., 2015; Runge,
2021) – but here, we use the MCI partial correlation values
corresponding to the conditional independence test statistic
above.

A full method description of the original PCMCI and its
PCMCI+ extension, along with their respective pseudo code,
proofs of their asymptotic consistency and their numerical
experiments, can be found in Runge et al. (2019b) and Runge
(2020), respectively. These works also explain the underlying
assumptions by which the detected links can be interpreted
causally. Most importantly, since unobserved confounders
can still render links as spurious, the graphs are causal only
with respect to the analyzed variables. Applying more ad-
vanced methods (Gerhardus and Runge, 2020) that can deal
with hidden variables would considerably deteriorate the re-
liability of causal graph inferences for the short sample sizes
available here.

Figure 2 demonstrates the application of the PCMCI+ al-
gorithm to CVDP-LE datasets. Since causal discovery re-
quires stationary time series (Runge, 2018), we first consider
in our analysis the detrended yearly 1900–2014 time series of
modes of climate variability, namely AMV, PNA, PDV and
PSA1 (left). The resulting causal network from the applica-
tion of the PCMCI+ algorithm is shown on the right (Fig. 2).
The direction, sign, strength (|cross-MCI| value) and time lag
(τ ) of the estimated causal links are all attributes that can
be conveniently read off the generated causal graphs. Each
node on a causal network represents a variable, and the node
color represents its auto-correlation (self-links of each vari-
able). The link color shows the cross-MCI value which de-
notes the sign and strength of the estimated causal link be-
tween two variables. The time lag for lagged links (curved
arrows) are shown as small labels on the links. For those
connections that occur at multiple lags, the color of the link
shows the strongest link, but the label depicts all significant
lags sorted by their strength. The contemporaneous links are
shown as straight arrows (“→” when directionality is de-
cided), straight lines with circle-shaped ends (“◦–◦” when
the adjacency indicates a Markov equivalence) or straight
lines with cross-shaped ends (“x–x”, indicating conflicting
orientation rules).

With regards to the parameter settings for the PCMCI+
algorithm, we set the maximum time lag (τmax) to 15 years
(τmax = 15 time steps, as we are using one data point per
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Figure 2. Constructing a causal network using Tigramite by applying PCMCI+ to time series calculated by CVDP-LE from reanalysis
datasets. Each node on a causal network (right) represents a variable (time series, left), and the node color represents its auto-correlation (self
links of each variable). The link color shows the cross-MCI partial correlation value which denotes the sign and strength of the estimated
causal link between two variables. The time lag for lagged links (curved arrows) are shown as small labels on the links. Straight lines
represent instantaneous causal links happening with no time lag.

year). The significance level of the MCI partial correlation
tests above αpc is set to 0.05.

2.1.3 Setup for regime-oriented analysis

The teleconnections between the Pacific and Atlantic Ocean
basins are suggested to follow different regimes depending
on the decadal phases that the AMV and PDV go through
(Meehl et al., 2021a). In order to clearly identify the time
periods of each phase, we smooth the time series data by
applying 11-year and 13-year low-pass filters to PDV and
AMV, respectively. Figure 3a shows the observed detrended
low-pass-filtered AMV and PDV time series used to specify
the different phases and regimes for the masking before ap-
plying the PCMCI+ algorithm (the labeled regimes on the
time series are only 3 out of the 10 we run the analysis
over). First, running the analysis on the complete time pe-
riod is intended to reveal the consistent causal dependencies
throughout the complete historical time series (see Fig. 2).
The resulting causal networks from the complete period do
not, however, expose much information on the causal effects
which change over shorter time periods depending on how
the PDV and AMV vary during those phases. In order to
identify these phase-dependent causal dependencies, we per-
form the analysis on multiple shorter periods (regimes) by se-
lecting the time steps that represent either the positive (warm)
or negative (cold) phases based on the low-pass-filtered in-
dices, with AMV+(−) for when the value of low-pass-
filtered AMV is positive (negative); the same is the case for
PDV+(−). We further split these regimes into combinations
of warm and cold PDV and AMV phases (PDV+/AMV+,
PDV+/AMV−, PDV−/AMV+, PDV−/AMV−). Addition-
ally, since some regimes are too short to reveal any depen-

dencies, we also opted to run the analysis for an “in-phase”
regime that sums the PDV+/AMV+ and PDV−/AMV− pe-
riods. The remaining time steps would then consist of the
“out-of-phase” regime for the period where the two low-
pass-filtered indices have opposite signs (PDV+/AMV− and
PDV−/AMV+).

This means that, in addition to running it on the com-
plete period, we apply the PCMCI+ algorithm to 10 different
shorter time periods (within the original 1900–2014 period)
for each dataset (see Fig. 3a for reanalysis data). Figure 3b
shows how we use the regimes defined in Fig. 3a to mask
the time series before applying the PCMCI+method. This is
shown for PDV+ and PDV− regimes as examples. For each
case, the gray-shaded parts of the time series are masked pe-
riods; i.e., only the black-shaded periods (see time series in
Fig. 3b) are considered. We show in Tables A4 to A10 in the
Appendix the number of years per regime for each dataset an-
alyzed. Nonetheless, it should be stated that the results of the
regime-oriented causal analysis account for potential errors
related to the sampling of the data. A study from Smirnov
and Bezruchko (2012) demonstrated, using a variety of ex-
amples, how sampling at lower intervals can produce large
“spurious” results.

We note that the low-pass-filtered indices are used only
to extract the time periods that constitute each regime. We
remove any linear trend that might be present in the data
prior to applying the causal discovery algorithm. In this way,
the effects of external forcings are reduced. The four indices
(AMV, PNA, PDV, PSA1) to which PCMCI+ is applied are
represented by detrended yearly unfiltered (not smoothed)
time series (see Figs. 2 and 3b).
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Figure 3. (a) PDV and AMV time series calculated by CVDP-LE diagnostics on ERSSTv5 data are smoothed using 11-year and 13-year
low-pass filters, respectively. A total of 10 regimes are defined (see table on the left) in addition to the 1900–2014 complete period. The
PCMCI+ algorithm is applied to unfiltered (non-smoothed) PDV, AMV, PNA and PSA1 yearly detrended time series that are masked
according to the periods that define each regime. The right arrows on the smoothed time series represent unmasked periods from 3 out of
10 regimes (PDV+/AMV+, PDV−/AMV+ and PDV+/AMV−). (b) The regimes identified in (a) are used to mask the non-smoothed (but
detrended) index time series before applying PCMCI+. Here, for example, we show how we mask the data according to the PDV− (top) and
PDV+ (bottom) regimes. The gray shaded periods are masked and thus not considered during the PCMCI+ analysis. Note that the masking
here refers to variables at time point Xjt , while their lagged parents can also originate from a masked period (gray shaded). This setting is
referred to as mask_type='y' in Tigramite. Consequently, applying PCMCI+ to differently masked time series produces different causal
networks (network in top vs. network in bottom)

2.1.4 F1-scores for causal network comparison

To quantify the similarity between the resulting causal graphs
(networks) from model simulations and those from observa-
tions, we follow a similar modified F1 score as in the meth-
ods by Nowack et al. (2020). The F1 score ranges between 0
(no match) and 1 (perfect network match) and is based purely
on the existence or non-existence of links in a network rela-
tive to a reference network. The F1 score combines the statis-
tical precision (P , which is the fraction of links in the model
simulation network that also occur in the reference network)
and recall (R, which is fraction of links in the reference net-
work that are detected in the model simulation network) and

is defined as follows:

F1 =
2×P ×R
P +R

, (2)

with

P =
TP

TP+FP
, (3)

and

R =
TP

TP+FN
, (4)

where FP is the number of falsely detected links, and FN
is the number of undetected links. We modify the definition
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in the same way as Nowack et al. (2020) so that a link is
considered to be a true positive (TP) if it is found with the
same sign of MCI partial correlation as that in the reference
network. We further relax the time lag constraint by con-
sidering a TP to exist if a link is found in a ±10 time step
interval compared to the lag in the reference network (i.e.,
min(τmax,τ + 10),max(0,τ − 10)).

2.2 Data

From the 1900–2014 historical climate variability diagnos-
tic results provided by the CVDP-LE, we choose the SST
from the Extended Reconstructed Sea Surface Temperature
(ERSST) version 5 (Huang et al., 2017) of the National
Oceanic and Atmospheric Administration (NOAA) as a ref-
erence for the AMV and PDV indices and spatial patterns.
On the other hand, for the PNA and PSA1 modes, we use as
a reference the SLP from the 20th Century Atmospheric Re-
analysis extended with ERA5 (ERA20C_ERA5), provided
by the European Centre for Medium-Range Weather Fore-
casts (ECMWF), and the assimilated observations of surface
pressure. The reference data are for comparison to evaluate
how indices generated using a selection of 12 large-ensemble
CMIP6 historical models reproduce the observed spatial pat-
terns and causal dependencies. The list of CMIP6 LE models
(with the number of realizations per model) is provided in
Table 1.

We note that, in the spatial correlation analysis in the next
section, monthly averages are used for AMV and PDV, as
that is the time resolution originally provided by the CVDP-
LE for these modes. The diagnostic package does not pro-
duce monthly fields for the PNA and PSA1, so we use winter
means (DJF) and all-year annual means (ANN), respectively.
We found that most model simulations show weak corre-
lations with reanalysis data for the annually averaged PNA
(ANN; not shown) compared to the winter-averaged PNA
(DJF; Table 2). Hence, we chose winter means instead of an-
nual means for PNA to reduce any seasonal bias within the
simulated spatial patterns. The spatial patterns do not depend
much on the time resolution (yearly or monthly) of the data,
as they are all calculated from the whole 1900–2014 period.
Prior to applying the causal discovery algorithm (Sect. 3.2),
however, we yearly average the AMV and PDV time series
(computed based on monthly means by the CVDP-LE). This
way, we unify the time resolution of our data to fit the causal
analysis by using the yearly resolution to investigate connec-
tions on long timescales.

3 Results

3.1 Similarities between the simulated and observed
spatial patterns

To accompany the causal analysis, we first calculate pattern
correlations (r) for each simulation’s SST and SLP regres-

sion maps with respect to the reanalysis regression maps
(for the complete 1900–2014 period, see Fig. 4a). This is
to quantify the similarity between the observed and simu-
lated spatial patterns for each of the four modes of climate
variability we are to analyze. The purpose is to check if the
CMIP6-simulated indices have spatial expressions that re-
semble those of indices calculated from reanalysis datasets.
To introduce a benchmark of model performance, we calcu-
late a mean score for each single simulation by taking the
average of the four r values (after applying a Fisher z trans-
form).

To look closer at how the spatial correlation values spread
across every LE and how they differ from one climate vari-
ability mode to another, Fig. 4b provides a color-coded box
plot showing the distribution of these spatial correlation val-
ues and their respective averages across every large ensemble
of CMIP6 simulations used in the analysis. It depicts the sim-
ilarity between the observed (reference maps in Fig. 4a) and
the simulated patterns from the regression maps for the four
modes, with values approaching 1 indicating a better simula-
tion of the patterns associated with the observed modes.

Sorted by the ensemble-average mean score of every
CMIP6 LE, Table 2 provides a view of the distribution (in
the form of minimum, mean and maximum) of the spatial
correlation values for every mode and their mean score for
every CMIP6 LE model. It can be seen from Fig. 4b and
Table 2, based on the ensemble-average mean score, that
most models perform quite well in simulating the observed
geographical patterns of the four indices in Fig. 4a, with
pattern correlations mostly above 0.75. The UKESM1-0-LL
(0.80), MIROC6 (0.80), MPI-ESM1-2-LR (0.79), ACCESS-
ESM1-5 (0.77) and CanESM5 (0.77) outperform the other
CMIP6 LEs in terms of recreating the spatial patterns of the
four selected modes of climate variability. The number of
ensemble members within every LE has no apparent effect
on the spread of the r value distribution across the models.
For example, UKESM1-0-LL and MIROC6, with 18 and 50
realizations, respectively, share similar narrow interquartile
ranges (IQR – the width between the third and first quartiles)
of r values for the four climate variability spatial patterns.
Table A1 in the Appendix shows the distribution of Pearson
r correlations between observed and simulated spatial pat-
terns of PNA, PSA1, PDV and AMV from a 10th-, 50th-
and 90th-percentile perspective. Looking only at the mean-
score spread, Table A1 shows that the 10th–90th percentile
value range is 0.78–0.83 for UKESM1-0-LL and 0.77–0.82
for MIROC6. This means that most members of these two
model ensembles agree with each other and show high spa-
tial similarity with observations when simulating the four
modes. It can be concluded that the models generally do a
good job in simulating the geographical patterns of the differ-
ent modes but with different precision. Although the models
with high mean scores tend to display high pattern correla-
tions with observations for the four modes of climate vari-
ability, the white scatter points in Fig. 4b imply that they

Earth Syst. Dynam., 14, 309–344, 2023 https://doi.org/10.5194/esd-14-309-2023



S. Karmouche et al.: Regime-oriented causal model evaluation 317

Table 1. CMIP6 large-ensemble historical simulations used in the analysis.

Dataset Components No. realizations used References

CMIP6 LE Institute Atmosphere model Ocean model

ACCESS-ESM1-5 CSIRO HadGAM2 ACCESS-OM2 10 Ziehn et al. (2019)
CESM2 NCAR CAM6 POP2 11 Danabasoglu (2019)
CNRM-ESM2-1 CNRM Arpege 6.3 NEMO3.6 10 Seferian (2018)
CanESM5 CCCma CanAM5 NEMO3.4.1 65 Swart et al. (2019)
EC-Earth3 EC-Earth IFS cy36r4 NEMO3.6 20 Döscher et al. (2022)
GISS-E2-1-H NASA GISS-E2.1 HYCOM Ocean 23 Kelley et al. (2020)
INM-CM5-0 INM INM-AM5-0 INM-OM5 10 Volodin et al. (2019)
IPSL-CM6A-LR IPSL LMDZ NEMO-OPA 32 Boucher et al. (2018)
MIROC6 JAMSTEC, AORI, NIES,R-CCS CCSR AGCM COCO4.9 50 Tatebe and Watanabe (2018)
MPI-ESM1-2-LR MPI-M ECHAM6.3 MPIOM1.63 10 Wieners et al. (2019)
NorCPM1 NorESM Climate modeling Consortium CAM-OSLO4.1 MICOM1.1 30 Bethke et al. (2019)
UKESM1-0-LL Met Office Hadley Centre MetUM-HadGEM3-GA7.1 NEMO-HadGEM3-GO6.0 18 Tang et al. (2019)

simulate the PNA (purple) atmospheric mode slightly bet-
ter than its South Pacific counterpart, the PSA1 (cyan), when
compared to the ERA20C_ERA5 reference patterns. These
high-scoring models, notably UKESM1-0-LL, MPI-ESM1-
2-LR, MIROC6, CanESM5 and IPSL-CM6A-LR also, on
average, simulate better PDV (red) monthly spatial patterns
compared to those of AMV (green) with ERSSTv5 as a ref-
erence dataset for the 1900–2014 period. The mean scores of
CESM2, GISS-E2-1-H and NorCPM1 are strongly affected
by the low correlation coefficients obtained for the PSA1
mode (cyan boxes). The 50th percentile bar on the cyan box
for CESM2 suggests that there are more members with PSA1
patterns that resemble the observed ones. The opposite is true
for the GISS-E2-1-H model, which contains fewer realiza-
tions with PSA1 patterns similar to those from reanalysis.
The length of the cyan box for NorCPM1 indicates that most
members fail to represent the spatial patterns of PSA1.

Along with the release of the CVDP-LE (Phillips et al.,
2020), CESM’s CVCWG freely distributes results from
several CMIP simulations, including the CMIP6 1900–2014
historical simulations, from which data used in this analysis
have been downloaded. The results include a pattern corre-
lation summary with 11 key spatial metrics of oceanic and
atmospheric modes of variability. Similar to the mean score
we introduced in the spatial correlation analysis above, the
CVDP-LE provides a mean score that averages the pattern
correlations of the 11 metrics used. Although the pattern
correlation mean score we calculated is not exactly the same
as the one provided by the CVDP-LE tool because the num-
ber of indices used is different (4 vs. 11), the highest-scoring
CMIP6 LEs from Table 2 (UKESM1-0-LL, MIROC6 and
MPI-ESM1-2-LR) were also the highest-scoring ensembles
according to the pattern correlation summary provided
on the tool’s repository (Phillips et al., 2020). Moreover,
one simulation from the UKESM1-0-LL ensemble, the
r19i1p1f2 realization, was found to obtain the highest mean
score based on both the pattern correlation values published
under https://webext.cgd.ucar.edu/Multi-Case/CVDP-LE_
repository/CMIP6_Historical_1900-2014/metrics.html, last
access: 17 March 2023, by CVDP-LE authors (Phillips

et al., 2020, 0.88 using 11 indices) and our calculations in
Table A2 (0.86 using 4 indices)

3.2 Regime-oriented causal analysis of observations
and reanalyses

Several mechanisms are hypothesized to contribute to PDV
and AMV. PDV is initially considered to be a mode of in-
ternal climate variability (e.g., Meehl et al., 2021b). How-
ever, previous research indicates possible external contribu-
tions in the form of solar (Meehl et al., 2009), greenhouse
gas (Meehl et al., 2009; Fang et al., 2014; Dong et al., 2014)
or volcanic and anthropogenic aerosol forcings (Wang et al.,
2012; Maher et al., 2015; Smith et al., 2016; Takahashi and
Watanabe, 2016). There are studies suggesting that such ex-
ternal anthropogenic aerosol forcing might be a contributor
to AMV as well (Booth et al., 2012; Zhang et al., 2013; Si
and Hu, 2017), but evidence from Zhang et al. (2019) sup-
ports the notion that the AMV is primarily linked to internal
variability of the Atlantic meridional overturning circulation
(AMOC) and its associated meridional heat transport. This
means that the fingerprint of any possible external forcing
acting as a confounder is embedded in the time series in-
formation of the extracted indices of the modes of climate
variability used in this study. The linear detrending we per-
form prior to applying PCMCI+ will at least partially reduce
such effects. However, as mentioned before, the subtraction
of the global mean temperature for PDV and AMV and the
linear detrending of all time series do not address local, non-
linear effects, which could be related to the aerosol forcing
that varies over time and space. It is then important to recall
that, in this paper, the indices do not represent a fully iso-
lated internal variability component but rather a mixture of
naturally occurring internal variability and nonlinear effects
of external forcing, mainly in the form of aerosol forcing.

PCMCI+ is applied first to the indices of PDV, AMV,
PNA and PSA1 that were calculated from reanalysis data as
a proxy for observations in order to reveal any causal depen-
dencies between the modes depicted by the observed time
series information. As it is assumed that the nature of tele-
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Figure 4. (a) Reference for comparison: SST regression maps showing geographical patterns associated with PDV (1) and AMV (2) and SLP
regression maps of geographical patterns associated with PNA (3) and PSA1 (4). The indices are calculated from reanalysis data (ERSSTv5
for AMV and PDV, ERA20C_ERA5 for PNA and PSA1) over the 1900–2014 period using the NCAR CVDP-LE package. Rectangles on
the maps approximate the regions over which the indices are defined (see Methods, Sect. 2.1.1). (b) Box plot (or whisker plot) showing the
distribution of Pearson r pattern correlation values along the different historical CMIP6 LEs (between parenthesis on the x axis is the number
of ensemble members within each model). The bottom of every box (color-coded part) shows the first quartile (Q1 or 25th percentile), the
top shows the third quartile (Q3 or 75th percentile), and the horizontal bar between them denotes the median value (Q2 or 50th percentile).
The length of the box (from Q1 to Q3) denotes the interquartile range (IQR), while the bottom and upper whiskers (thin lines extending
from boxes) extend to the minimum and maximum values, which are calculated as Q1− 1.5× IQR and Q3+ 1.5× IQR, respectively. The
black dots are outliers. PNA correlation values are shown in purple, PSA1 values are shown in cyan, PDV values are shown in red, and AMV
values are shown in green. Yellow boxes show the mean score denoting the average of the four r values (after applying a Fischer z transform).
White dots denote the mean value.

connections between the different climate variability modes
can vary over decadal timescales depending on the different
phases these modes go through, we mask years of data (as
discussed in Sect. 2.1.3) to reveal the causal structures dur-
ing specific periods (regimes) in time. Reference causal net-
works obtained by running PCMCI+ on reanalysis data for
the different regimes are shown in Fig. 5.

The results show that the causal dependencies (links) be-
tween the four modes of climate variability (nodes) change
from one regime to another. Starting from an analysis of the
complete-period (115 years; upper left panel in Fig. 5; see
also Table A3 for exact cross-MCI values of the complete-
period causal graph) PCMCI+ reveals four different links:
an 11-year-lagged negative (link arrow is curved and blue)
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Table 2. Pearson r correlations between the simulated (CMIP6 LE) and observed (ERA20C_ERA5, ERSSTv5) spatial patterns of PNA,
PSA1, PDV and AMV over the 1900–2014 period. Models are sorted according to the average mean score (column in bold; descending
order).

CMIP6 LE Mean score PNA (DJF) PSA1 (ANN) PDV (monthly) AMV (monthly)

Min Mean Max Min Mean Max Min Mean Max Min Mean Max Min Mean Max

UKESM1-0-LL 0.74 0.80 0.86 0.79 0.87 0.94 0.56 0.73 0.84 0.79 0.82 0.86 0.66 0.74 0.81
MIROC6 0.74 0.80 0.85 0.73 0.86 0.95 0.64 0.73 0.80 0.82 0.84 0.87 0.66 0.71 0.78
MPI-ESM1-2-LR 0.74 0.79 0.83 0.73 0.84 0.93 0.65 0.77 0.82 0.75 0.80 0.84 0.63 0.71 0.78
ACCESS-ESM1-5 0.67 0.77 0.84 0.76 0.88 0.94 0.12 0.67 0.80 0.61 0.72 0.77 0.66 0.71 0.77
CanESM5 0.51 0.77 0.81 0.71 0.82 0.90 −0.50 0.69 0.82 0.67 0.79 0.86 0.61 0.72 0.79
IPSL-CM6A-LR 0.46 0.75 0.80 0.55 0.73 0.85 −0.80 0.70 0.86 0.73 0.78 0.84 0.69 0.76 0.81
CESM2 0.59 0.74 0.84 0.83 0.88 0.92 −0.67 0.23 0.82 0.82 0.86 0.88 0.68 0.72 0.78
EC-Earth3 0.26 0.68 0.81 0.78 0.86 0.94 −0.56 0.48 0.76 −0.25 0.61 0.78 0.57 0.65 0.79
CNRM-ESM2-1 0.36 0.61 0.79 0.32 0.61 0.86 0.37 0.52 0.72 −0.42 0.45 0.78 0.71 0.75 0.80
GISS-E2-1-H 0.41 0.60 0.79 0.63 0.80 0.90 −0.72 −0.06 0.74 0.66 0.77 0.82 0.60 0.68 0.75
INM-CM5-0 0.41 0.54 0.63 0.53 0.65 0.74 −0.31 0.28 0.66 0.47 0.51 0.56 0.57 0.65 0.71
NorCPM1 0.27 0.51 0.74 −0.04 0.65 0.87 −0.61 −0.33 0.67 0.67 0.76 0.82 0.63 0.68 0.74

AMV→PDV link (cross-MCI=−0.25) showing that the
opposite-sign effect on PDV caused by AMV is lagged
by a decade (e.g., positive AMV tends to produce nega-
tive PDV about a decade later). Therefore, this link can be
interpreted as lagged opposite-sign SST anomaly changes
over the Pacific in response to SST anomaly changes over
the Atlantic. The same causal graph features a strong posi-
tive (0.53) contemporaneous PDV–PNA link (i.e., link line
is straight), suggesting that PDV is strongly associated
with PNA. In addition, the complete-period graph implies
weak South Pacific teleconnections of both AMV and PDV,
which are represented by a positive contemporaneous AMV–
PSA1 (0.25) link and a lagged PSA1→PDV link. The lat-
ter (PSA1→PDV link) is detected as positive at 7 years
(0.23) and as negative at 15 years (−0.31). As explained in
Sect. 2.1.2, if a lagged link is found at more than one time
lag, the causal graph shows the link at the lag when it is most
significant (i.e higher absolute cross-MCI value) and labels
the other time lags after causal links due the lack of a comma
(| − 0.31| vs. |0.23| in this case, hence the “15, 7” label on
the PSA1→PDV link; see upper left panel in Fig. 5).

The complete-period graph in the upper left in Fig. 5 is
useful to show the causal dependencies happening through-
out the whole observational record used. However, this
methodology can also be used to look at specific regimes to
notice the change in dependencies arising from the physi-
cal state of the Atlantic and Pacific basins during those time
periods. For example, the causal graphs from PDV+ and
PDV− regimes indicate that direct decadal AMV–PDV in-
teractions occur only during the PDV− regime (third row,
left panel in Fig. 5), whereas during the PDV+ regime (sec-
ond row, left panel in Fig. 5), we find a contemporaneous at-
mospheric teleconnection from PNA to both AMV and PDV.
This difference could be explained by the fact that the PDV−
regime comprises two important Atlantic variability events:
the 1920s AMV phase switch from negative to positive (see

dashed lines showing low-pass AMV in Fig. 3a) and the sub-
sequent switch from positive back to negative during the late
1960s.

The regime-oriented nature of this causal analysis provides
for a separation of signals – for example, delineating the
PDV+ regime that depends on the AMV phase during those
59 years (second-row panels in Fig. 5). The short length of
the time series, in addition to the time-varying aerosol forc-
ing during such regimes, can lead to inconclusive causal es-
timations. The PDV−/AMV− panel at the right of the third
row in Fig. 5 (25 years) shows strongly auto-correlated AMV
and PSA1 patterns but no apparent links between any of the
four variables. However, these short regimes might also re-
veal interesting causal relations that are not apparent when
analyzing longer periods. This is the case for the causal
graph from the 25 years of the PDV+/AMV+ regime (cen-
tral panel in Fig. 5), which is the only one to feature a strong
negative PDV→AMV link and a positive AMV→PDV
link with comparable strength. Since the causal parents that
drive the variables (other variables or the same one at dif-
ferent past time steps) can originate from a masked period
with respect to τmax, it implies, for example, that the strong
12-year-lagged negative PDV→AMV causal link estimated
during the PDV+/AMV+ regime (second row, central panel
in Fig. 5) might have fingerprints that originate from a previ-
ous regime.

The limitation presented by the fact that some regimes
might be too short to detect any causal links (e.g.,
PDV−/AMV−, 25 years) is overcome when introducing
causal graphs for in-phase and out-of-phase regimes (pan-
els in the bottom of Fig. 5). As explained in Sect. 2.1.3, the
in-phase regime is made up of the time steps where AMV
and PDV happen to be on the same phase (PDV+/AMV+
and PDV−/AMV−), while the out-of-phase regime is com-
posed of time steps where the two modes are on oppo-
site phases (PDV+/AMV− and PDV−/AMV+), resulting
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Figure 5. Causal networks calculated with PCMCI+ from reanalysis data for the complete 1900–2014 period (upper left panel) and the
different regimes. Nodes represent the time series associated with each climate variability index (see node labels) masked according to the
predefined regimes. Node colors indicate the level of autocorrelation (auto-MCI) as the self-links of each node, with darker red indicating
stronger autocorrelations (color bar, lower left), while the color of the arrows (termed “links” here) denotes the inter-dependency strength
(cross-MCI), with blue indicating opposite-sign (or negative) inter-dependency and red indicating same-sign (or positive) inter-dependency
strength (color bar, lower right). Small labels on the curved links indicate the link-associated time lags (unit= 1 year). Straight links show
contemporaneous inter-dependencies that happen with no time lag (i.e., τ < 1). Each network is sub-labeled with its respective regime name
and the total number of unmasked years (time steps) that characterize that regime (label and number of years at the bottom of each panel).
Lines going through the panels are to help visualize which combinations make up the regimes. Solid lines are for PDV, and dashed lines are
for AMV. Red is for warm (+) phases, and blue is for cold (−) phases (e.g., PDV+/AMV− regime panel has a solid red line and a dashed
blue line going through it).

in longer regime periods. We detect the negative lagged
direct AMV→PDV and PDV→AMV only during the
out-of-phase regime, with a strong positive, extra-tropical
PDV→PNA teleconnection and a weaker AMV→PNA
teleconnection. The in-phase regime features a fast (zero-lag)

PDV teleconnection to PNA, a PNA connection to PSA1, and
a 12-year-lagged PSA1→AMV link. As finite sample er-
rors can lead to false positives and also false negatives (miss-
ing links), it is difficult to attribute a physical explanation
to every detected link. Although, here, both are thought to be
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driven by tropical precipitation and heating anomalies, we re-
frain from assigning any processes that might be behind the
direct PNA–PSA1 causal links due the lack of knowledge re-
garding possible direct links between the North Pacific and
South Pacific extra-tropics.

Through observations of the long-term variability patterns
and pacemaker simulations of Atlantic and Pacific Ocean
basins, Meehl et al. (2021a) explain how positive AMV could
produce an opposite-sign response, mainly through the atmo-
spheric Walker circulation, leading to negative PDV and then
to the negative PDV subsequently contributing a same-sign
response in the Atlantic, driving the AMV from positive to
negative phase. This mutual contrasting response from one
basin to the other can be interpreted through the blue (neg-
ative cross-MCI) lagged AMV→PDV links and the red-
dish (positive cross-MCI) lagged PDV→AMV links in the
causal networks in Fig. 5. The results in Fig. 5 show that the
lagged AMV→PDV causal link has been estimated over the
complete period and during 5 out of the 10 regimes (AMV−,
PDV−, PDV+/AMV+, PDV+/AMV− and out-of-phase).
During four of these regimes, the link can be interpreted as
a lagged opposite-sign effect of AMV on PDV (curved blue
link). The study of Meehl et al. (2021a) suggests that, in ad-
dition to the tropical Walker circulation, positive convective
heating and precipitation anomalies in the tropical Pacific
establish extra-tropical teleconnections to PNA and PSA,
which contribute to the same-sign effect of PDV on AMV.
The causal graph from the 31 years of the PDV−/AMV+
regime (third row, middle panel in Fig. 5) shows two possible
pathways for this same-sign effect of PDV on AMV. During
that regime, PCMCI+ estimates a strong positive 13- and 6-
year-lagged PDV→AMV link (the 13-year-lagged link was
also found during the 56 years of the PDV− regime) but also
shows a positive PDV→PNA–AMV contemporaneous tele-
connection where PNA seems to mediate the same-sign ef-
fect of PDV on AMV. Therefore, this analysis presents addi-
tional evidence that AMV (although potentially affected by
a forced aerosol signal) might serve as a predictor of decadal
variability over the Pacific (hence for PDV) and, eventually,
the other way around (d’Orgeville and Peltier, 2007; Zhang
and Delworth, 2007; Chikamoto et al., 2015; Johnson et al.,
2020).

An earlier study from Zhang and Delworth (2007) pro-
posed a mechanism in which positive (negative) AMO would
lead to high (low) SLP anomalies over the North Pacific and
eventually to a positive (negative) PNA pattern. This weak-
ening (strengthening) of the Aleutian low associated with the
PNA pattern projects onto the multidecadal mode of vari-
ability over the North Pacific. The response of North Pa-
cific SST to the anomalous PNA pattern induced by AMO
is hypothesized to be lagged due to Rossby wave propaga-
tion and gyre adjustment; in this regard, the authors found a
3-year lag when using a model simulation compared to a 12-
year lag when they analyzed the observed pattern. The extra-
tropical contributions of PNA and PSA1 to the mutual PDV–

AMV interactions can be concluded from causal graphs
constructed during different regimes (see Fig. 5). AMV−,
PDV+, PDV−/AMV+ and out-of-phase are all regimes that
suggest that mutual Atlantic–Pacific connections can be es-
tablished via PNA. The causal networks from the complete
period and AMV− regime show that these inter-basin con-
nections can also happen through PSA1.

Previous research also showed that components of the
PDV can be forced by tropical Pacific variability and/or
driven by atmospheric stochastic forcing, which are both
closely tied to Aleutian low variability associated with the
PNA pattern (Newman et al., 2016; Johnson et al., 2020).
This finding in the literature regarding the PDV–PNA tele-
connection validates the contemporaneous PDV–PNA causal
link estimated by PCMCI+ during most regimes (all except
PDV+/AMV+ and PDV−/AMV−; see causal networks in
Fig. 5) with a strong positive cross-MCI value. The link
is directed in some regimes (straight links with arrowhead,
e.g., during PDV+ regime), while it is unoriented during
other regimes (straight links with no arrowheads, e.g., during
AMV− regime). A 10-year-lagged negative PNA→PDV
link appears during the PDV− regime in Fig. 5 (and dur-
ing PDV−/AMV+), which suggests that an extra-tropical
teleconnection to PNA might have the opposite effect during
longer time lags.

Generally, lags ranging from interannual (1 to 5 years;
Wu et al., 2011; Meehl et al., 2021a) to decadal (12 to 17
years; Wu et al., 2011; Chylek et al., 2014) timescales have
been proposed by previous studies for Atlantic–Pacific inter-
actions; these fall in the same range of time lags at which
causal links have been estimated by PCMCI+ in this study.

To further justify the credibility of the constructed causal
networks, we use the estimated causal graph from the com-
plete period to construct a model that explains the lagged
correlation structure of the reanalysis dataset. This is done by
fitting a linear structural causal model to causal parents taken
from the original reanalysis causal graph. We generate 100
realizations following a linear Gaussian causal model, with
the noise structure estimated from the noise covariance ma-
trix of residuals. Fig. 6 shows lagged correlations of the orig-
inal data in red, with the mean lagged correlations from the
synthetically generated data in black and their 5th–95th per-
centile range in gray. The original lagged correlations (red)
fall mostly within the 90 % range (with the clear exception
of AMV’s lagged auto-correlation at the upper left of Fig. 6).
This means that a linear Gaussian model with the same links
as those from the reconstructed causal graph can explain well
the whole lagged-correlation structure of the original data
for PNA, PDV and PSA1. Such a lagged-correlation matrix
(Fig. 6) also unveils how the dependencies between different
variables change over time.
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Figure 6. Lagged correlations of original data (lag in years;
complete-period graph from reanalysis data) in red, shown together
with lagged correlations of an ensemble of synthetic data gener-
ated by a linear Gaussian structural causal model, with causal co-
efficients and noise structure estimated from the original data. The
mean lagged correlations from the synthetically generated data are
shown in black, and their 5th–95th percentile ranges are shown in
gray. The x axis shows lag in years.

3.3 Regime-oriented causal model evaluation of the
CMIP6 large ensembles

With the overall high level of fidelity that several models
show in simulating the spatial patterns of at least the ma-
jor modes of climate variability presented in this paper (see
Fig. 4b), it is crucial to test whether these simulations also ac-
count for the possible lagged causal pathways between these
different modes. To benchmark the dependency structures in
model simulations, the simulated causal graphs are compared
to those from reanalysis datasets (ERSSTv5 for PDV and
AMV, ERA20C_ERA5 for PNA and PSA1). The constructed
causal graphs from the previous section illustrate the connec-
tions that occur between the different modes of climate vari-
ability during different regimes, as estimated from reanalysis
data. Relative to reanalysis, we consider the causal graphs
from Fig. 5 as a reference for the CMIP6 model evaluation
to be demonstrated in this section.

The exact same PCMCI+ setting (see Methods; Sect. 2.1.2
and Sect. 2.1.3) used in the section above is applied for time
series indices calculated from every realization of the CMIP6
models listed in Table 1. In Sect. 3.1, we found that, overall,
the spatial patterns of these simulated indices compare fairly
well to the observed ones (Fig. 4; Table 1). The purpose of

this section is to show how the causal fingerprints in these
simulations compare to those observed. For every realiza-
tion, the analysis is run for the complete period in addition
to the 10 different regimes, similarly to the regime-oriented
setting on reanalysis data in the section above. As the PDV
and AMV phases occur in model simulations at time periods
that are different to those in reanalysis (due to randomly gen-
erated internal variability and time-varying forcing caused
mainly by aerosols), models need not show similar networks
for the same periods as those in observations. However, we
can assess the degree of similarity in the causal fingerprints
that these simulations hold within their modeled dynamics.
The results of every realization during every regime are com-
pared to the reference networks from reanalysis data during
that regime.

To illustrate results from an individual model, we ag-
gregate causal networks from 65 realizations from the
CanESM5 model in Fig. 7. This figure shows networks
with links of variable thickness, indicating that some links
are found in most ensemble members during that specific
regime (thick links, e.g., PDV–PNA in most regimes) com-
pared to other links (thinner links, e.g., PDV→AMV in
most regimes) which were detected by a only small frac-
tion of ensemble members. The thicker the link, the more
agreement between members of the same ensemble in de-
tecting that specific link. We also label the links with the
rounded mean lag at which they are detected in the ensemble
members. The link color in this ensemble summary (Fig. 7)
is informative regarding the level of agreement between en-
semble members in estimating that causal link with the same
sign. The clearer the shade of blue (negative) or red (posi-
tive), the better the agreement between ensemble members
in simulating the link with the same sign. For example, the
color of AMV–PNA links in most regimes (although mostly
estimated by only a few members during each regime, i.e.,
relatively thin links; see Fig. 7) tends towards reddish shades,
suggesting that the CanESM5 members, by which such links
were estimated, agree that the causal link is of positive sign.
This can be translated to the positive (negative) AMV driv-
ing positive (negative) PNA and vice versa. This can be seen
in all causal networks in Fig. 7, except in the ones from
PDV+/AMV+ and PDV−/AMV+ regimes, indicating that,
in a few of the CanESM5 realizations, AMV would induce an
opposite-sign response in PNA (see thin blue AMV→PNA
links on PDV+/AMV+ and PDV−/AMV+ causal graphs in
Fig. 7).

Other than the PDV–PNA links (estimated by most ensem-
ble members during all regimes), the occurrence of a link in
the CanESM5 model seems to vary from one regime to an-
other. This is less true for the complete period and for the
in-phase and the out-of-phase regimes. The complete-period
ensemble causal graph distinctly shows AMV–PNA inter-
actions as same-sign causal links between the two modes.
The same graph (upper left panel in Fig. 7) also shows a
clear blue AMV→PDV link, demonstrating the opposite-

Earth Syst. Dynam., 14, 309–344, 2023 https://doi.org/10.5194/esd-14-309-2023



S. Karmouche et al.: Regime-oriented causal model evaluation 323

Figure 7. Ensemble summary of the CanESM5 LE model. Similar to Fig. 5 but aggregating causal networks from 65 realizations. The link
width here shows the fraction of ensemble members that feature that link the relative to the total ensemble size (here, 65); i.e., the thicker the
link, the more ensemble members were found to estimate it during that specific regime. Link colors here translate the mean cross-MCI value
among the ensemble members that estimated such a link (color bar on the lower left). Links of very light color are those on which ensemble
members show little agreement regarding their partial-correlation sign. The link labels indicate the average time lag (rounded to the nearest
integer) at which the link is estimated among the fraction of ensemble members that find such a link.

sign response driven by AMV in PDV, similar to the one fea-
turing in the complete period causal graph from reanalysis
data (upper left in Fig. 5). The color and width (thickness)
of this AMV→PDV link in the complete-period graph in
Fig. 7 (upper left panel) suggest that the link was estimated
with negative cross-MCI values by a considerable fraction of
CanESM5 simulations.

A more evident network similarity is evinced during the
out-of-phase regime. Both the graph from reanalysis (Fig. 5,
out-of-phase) and the CanESM5 ensemble graph (Fig. 7, out-
of-phase) display a short-lagged (1-year lag and 2-year mean
lag, respectively) opposite-sign (blue, negative cross-MCI)
AMV→PDV causal link. Moreover, the two graphs (out-of-
phase causal networks in Figs. 5 and 7) suggest same-sign

(red, positive cross-MCI value) contemporaneous and short-
lagged (1 year) PDV–PNA causal links and weaker same-
sign (lower positive cross-MCI values) AMV–PNA links.
The latter links are instantaneous in the reanalysis data but
lagged in CanESM5. However, the short mean lag (2 years)
in the simulated CanESM5 out-of-phase graphs implies that
several members estimate a contemporaneous link.

The CanESM5 ensemble causal graph during the in-phase
regime at the bottom of Fig. 7 demonstrates the advantage
of using LEs. While the reanalysis graph during this regime
suggests only PDV–PNA and lagged PSA1→AMV tele-
connections (with a debatable contemporaneous PNA–PSA1
link), the CanESM5 ensemble graph displays a clear same-
sign lagged AMV→PDV link, with a third of its ensem-
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ble members simulating such a dependency. Despite the fact
that the positive AMV→PDV link is not detected in re-
analysis during the in-phase regime (Fig. 5, in-phase-regime
causal graph), the literature supports this contrasting ef-
fect estimated by CanESM5 model data (Wu et al., 2011;
Meehl et al., 2021a). Model simulations can therefore ex-
plain causal dynamics between modes of climate variability
that might not definitively appear when analyzing observa-
tions. There is less doubt about the agreement between mem-
bers of the CanESM5 ensemble and, when compared to re-
analysis, about the occurrence of an AMV→PDV link with
an opposite sign during the out-of-phase regime.

Ensemble summary plots are calculated for all CMIP6
LEs from Table 1, but we only chose to display them for
CanESM5 in Fig. 7. The ensemble summary of causal net-
works from reanalysis data and the 12 CMIP6 models for
the complete 1900–2014 period and for the out-of-phase
and in-phase regimes are shown in Figs. A1–A3 in the Ap-
pendix, respectively. In order to measure the level of sim-
ilarity between observed and individual ensemble member
networks across all the CMIP6 models, F1 scores are com-
puted for every realization and every regime. The results re-
veal that most CMIP6 large ensembles show better network
(causal graph) similarity with reanalysis reference networks
during the out-of-phase regime compared to the networks
drawn during the other regimes and/or the complete period.
The whisker plot in Fig. 8a shows the distribution of F1
scores across the CMIP6 LEs for the complete period (light-
blue boxes), the in-phase regime (dark blue) and the out-of-
phase regime (green). The range of scores during the other
regimes (not shown) was found to be much lower compared
to the scores during the regimes shown in Fig. 8a. The white
scatter points show that, on average, CESM2, CanESM5,
MIROC6 and MPI-ESM1-2-LR LEs clearly display better
network similarity with observations during the out-of-phase
regime. The highest scores during this regime (0.92) belong
to members of CanESM5 and MIROC6 LEs (see location
markers on whisker plot). Figure 8b compares out-of-phase
causal graphs from these highest-scoring realizations (and
their low-pass-filtered AMV and PDV time series) to those
from reanalysis. The networks in Fig. 8b agree on the 1-
year-lagged AMV→PDV link. The positive contempora-
neous PDV–PNA link is directed differently in reanalysis
and CanESM5 r11i1p2f1, but it is unoriented in CanESM5
r17i1p2f1 and MIROC6 r20i1p1f1. The out-of-phase graphs
from these realizations also agree on a same-sign contempo-
raneous AMV–PNA dependency, with a lower (i.e., weaker)
cross-MCI value than that of the PDV–PNA connection.

In Fig. 9, we perform intra- and cross-model network com-
parisons for the complete period and long regimes. This is
done by computing F1 scores with every single realization
as a reference. Averaging the F1 scores by ensemble pro-
duces an F1 matrix for every regime in the form of heat
maps that translate the degree of similarity (the redder the
color, the greater the similarity) in causal dynamics be-

tween members of the same LE (boxes on the main diag-
onal) and the pairwise causal similarity between different
LEs (boxes outside the main diagonal). Every grid box on
the heat maps shows how the corresponding CMIP6 model
from the axis on top (see model names on x axis top of ev-
ery panel) compares to the reference corresponding CMIP6
model (see model names on y axis left of each panel). We
exclude the short regimes (PDV+/AMV+, PDV+/AMV−,
PDV−/AMV+ and PDV−/AMV−) from this comparison,
as the PCMCI+ results during these regimes tend to be in-
conclusive (i.e., the regimes are too short to estimate any
causal link for several simulations from different models).
The heat maps show that CNRM-ESM2-1 LE clearly stands
out as the most dissimilar model during most regimes. This
is seen in the third row and third column (from top to bot-
tom and from left to right) of each heat map (F1 matrix of
every regime) in Fig. 9, which indicates the lowest F1 scores
(yellow and white lines on the heat maps; see also the color
bar). The model does not only have the lowest level of agree-
ment with other ensembles but also shows poor accordance
within its own members. Generally, the other CMIP6 models
exhibit better network similarity during longer regimes (com-
plete period, AMV+, AMV−, PDV+, PDV−, in-phase and
out-of-phase). Members of CESM2 LE strongly agree with
each other in terms of causal fingerprints displayed during
the analysis over the complete period; this is shown by the
dark-red box in the second row and second column of the
complete-period heat map (F1 matrix). The INM-CM5-0 LE
shows low average F1 scores during the PDV+ and out-of-
phase regimes, but it surprisingly shows the most agreement
between its own ensemble realizations during the complete
period, AMV−, PDV− and the in-phase regimes (see dark-
red grid boxes in the center of the heat maps of these regimes
in Fig. 9). This implies that the INM-CM5-0 ensemble might
mostly involve simulations where PDV and AMV are in the
same phase.

The skill of CESM2, CanESM5, MIROC6 and MPI-
ESM1-2-LR in recreating the observed causal pathways of
the out-of-phase regime is also manifested through the bet-
ter similarity the members of these models show when com-
pared to each other. The heat maps (F1 matrices in Fig. 9)
serve to distinguish models with similar causal dynamics.
The specified range of internal variability within realizations
of the same ensemble (combined with the model-simulated
time-varying aerosol forcing) can also be inferred by com-
paring one LE to itself.

3.4 Discussion

Previous research already suggested the improvement in the
simulation of dominant modes of climate variability through-
out the different phases of the CMIP archive (Fasullo et al.,
2020; Eyring et al., 2021). Although, in general, models are
able to capture the spatial patterns of these modes, CMIP6 re-
vealed discrepancies in the skill these LE simulations display
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Figure 8. (a) Whisker plot showing the distribution of F1 scores across the CMIP6 LEs for the causal analysis for the complete period
(light-blue boxes), the in-phase regime (dark-blue boxes) and the out-of-phase regime (green boxes). White scatter points denote the mean
LE F1 scores. (b) Reference causal network estimated from reanalysis during the out-of-phase regime (left, with low-pass AMV and PDV
time series below) compared to networks and time series from three CMIP6 simulations (right, with simulated low-pass AMV and PDV time
series below each network) with the best network similarity, i.e., the highest F1 score.

when recreating the observed modes. Some models perform
very well, while there is still room for improvement for oth-
ers. This conclusion is illustrated through the results of the
pattern correlations in Sect. 3.1 and the wide range of com-
parison metrics produced and published by the CVDP-LE
authors (Phillips et al., 2020). The ability of CMIP6 LEs to
recreate the spatial patterns of modes of climate variability
does not, however, ensure that they simulate the connections
between those modes. Relative to the reference networks
from reanalysis datasets during the out-of-phase regime,
CESM2, CanESM5, MIROC6 and MPI-ESM1-2-LR LEs
display the highest degree of similarity. During the analysis

of the complete 1900–2014 period, a considerable fraction
of simulations belonging to these CMIP6 models estimated
an opposite-sign response from AMV to PDV (represented
by blue AMV→PDV links; see Fig. A1). The clear occur-
rence of this opposite-sign response in several CMIP6 LEs
(notably, CESM2, CanESM5, MIROC6 and MPI-ESM1-2-
LR) shows that these models realistically simulate the mech-
anisms that connect Atlantic and Pacific modes of SST vari-
ability. The direct connection between the Atlantic and Pa-
cific basins involves mainly the tropical Walker circulation
and its associated SST, evaporation, wind and SLP changes,
where rising temperatures in the Atlantic Ocean can cause
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Figure 9. Matrices of average F1 scores for pairwise network comparisons between ensemble members of 12 CMIP6 LEs during every
regime. Boxes on the main diagonal translate the level of similarity between members of a single CMIP6 ensemble. Boxes outside the main
diagonal show the similarity between realizations of a CMIP6 LE compared to realizations from another CMIP6 LE (taking every realization
as a reference at a time before averaging across every LE). The redder the grid box, the better the causal network similarity it translates
when comparing realizations of the corresponding CMIP6 model (x axis coordinate name on top of each panel) to causal networks from
the corresponding reference CMIP6 model (y axis coordinate on the left of each panel). The matrices for the short regimes (PDV+/AMV+,
PDV+/AMV−, PDV−/AMV+ and PDV−/AMV−) are not shown, as their results are not conclusive, since PCMCI+ fails to estimate any
causal networks for several members of different ensembles.

a cooling effect similar to La Niña in the equatorial Pacific
(McGregor et al., 2014; Kucharski et al., 2016; Li et al.,
2016; Ruprich-Robert et al., 2021; Meehl et al., 2021a).
Moreover, these CMIP6 LEs were also found to simulate
most spatial patterns with high correlation coefficients. On
the other hand, other LEs such as the UKESM1-0-LL and
ACCESS-ESM1-5, despite their high correlation with the ob-

served spatial patterns, do not exhibit the same level of simi-
larity when comparing their causal networks to the reference
networks. This discrepancy might be due to the difference in
external time-varying aerosol forcing with respect to random
internally generated variability.

In Fig. 10, we plot the F1 scores for all realizations (color-
and marker-coded by CMIP6 ensemble; see the legend) for
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Figure 10. Scatter plots: Rcoef mean score (spatial correlation with reanalysis – x axis) vs. F1 score (network similarity with respect to
reanalysis – y-axis) during the different regimes. Spatial correlation values do not change from one regime to another; these are the same
mean scores calculated from the Pearson r coefficients of the four modes in Sect. 3.1 over the 1900–2014 period. Similarly to Fig. 9, scatter
plots are shown only for the long regimes.

the long regimes with respect to the mean score of r spatial
correlations from Sect. 3.1. Similarly to Fig. 9, we choose not
to show the scatter plots for the short regimes. As the mean
scores of spatial correlations are the same for all regimes
(computed between the regression maps for the whole 1900–
2014 time series of the indices), how high (low) a single scat-
ter point can get during a certain regime reveals its causal
network similarity (dissimilarity) to reanalysis during that
regime. The scatter points closer to the top right corner of
each plot belong to realizations which better simulate the
spatial patterns and causal fingerprints of reanalysis. Consid-
ering only the complete-period panel (upper left in Fig. 10),
the upper right corner of this panel mainly shows realiza-
tions from CESM2 (orange crosses), MIROC6 (yellow trian-
gles) and CanESM5 (red plus signs) models. From the same
panel, we can notice, for example, that the UKESM1-0-LL
realizations (orange five-pointed stars) have great spatial pat-

tern similarity with reanalysis. These UKESM1-0-LL real-
izations, however, do not show high similarity when compar-
ing their causal fingerprint to that concluded from reanalysis
data. The same can be said about MPI-ESM1-2-LR realiza-
tions (cyan six-pointed stars) which, in spite of their high
level of skill in recreating the spatial regression patterns of
the four modes of climate variability, fail to obtain F1 scores
as high as those from CESM2, CanESM5 or MIROC6 during
most regimes. It is only during the AMV+ and out-of-phase
regimes that very few MPI-ESM1-2-LR simulations exceed
the 0.7 F1 score bar. Overall, we can conclude that CESM2
(orange crosses), CanESM5 (red plus signs) and MIROC6
(yellow triangles) undoubtedly outperform other LEs in this
evaluation. This is proven through the consistency that simu-
lations from these three LEs show in resembling the observed
causal fingerprints during the different regimes. Despite ob-
taining high spatial correlation coefficients, two members of
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the IPSL-CM6A-LR model (gray scatters) show the best net-
work similarity with reanalysis during the PDV+ regime,
while three other members of this model show no similarity
during the same regime.

It is worth mentioning that the number of realizations
within an LE appears to increase the chance of a model com-
prising a simulation with similar dependency structures as
those found in observations. The three simulations with the
highest F1 scores during the out-of-phase regime (see Fig. 8)
belong to either CanESM5 or MIROC6, which are the LEs
with the highest number of realizations (65 and 50 ensem-
ble members, respectively). This is likely related to the num-
ber of realizations needed to capture similar random inter-
nal variability to that observed in reanalysis data. This is
less valid for the CESM2 model, which, with only 11 re-
alizations, contains simulations with high F1 scores during
most of the regimes shown in Fig. 10. In general, model-
ing centers previously contributed only a small number of
realizations to international climate change projection as-
sessments [e.g., phase 5 of the CMIP (CMIP5; Taylor et al.,
2012)]. As a result, model-associated errors and internal cli-
mate variability remained difficult, if not impossible, to dis-
entangle (Kay et al., 2015). In this paper, as CMIP6 in-
cludes LE models, we overcome this sampling problem by
using at least 10 realizations per model (see Table 1). In
this way, we have a better estimate of the natural internal
variability and the externally forced part. The larger the en-
semble size, the more likely it is that the observed internal
variability falls within the plausible internal-variability range
simulated by those particular LE model realizations. How-
ever, despite the improvement of CMIP6 models in captur-
ing the different modes of climate variability (Fasullo et al.,
2020), recent studies already pointed to persisting tropical
Atlantic biases that knew little or no improvement compared
to CMIP5 (Richter and Tokinaga, 2020; Farneti et al., 2022).
These biases certainly affect the simulation of Atlantic vari-
ability within CMIP6 models, as they project additional un-
certainties onto the AMV−related causal dynamics and spa-
tial patterns. Moreover, previous research showed that, on
the decadal timescale, Atlantic mean SST biases in CMIP5
models are directly related to the variability of trade winds
over the region (Kajtar et al., 2018). McGregor et al. (2018)
found that the addition of the CMIP5 Atlantic bias leads to
enhanced descending motion trends in the western and east-
ern Pacific and a reduced trend in the central Pacific. The
same study found that the observed northward migration of
the Intertropical Convergence Zone (ITCZ) is absent when
introducing CMIP5 Atlantic bias.

The spatial pattern correlation analysis (Fig. 4), the
resulting F1 scores with respect to reanalysis (Fig. 8a)
and the CMIP6 pairwise network comparisons (Fig. 9)
call for the investigation of the coupling attributes and
the simulated internal variability in the CNRM-ESM2-1
ensemble, as its realizations clearly fail to reproduce the
observed spatial patterns and causal links between modes

of climate variability compared to other CMIP6 LEs. The
relatively large distribution of spatial correlation values for
the simulated PNA and PDV modes (see purple and red
boxes of CNRM-ESM2-1 in Fig. 4b) suggests spatial dis-
agreement between the realizations of the CNRM-ESM2-1
model with regards to the expressed PNA and PDV patterns.
This might be the result of a relatively large distribution of
forced PNA and/or PDV trends. This can be supported by
the time series metrics provided by CVDP-LE, which reveal
that, among the models analyzed in this paper (see Table 1),
CNRM-ESM2-1 holds the largest 10th–90th percentile
range of linear PDV trends (−0.89 per 115 years to 1.18
per 115 years) during the 1900–2014 period. These values
can be found on the PDV time series ensemble summary
figure (https://webext.cgd.ucar.edu/Multi-Case/CVDP-LE_
repository/CMIP6_Historical_1900-2014/pdv_timeseries_
mon.summary.png, last access: 17 March 2023) as part
of the historical 1900–2014 CMIP6 variability diagnostic
results distributed by the CVDP-LE authors (Phillips et al.,
2020). Considering the fact that the model only counts 10
realizations, the large 10th–90th percentile range reveals
that the forced PDV trend can be significantly different
from one CNRM-ESM2-1 simulation to another. This not
only translates to the dissimilarity in terms of spatial PDV
patterns within the ensemble members but most probably
leads to very different causal dynamics too. The latter can be
seen through the causal networks in Figs. A1 and A2 in the
Appendix, where CNRM-ESM2-1 simulations hardly agree
on the sign of the PDV–PNA links (appearing with lighter
shades of red) compared to the other CMIP6 models (where
PDV–PNA links appear with darker shades of red).

In the present work, we defined regimes explicitly based
on the phases of PDV and AMV. There are also methods
to agnostically extract underlying regimes and their corre-
sponding causal graphs from time series (Saggioro et al.,
2020), but these are not reliable for the small sample sizes
in combination with the high dimensionality of the present
datasets.

4 Summary

Applying PCMCI+ to reanalysis data revealed that the di-
rect decadal opposite-sign response from AMV to PDV, de-
scribed by Meehl et al. (2021a), occurs not only during the
analysis of the complete 1900–2014 period (with 11-year
time lag) but also during several specified regimes: PDV−
(11-year lag), AMV− (11-year lag), PDV+/AMV− (1- and
11-year lags) and when PDV and AMV are out of phase (1-
and 11-year lags). These regimes vary from being 34-years
long (for PDV+/AMV−) to being 65-years long (for out-
of-phase). For the shorter PDV+/AMV+ regime (25-years
long), we detect a positive same-sign response from AMV
to PDV with a 4-year time delay. The causal networks con-
structed from the reanalysis datasets have also revealed the
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same-sign response from PDV to AMV during the following
two regimes: PDV− (59-years long) and PDV−/AMV+ (31-
years long). In other words, the regime-oriented causal anal-
ysis indicates that AMV might serve as an early predictor of
decadal variability over the Pacific. We also find an indirect
connection between the Atlantic and Pacific, which is estab-
lished via PNA during AMV− and PDV+ regimes (both 59-
years long) and during PDV−/AMV+. The latter is one of
the two regimes that feature a same-sign response from PDV
to AMV. An indirect connection between the Atlantic and
the Pacific via the Pacific–South American pattern is found
during the complete 1900–2014 period, where AMV is posi-
tively linked with PSA1 but PSA1 has a negative lagged link
to PDV. During the AMV− regime, the causal graph shows
opposite-sign AMV→PSA1→PDV lagged connections.

As an example for the regime-oriented causal analysis
of CMIP6 models, we showed the CanESM5 ensemble-
averaged causal graphs, which indicate that the opposite-sign
effect of AMV on PDV (blue AMV→PDV link) is recreated
by several realizations (38 out of 65) during the out-of-phase
regime, agreeing with the reanalysis results and the litera-
ture findings (Newman et al., 2016; Johnson et al., 2020).
In the Appendix, Figs. A1 and A2 show that this opposite-
sign lagged effect of AMV on PDV was clearly present in
simulations belonging to CESM2 and MIROC6 ensembles
(AMV→PDV links are clearly blue). The PDV teleconnec-
tion to PNA in the form of mutual same-sign response (pos-
itive cross-MCI links) was clearly present not only in most
realizations of the CanESM5 model (Fig. 7) but also in most
of the CMIP6 LE simulations analyzed. This is true consider-
ing the exception of the CNRM-ESM2-1 simulations, which
show less agreement with each other regarding the sign of
the PDV–PNA links (appearing with lighter shades of red in
Figs. A1 and A2) compared to the other CMIP6 models.

The evaluation of the large ensembles from the CMIP6
archive presented in this paper unveiled how a model per-
forms compared to other models in terms of simulating ob-
served spatial patterns and causal pathways between modes
of climate variability. Most CMIP6 models were found to
score better during the out-of-phase regime, with CESM2,
CanESM5, MIROC6 and MPI-ESM1-2-LR being the best
performers during this regime. We showed the importance
of using LEs in causal model evaluation to address the sam-
pling issue, and we explained the possible causal pathways
during specific regimes that might not appear in causal net-
works constructed from reanalysis data. Several CanESM5
realizations suggested a same-sign AMV→PDV link dur-
ing the in-phase regime. This link did not appear on the
in-phase-regime causal graph reconstructed from reanaly-
sis. This same-sign response is nonetheless documented by
previous research (Wu et al., 2011; Meehl et al., 2021a).
The CanESM5 and MIROC6 models with the highest num-
ber of members were found to outperform other models in
simulating observed causal patterns during the long regimes
(see Fig. 8a). Interestingly, the CESM2 model, with a rela-

tively smaller ensemble size (11 realizations), was also found
to display larger causal fingerprint similarity with reanal-
ysis during the long regimes. The causal network similar-
ity between different CMIP6 LE models was also assessed
throughout this paper. Simulations from CESM2, CanESM5
and MIROC6 models also largely resemble each other and
those from the MPI-ESM1-2-LR model in terms of estimated
causal networks during most regimes (Fig. 9).

A deepened intra-model comparison remains essential to
evaluate how realizations of the same model ensemble differ
from one another. The “ripf” identifier of every simulation
within the CMIP6 LEs used in this study shows that some
LEs only include realizations (r) with the same initialization
(i), physics (p) and forcing (f), while other LEs contain re-
alizations with different physics or forcing. On that account,
it is of high importance that the documentation provided by
modeling groups be inspected regarding the relevant realiza-
tion attributes of their model ensemble.

Causal model evaluation also helps to better understand
remote contributions to internal variability over specific re-
gions. As we are not subtracting the ensemble mean (repre-
senting the forced response), the causal links found when an-
alyzing observational reanalysis and CMIP6 historical sim-
ulations are thus expected to include external-forcing con-
tributions, especially those from space- and time-varying
aerosol radiative forcing. It is therefore crucial to separate
the internal-variability component from the externally forced
part to gain a better understanding on the effects of exter-
nal forcings on Atlantic–Pacific interactions. Meehl et al.
(2021a) recently examined this effect through time series
pacemaker experiments in which the effects from aerosols
are removed (by fixing aerosols at 1920 values). The ap-
proach and findings presented here motivate a follow-up
study where pacemaker, pre-industrial control and future sce-
nario simulations are to be analyzed through causal discov-
ery algorithms to reveal the impact of climate change on the
teleconnections and interactions between major modes of cli-
mate variability. Overall, the regime-oriented causal model
evaluation followed in this study has the potential to be a
powerful methodology that can be applied in a number of
environment-related topics, offering tremendous insight to
improve the understanding of the complex Earth system and
the state of the art of climate modeling.
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Appendix A

Table A1. Distribution of Pearson r correlation values between the simulated (CMIP6 LE) and observed (ERA20C_ERA5, ERSSTv5) spatial
patterns of PNA, PSA1, PDV and AMV and their mean scores over the 1900–2014 period. Sorted in alphabetical order.

CMIP6 LE Percentile PNA (DJF) PSA1 (ANN) PDV (monthly) AMV (monthly) Mean score

ACCESS-ESM1-5 10th 0.80 0.57 0.68 0.67 0.67
50th 0.90 0.72 0.71 0.71 0.78
90th 0.93 0.79 0.77 0.75 0.80

CESM2 10th 0.84 −0.64 0.82 0.68 0.61
50th 0.88 0.66 0.87 0.73 0.79
90th 0.91 0.77 0.88 0.77 0.82

CNRM-ESM2-1 10th 0.38 0.39 −0.06 0.73 0.40
50th 0.59 0.53 0.68 0.74 0.64
90th 0.84 0.63 0.77 0.79 0.71

CanESM5 10th 0.76 0.56 0.75 0.68 0.73
50th 0.83 0.75 0.79 0.72 0.77
90th 0.88 0.81 0.82 0.76 0.80

EC-Earth3 10th 0.81 −0.40 0.45 0.58 0.49
50th 0.85 0.69 0.71 0.63 0.73
90th 0.92 0.75 0.77 0.71 0.79

GISS-E2-1-H 10th 0.73 −0.70 0.73 0.62 0.46
50th 0.79 −0.55 0.77 0.68 0.56
90th 0.86 0.73 0.81 0.72 0.76

INM-CM5-0 10th 0.53 −0.08 0.47 0.62 0.48
50th 0.67 0.38 0.50 0.66 0.54
90th 0.73 0.57 0.56 0.71 0.60

IPSL-CM6A-LR 10th 0.66 0.70 0.75 0.72 0.72
50th 0.73 0.80 0.79 0.76 0.77
90th 0.82 0.84 0.81 0.79 0.80

MIROC6 10th 0.81 0.68 0.83 0.67 0.77
50th 0.86 0.73 0.84 0.71 0.80
90th 0.91 0.78 0.85 0.74 0.82

MPI-ESM1-2-LR 10th 0.76 0.70 0.75 0.64 0.74
50th 0.86 0.79 0.80 0.72 0.79
90th 0.93 0.82 0.83 0.77 0.82

NorCPM1 10th 0.38 -0.58 0.72 0.64 0.41
50th 0.72 -0.51 0.76 0.68 0.49
90th 0.82 0.58 0.79 0.72 0.70

UKESM1-0-LL 10th 0.83 0.65 0.80 0.68 0.78
50th 0.88 0.75 0.82 0.74 0.80
90th 0.91 0.79 0.86 0.79 0.83
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Table A2. Pearson correlation values obtained using 18 UKESM1-0-LL simulation with respect to the observed (ERA20C_ERA5,
ERSSTv5) spatial patterns of PNA, PSA1, PDV and AMV and their mean score over the 1900–2014 period. Sorted by mean score.

UKESM1-0-LL PNA (DJF) PSA1 (ANN) PDV (monthly) AMV (monthly) Mean score
ensemble member

r19i1p1f2 0.91 0.84 0.86 0.80 0.86
r6i1p1f3 0.89 0.75 0.86 0.78 0.83
r3i1p1f2 0.90 0.76 0.85 0.76 0.83
r14i1p1f2 0.94 0.75 0.82 0.68 0.82
r2i1p1f2 0.88 0.78 0.84 0.75 0.82
r1i1p1f2 0.87 0.81 0.82 0.78 0.82
r11i1p1f2 0.91 0.68 0.81 0.76 0.81
r8i1p1f2 0.90 0.78 0.79 0.70 0.80
r17i1p1f2 0.80 0.76 0.84 0.81 0.80
r7i1p1f3 0.86 0.78 0.82 0.72 0.80
r4i1p1f2 0.90 0.67 0.82 0.73 0.80
r16i1p1f2 0.86 0.75 0.81 0.72 0.79
r10i1p1f2 0.88 0.74 0.83 0.66 0.79
r9i1p1f2 0.89 0.56 0.82 0.77 0.79
r18i1p1f2 0.88 0.60 0.82 0.76 0.78
r5i1p1f3 0.85 0.75 0.81 0.68 0.78
r13i1p1f2 0.84 0.71 0.80 0.74 0.78
r12i1p1f2 0.79 0.67 0.80 0.68 0.74

Table A3. Cross-MCI and auto-MCI values calculated by PCMCI+ from reanalysis time series data for the complete 1900–2014 period.
Values are relative to the complete-period causal graph shown in Fig. 2 (right panel) and in Fig. 5 (upper left panel). The table presents the
cross-MCI (cross-correlation) values denoting the sign and strength of the causal link between node i and node j for lags between 0 and τmax.
In bold are the highest absolute cross-MCI values for that specific link (detected within the statistical significance threshold, αpc ≤ 0.05) and
for which links are apparent on the causal graphs. The values are rounded to 2 decimal places.

Time lag τ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
i j

AMV AMV 0.00 0.45 0.22 0.14 0.17 0.21 0.18 0.18 0.09 0.11 0.05 0.05 0.18 0.09 0.03 0.05
PNA 0.18 −0.20 −0.06 0.01 −0.13 −0.11 −0.17 −0.04 0.01 −0.04 −0.13 −0.18 −0.17 −0.19 −0.16 −0.06
PDV −0.04 −0.18 −0.16 −0.07 −0.12 −0.15 −0.16 −0.18 −0.06 −0.13 −0.21 −0.25 0.02 −0.18 −0.06 −0.11
PSA1 0.25 −0.05 −0.01 −0.06 −0.10 −0.11 −0.12 −0.05 −0.06 −0.00 −0.02 −0.07 −0.04 −0.08 −0.00 0.08

PNA AMV 0.18 −0.05 −0.02 −0.03 −0.09 −0.12 −0.07 0.03 −0.05 0.01 0.01 −0.04 0.05 0.07 0.03 0.03
PNA 0.00 0.06 0.05 0.04 −0.04 0.10 0.02 0.00 −0.06 −0.11 0.03 −0.14 −0.01 −0.06 −0.11 0.05
PDV 0.53 −0.07 0.10 −0.05 −0.04 0.14 0.16 −0.02 −0.18 −0.10 −0.02 0.01 0.00 −0.07 −0.17 −0.02
PSA1 0.11 −0.09 0.06 −0.12 −0.08 −0.01 −0.03 −0.05 −0.13 0.00 −0.13 −0.11 0.12 −0.12 −0.10 0.13

PDV AMV −0.04 −0.03 −0.01 −0.04 −0.09 −0.15 −0.09 −0.05 0.00 −0.02 0.02 0.02 0.01 0.10 0.12 0.14
PNA 0.53 0.17 0.09 0.04 0.21 0.21 0.05 −0.02 −0.08 −0.08 0.06 0.00 −0.01 −0.02 −0.10 −0.07
PDV 0.00 0.33 0.18 0.07 0.18 0.18 0.08 0.02 −0.12 −0.01 0.09 0.11 0.02 −0.09 −0.21 −0.15
PSA1 −0.07 0.11 0.14 0.02 0.03 0.07 0.00 −0.17 −0.13 −0.06 −0.12 −0.09 −0.07 −0.03 −0.09 0.03

PSA1 AMV 0.25 −0.09 0.15 −0.09 −0.07 −0.07 −0.06 −0.21 −0.16 −0.14 −0.19 −0.17 −0.16 −0.20 −0.19 −0.15
PNA 0.11 −0.10 0.18 −0.10 0.04 0.06 0.04 0.21 0.01 0.07 −0.10 0.11 0.11 −0.01 −0.17 −0.09
PDV −0.07 0.03 0.11 −0.01 0.02 0.09 0.09 0.23 0.08 −0.07 −0.13 −0.07 −0.08 −0.10 −0.21 -0.31
PSA1 0.00 0.04 0.18 0.03 0.19 0.04 0.10 −0.02 −0.16 0.02 −0.09 0.01 −0.09 −0.19 −0.19 0.01
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Table A4. Number of years for every regime for reanalysis and CMIP6 simulations 1–40.

Complete period AMV+ AMV− PDV+ PDV− In-Phase out-of-phase PDV+/AMV+ PDV+/AMV− PDV−/AMV+ PDV−/AMV−

Reanalysis 115 56 59 59 56 50 65 25 34 31 25
ACCESS-ESM1-5_r5i1p1f1 115 51 64 60 55 82 33 39 21 12 43
ACCESS-ESM1-5_r1i1p1f1 115 57 58 63 52 71 44 38 25 19 33
ACCESS-ESM1-5_r9i1p1f1 115 57 58 66 49 44 71 26 40 31 18
ACCESS-ESM1-5_r2i1p1f1 115 57 58 63 52 31 84 18 45 39 13
ACCESS-ESM1-5_r8i1p1f1 115 53 62 65 50 59 56 31 34 22 28
ACCESS-ESM1-5_r7i1p1f1 115 64 51 68 47 53 62 35 33 29 18
ACCESS-ESM1-5_r10i1p1f1 115 69 46 58 57 36 79 24 34 45 12
ACCESS-ESM1-5_r4i1p1f1 115 56 59 59 56 42 73 21 38 35 21
ACCESS-ESM1-5_r3i1p1f1 115 68 47 54 61 35 80 21 33 47 14
ACCESS-ESM1-5_r6i1p1f1 115 51 64 48 67 48 67 16 32 35 32
CESM2_r1i1p1f1 115 74 41 61 54 44 71 32 29 42 12
CESM2_r8i1p1f1 115 54 61 54 61 47 68 20 34 34 27
CESM2_r2i1p1f1 115 62 53 42 73 29 86 9 33 53 20
CESM2_r6i1p1f1 115 63 52 67 48 21 94 18 49 45 3
CESM2_r10i1p1f1 115 66 49 50 65 41 74 21 29 45 20
CESM2_r11i1p1f1 115 50 65 54 61 39 76 14 40 36 25
CESM2_r7i1p1f1 115 65 50 51 64 27 88 14 37 51 13
CESM2_r3i1p1f1 115 64 51 58 57 53 62 30 28 34 23
CESM2_r5i1p1f1 115 58 57 56 59 37 78 18 38 40 19
CESM2_r9i1p1f1 115 62 53 57 58 10 105 7 50 55 3
CESM2_r4i1p1f1 115 55 60 65 50 35 80 20 45 35 15
CNRM-ESM2-1_r11i1p1f2 115 44 71 61 54 74 41 32 29 12 42
CNRM-ESM2-1_r4i1p1f2 115 53 62 56 59 28 87 11 45 42 17
CNRM-ESM2-1_r1i1p1f2 115 70 45 59 56 32 83 23 36 47 9
CNRM-ESM2-1_r5i1p1f2 115 54 61 56 59 99 16 47 9 7 52
CNRM-ESM2-1_r7i1p1f2 115 63 52 54 61 70 45 36 18 27 34
CNRM-ESM2-1_r9i1p1f2 115 51 64 65 50 43 72 22 43 29 21
CNRM-ESM2-1_r10i1p1f2 115 54 61 54 61 59 56 26 28 28 33
CNRM-ESM2-1_r3i1p1f2 115 56 59 53 62 82 33 38 15 18 44
CNRM-ESM2-1_r8i1p1f2 115 65 50 76 39 50 65 38 38 27 12
CNRM-ESM2-1_r2i1p1f2 115 54 61 64 51 59 56 31 33 23 28
CanESM5_r15i1p1f1 115 59 56 61 54 45 70 25 36 34 20
CanESM5_r11i1p1f1 115 49 66 66 49 28 87 14 52 35 14
CanESM5_r1i1p2f1 115 60 55 64 51 37 78 23 41 37 14
CanESM5_r19i1p2f1 115 56 59 46 69 39 76 13 33 43 26
CanESM5_r26i1p2f1 115 51 64 63 52 49 66 24 39 27 25
CanESM5_r33i1p2f1 115 62 53 56 59 65 50 34 22 28 31
CanESM5_r31i1p2f1 115 65 50 61 54 61 54 36 25 29 25
CanESM5_r13i1p2f1 115 61 54 55 60 39 76 20 35 41 19
CanESM5_r29i1p2f1 115 55 60 56 59 28 87 12 44 43 16
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Table A5. Number of years for every regime for reanalysis and CMIP6 simulations 41–80.

Complete period AMV+ AMV− PDV+ PDV− In-Phase out-of-phase PDV+/AMV+ PDV+/AMV− PDV−/AMV+ PDV−/AMV−

Reanalysis 115 56 59 59 56 50 65 25 34 31 25
CanESM5_r22i1p2f1 115 58 57 55 60 40 75 19 36 39 21
CanESM5_r23i1p1f1 115 47 68 51 64 71 44 27 24 20 44
CanESM5_r6i1p1f1 115 70 45 60 55 33 82 24 36 46 9
CanESM5_r2i1p2f1 115 48 67 48 67 25 90 3 45 45 22
CanESM5_r38i1p2f1 115 65 50 68 47 50 65 34 34 31 16
CanESM5_r19i1p1f1 115 63 52 65 50 37 78 25 40 38 12
CanESM5_r37i1p2f1 115 45 70 63 52 41 74 17 46 28 24
CanESM5_r24i1p1f1 115 59 56 56 59 44 71 22 34 37 22
CanESM5_r4i1p1f1 115 65 50 62 53 40 75 26 36 39 14
CanESM5_r25i1p1f1 115 55 60 57 58 65 50 31 26 24 34
CanESM5_r22i1p1f1 115 61 54 55 60 57 58 29 26 32 28
CanESM5_r12i1p1f1 115 60 55 56 59 63 52 32 24 28 31
CanESM5_r23i1p2f1 115 49 66 64 51 48 67 23 41 26 25
CanESM5_r13i1p1f1 115 53 62 66 49 44 71 24 42 29 20
CanESM5_r4i1p2f1 115 54 61 63 52 50 65 26 37 28 24
CanESM5_r27i1p2f1 115 54 61 55 60 32 83 13 42 41 19
CanESM5_r10i1p2f1 115 61 54 65 50 63 52 37 28 24 26
CanESM5_r16i1p2f1 115 59 56 59 56 47 68 25 34 34 22
CanESM5_r18i1p2f1 115 47 68 49 66 45 70 13 36 34 32
CanESM5_r32i1p2f1 115 59 56 61 54 17 98 11 50 48 6
CanESM5_r17i1p1f1 115 49 66 62 53 28 87 12 50 37 16
CanESM5_r14i1p2f1 115 56 59 52 63 41 74 17 35 39 24
CanESM5_r5i1p1f1 115 51 64 68 47 34 81 19 49 32 15
CanESM5_r24i1p2f1 115 56 59 49 66 50 65 20 29 36 30
CanESM5_r30i1p2f1 115 49 66 58 57 38 77 15 43 34 23
CanESM5_r14i1p1f1 115 54 61 55 60 54 61 24 31 30 30
CanESM5_r21i1p1f1 115 53 62 63 52 27 88 14 49 39 13
CanESM5_r16i1p1f1 115 70 45 56 59 27 88 19 37 51 8
CanESM5_r36i1p2f1 115 51 64 59 56 33 82 14 45 37 19
CanESM5_r3i1p1f1 115 51 64 65 50 49 66 25 40 26 24
CanESM5_r8i1p1f1 115 65 50 51 64 27 88 14 37 51 13
CanESM5_r7i1p2f1 115 43 72 50 65 58 57 18 32 25 40
CanESM5_r6i1p2f1 115 50 65 64 51 67 48 33 31 17 34
CanESM5_r25i1p2f1 115 60 55 43 72 62 53 25 18 35 37
CanESM5_r20i1p1f1 115 54 61 61 54 42 73 21 40 33 21
CanESM5_r5i1p2f1 115 61 54 61 54 35 80 21 40 40 14
CanESM5_r39i1p2f1 115 61 54 51 64 33 82 15 36 46 18
CanESM5_r11i1p2f1 115 52 63 57 58 48 67 21 36 31 27
CanESM5_r2i1p1f1 115 60 55 58 57 25 90 14 44 46 11
CanESM5_r15i1p2f1 115 59 56 62 53 72 43 39 23 20 33
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Table A6. Number of years for every regime for reanalysis and CMIP6 simulations 81–120.

Complete period AMV+ AMV− PDV+ PDV− In-phase Out-of-phase PDV+/AMV+ PDV+/AMV− PDV−/AMV+ PDV−/AMV−

Reanalysis 115 56 59 59 56 50 65 25 34 31 25
CanESM5_r9i1p2f1 115 53 62 55 60 49 66 21 34 32 28
CanESM5_r1i1p1f1 115 58 57 60 55 39 76 21 39 37 18
CanESM5_r12i1p2f1 115 59 56 61 54 59 56 32 29 27 27
CanESM5_r18i1p1f1 115 56 59 52 63 57 58 25 27 31 32
CanESM5_r28i1p2f1 115 45 70 51 64 47 68 14 37 31 33
CanESM5_r20i1p2f1 115 55 60 60 55 34 81 17 43 38 17
CanESM5_r10i1p1f1 115 49 66 55 60 59 56 24 31 25 35
CanESM5_r17i1p2f1 115 50 65 56 59 45 70 18 38 32 27
CanESM5_r35i1p2f1 115 57 58 54 61 68 47 32 22 25 36
CanESM5_r3i1p2f1 115 46 69 63 52 62 53 28 35 18 34
CanESM5_r21i1p2f1 115 54 61 56 59 41 74 18 38 36 23
CanESM5_r7i1p1f1 115 58 57 53 62 18 97 7 46 51 11
CanESM5_r8i1p2f1 115 64 51 67 48 36 79 26 41 38 10
CanESM5_r40i1p2f1 115 56 59 63 52 26 89 15 48 41 11
CanESM5_r9i1p1f1 115 42 73 63 52 46 69 18 45 24 28
CanESM5_r34i1p2f1 115 51 64 58 57 20 95 7 51 44 13
EC-Earth3_r22i1p1f1 115 42 73 60 55 45 70 16 44 26 29
EC-Earth3_r6i1p1f1 115 61 54 48 67 28 87 11 37 50 17
EC-Earth3_r23i1p1f1 115 62 53 55 60 30 85 16 39 46 14
EC-Earth3_r3i1p1f1 115 44 71 58 57 33 82 10 48 34 23
EC-Earth3_r17i1p1f1 115 50 65 57 58 46 69 19 38 31 27
EC-Earth3_r19i1p1f1 115 54 61 55 60 56 59 25 30 29 31
EC-Earth3_r12i1p1f1 115 43 72 59 56 47 68 17 42 26 30
EC-Earth3_r20i1p1f1 115 54 61 59 56 46 69 22 37 32 24
EC-Earth3_r10i1p1f1 115 62 53 53 62 20 95 10 43 52 10
EC-Earth3_r18i1p1f1 115 45 70 61 54 21 94 6 55 39 15
EC-Earth3_r24i1p1f1 115 56 59 72 43 43 72 28 44 28 15
EC-Earth3_r9i1p1f1 115 58 57 57 58 46 69 23 34 35 23
EC-Earth3_r1i1p1f1 115 61 54 59 56 47 68 26 33 35 21
EC-Earth3_r14i1p1f1 115 59 56 69 46 103 12 58 11 1 45
EC-Earth3_r16i1p1f1 115 61 54 37 78 27 88 5 32 56 22
EC-Earth3_r7i1p1f1 115 55 60 50 65 30 85 10 40 45 20
EC-Earth3_r4i1p1f1 115 54 61 54 61 37 78 15 39 39 22
EC-Earth3_r21i1p1f1 115 59 56 68 47 64 51 38 30 21 26
EC-Earth3_r2i1p1f1 115 64 51 56 59 51 64 28 28 36 23
EC-Earth3_r25i1p1f1 115 59 56 66 49 82 33 46 20 13 36
GISS-E2-1-H_r2i1p5f1 115 55 60 60 55 46 69 23 37 32 23
GISS-E2-1-H_r1i1p5f1 115 63 52 68 47 42 73 29 39 34 13
GISS-E2-1-H_r1i1p1f2 115 58 57 55 60 50 65 24 31 34 26
GISS-E2-1-H_r8i1p1f1 115 62 53 70 45 73 42 45 25 17 28
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Table A7. Number of years for every regime for reanalysis and CMIP6 simulations 121–160.

Complete period AMV+ AMV− PDV+ PDV− In-phase Out-of-phase PDV+/AMV+ PDV+/AMV− PDV−/AMV+ PDV−/AMV−

Reanalysis 115 56 59 59 56 50 65 25 34 31 25
GISS-E2-1-H_r4i1p1f2 115 48 67 61 54 26 89 10 51 38 16
GISS-E2-1-H_r7i1p1f1 115 49 66 53 62 77 38 32 21 17 45
GISS-E2-1-H_r5i1p1f1 115 61 54 53 62 55 60 27 26 34 28
GISS-E2-1-H_r9i1p1f1 115 56 59 67 48 50 65 29 38 27 21
GISS-E2-1-H_r1i1p3f1 115 56 59 63 52 48 67 26 37 30 22
GISS-E2-1-H_r4i1p3f1 115 59 56 66 49 48 67 29 37 30 19
GISS-E2-1-H_r6i1p1f1 115 61 54 57 58 57 58 30 27 31 27
GISS-E2-1-H_r3i1p1f1 115 62 53 56 59 65 50 34 22 28 31
GISS-E2-1-H_r2i1p3f1 115 57 58 58 57 48 67 24 34 33 24
GISS-E2-1-H_r10i1p1f1 115 58 57 51 64 52 63 23 28 35 29
GISS-E2-1-H_r5i1p3f1 115 54 61 54 61 33 82 13 41 41 20
GISS-E2-1-H_r2i1p1f2 115 50 65 53 62 72 43 30 23 20 42
GISS-E2-1-H_r4i1p1f1 115 59 56 63 52 61 54 34 29 25 27
GISS-E2-1-H_r2i1p1f1 115 48 67 64 51 53 62 25 39 23 28
GISS-E2-1-H_r3i1p1f2 115 65 50 50 65 26 89 13 37 52 13
GISS-E2-1-H_r3i1p5f1 115 47 68 55 60 69 46 28 27 19 41
GISS-E2-1-H_r3i1p3f1 115 59 56 61 54 77 38 41 20 18 36
GISS-E2-1-H_r1i1p1f1 115 62 53 51 64 62 53 30 21 32 32
GISS-E2-1-H_r5i1p1f2 115 53 62 61 54 33 82 16 45 37 17
INM-CM5-0_r2i1p1f1 115 60 55 55 60 72 43 36 19 24 36
INM-CM5-0_r6i1p1f1 115 60 55 58 57 63 52 33 25 27 30
INM-CM5-0_r9i1p1f1 115 54 61 57 58 46 69 21 36 33 25
INM-CM5-0_r8i1p1f1 115 60 55 45 70 84 31 37 8 23 47
INM-CM5-0_r4i1p1f1 115 60 55 56 59 53 62 27 29 33 26
INM-CM5-0_r7i1p1f1 115 61 54 59 56 41 74 23 36 38 18
INM-CM5-0_r5i1p1f1 115 60 55 49 66 24 91 9 40 51 15
INM-CM5-0_r1i1p1f1 115 52 63 63 52 56 59 28 35 24 28
INM-CM5-0_r10i1p1f1 115 55 60 55 60 79 36 37 18 18 42
INM-CM5-0_r3i1p1f1 115 60 55 56 59 53 62 27 29 33 26
IPSL-CM6A-LR_r9i1p1f1 115 55 60 54 61 44 71 19 35 36 25
IPSL-CM6A-LR_r15i1p1f1 115 69 46 60 55 30 85 22 38 47 8
IPSL-CM6A-LR_r6i1p1f1 115 71 44 61 54 29 86 23 38 48 6
IPSL-CM6A-LR_r28i1p1f1 115 63 52 65 50 63 52 38 27 25 25
IPSL-CM6A-LR_r31i1p1f1 115 65 50 55 60 45 70 25 30 40 20
IPSL-CM6A-LR_r25i1p1f1 115 51 64 58 57 60 55 27 31 24 33
IPSL-CM6A-LR_r27i1p1f1 115 64 51 58 57 49 66 28 30 36 21
IPSL-CM6A-LR_r30i1p1f1 115 57 58 55 60 51 64 24 31 33 27
IPSL-CM6A-LR_r24i1p1f1 115 59 56 55 60 59 56 29 26 30 30
IPSL-CM6A-LR_r5i1p1f1 115 62 53 60 55 61 54 34 26 28 27
IPSL-CM6A-LR_r22i1p1f1 115 58 57 52 63 79 36 37 15 21 42
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Table A8. Number of years for every regime for reanalysis and CMIP6 simulations 161–200.

Complete period AMV+ AMV− PDV+ PDV− In-phase Out-of-phase PDV+/AMV+ PDV+/AMV− PDV−/AMV+ PDV−/AMV−

Reanalysis 115 56 59 59 56 50 65 25 34 31 25
IPSL-CM6A-LR_r26i1p1f1 115 56 59 65 50 48 67 27 38 29 21
IPSL-CM6A-LR_r8i1p1f1 115 57 58 59 56 37 78 19 40 38 18
IPSL-CM6A-LR_r14i1p1f1 115 63 52 54 61 42 73 22 32 41 20
IPSL-CM6A-LR_r10i1p1f1 115 60 55 52 63 45 70 21 31 39 24
IPSL-CM6A-LR_r16i1p1f1 115 54 61 62 53 45 70 23 39 31 22
IPSL-CM6A-LR_r4i1p1f1 115 64 51 56 59 53 62 29 27 35 24
IPSL-CM6A-LR_r20i1p1f1 115 51 64 56 59 62 53 27 29 24 35
IPSL-CM6A-LR_r1i1p1f1 115 56 59 57 58 54 61 26 31 30 28
IPSL-CM6A-LR_r3i1p1f1 115 48 67 52 63 45 70 15 37 33 30
IPSL-CM6A-LR_r7i1p1f1 115 51 64 48 67 44 71 14 34 37 30
IPSL-CM6A-LR_r13i1p1f1 115 65 50 54 61 56 59 30 24 35 26
IPSL-CM6A-LR_r19i1p1f1 115 52 63 56 59 85 30 39 17 13 46
IPSL-CM6A-LR_r23i1p1f1 115 50 65 59 56 36 79 15 44 35 21
IPSL-CM6A-LR_r18i1p1f1 115 53 62 52 63 34 81 12 40 41 22
IPSL-CM6A-LR_r29i1p1f1 115 47 68 56 59 44 71 16 40 31 28
IPSL-CM6A-LR_r2i1p1f1 115 54 61 48 67 35 80 11 37 43 24
IPSL-CM6A-LR_r11i1p1f1 115 56 59 61 54 52 63 27 34 29 25
IPSL-CM6A-LR_r32i1p1f1 115 53 62 62 53 54 61 27 35 26 27
IPSL-CM6A-LR_r21i1p1f1 115 63 52 59 56 35 80 21 38 42 14
IPSL-CM6A-LR_r17i1p1f1 115 50 65 60 55 39 76 17 43 33 22
IPSL-CM6A-LR_r12i1p1f1 115 57 58 54 61 66 49 31 23 26 35
MIROC6_r35i1p1f1 115 46 69 55 60 38 77 12 43 34 26
MIROC6_r32i1p1f1 115 64 51 55 60 46 69 25 30 39 21
MIROC6_r40i1p1f1 115 58 57 56 59 47 68 23 33 35 24
MIROC6_r20i1p1f1 115 60 55 60 55 41 74 23 37 37 18
MIROC6_r11i1p1f1 115 58 57 58 57 33 82 17 41 41 16
MIROC6_r44i1p1f1 115 66 49 59 56 54 61 32 27 34 22
MIROC6_r4i1p1f1 115 46 69 57 58 42 73 15 42 31 27
MIROC6_r13i1p1f1 115 59 56 67 48 39 76 25 42 34 14
MIROC6_r3i1p1f1 115 51 64 62 53 56 59 27 35 24 29
MIROC6_r46i1p1f1 115 63 52 49 66 47 68 22 27 41 25
MIROC6_r9i1p1f1 115 60 55 57 58 42 73 22 35 38 20
MIROC6_r14i1p1f1 115 58 57 61 54 58 57 31 30 27 27
MIROC6_r15i1p1f1 115 42 73 60 55 41 74 14 46 28 27
MIROC6_r21i1p1f1 115 59 56 63 52 49 66 28 35 31 21
MIROC6_r38i1p1f1 115 59 56 57 58 25 90 13 44 46 12
MIROC6_r31i1p1f1 115 57 58 58 57 62 53 31 27 26 31
MIROC6_r16i1p1f1 115 64 51 73 42 50 65 36 37 28 14
MIROC6_r29i1p1f1 115 63 52 65 50 55 60 34 31 29 21
MIROC6_r2i1p1f1 115 44 71 48 67 51 64 14 34 30 37
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Table A9. Number of years for every regime for reanalysis and CMIP6 simulations 201–240.

Complete period AMV+ AMV− PDV+ PDV− In-phase Out-of-phase PDV+/AMV+ PDV+/AMV− PDV−/AMV+ PDV−/AMV−

Reanalysis 115 56 59 59 56 50 65 25 34 31 25
MIROC6_r34i1p1f1 115 61 54 47 68 69 46 31 16 30 38
MIROC6_r1i1p1f1 115 70 45 53 62 52 63 30 23 40 22
MIROC6_r39i1p1f1 115 64 51 54 61 57 58 30 24 34 27
MIROC6_r8i1p1f1 115 52 63 61 54 68 47 33 28 19 35
MIROC6_r42i1p1f1 115 57 58 57 58 59 56 29 28 28 30
MIROC6_r27i1p1f1 115 74 41 60 55 73 42 46 14 28 27
MIROC6_r26i1p1f1 115 66 49 55 60 42 73 24 31 42 18
MIROC6_r17i1p1f1 115 55 60 59 56 49 66 24 35 31 25
MIROC6_r48i1p1f1 115 56 59 66 49 69 46 38 28 18 31
MIROC6_r6i1p1f1 115 53 62 57 58 45 70 20 37 33 25
MIROC6_r30i1p1f1 115 57 58 53 62 53 62 24 29 33 29
MIROC6_r49i1p1f1 115 54 61 63 52 52 63 27 36 27 25
MIROC6_r5i1p1f1 115 58 57 68 47 57 58 34 34 24 23
MIROC6_r41i1p1f1 115 64 51 57 58 46 69 26 31 38 20
MIROC6_r23i1p1f1 115 56 59 55 60 46 69 21 34 35 25
MIROC6_r12i1p1f1 115 54 61 55 60 42 73 18 37 36 24
MIROC6_r10i1p1f1 115 57 58 67 48 37 78 23 44 34 14
MIROC6_r24i1p1f1 115 62 53 56 59 51 64 27 29 35 24
MIROC6_r33i1p1f1 115 55 60 66 49 38 77 22 44 33 16
MIROC6_r7i1p1f1 115 57 58 58 57 26 89 13 45 44 13
MIROC6_r36i1p1f1 115 74 41 59 56 42 73 30 29 44 12
MIROC6_r28i1p1f1 115 57 58 56 59 46 69 22 34 35 24
MIROC6_r37i1p1f1 115 62 53 62 53 63 52 36 26 26 27
MIROC6_r47i1p1f1 115 61 54 48 67 44 71 19 29 42 25
MIROC6_r19i1p1f1 115 50 65 59 56 62 53 28 31 22 34
MIROC6_r18i1p1f1 115 56 59 55 60 48 67 22 33 34 26
MIROC6_r22i1p1f1 115 65 50 49 66 35 80 17 32 48 18
MIROC6_r43i1p1f1 115 67 48 57 58 31 84 20 37 47 11
MIROC6_r50i1p1f1 115 58 57 47 68 26 89 8 39 50 18
MIROC6_r25i1p1f1 115 57 58 55 60 49 66 23 32 34 26
MIROC6_r45i1p1f1 115 70 45 59 56 32 83 23 36 47 9
MPI-ESM1-2-LR_r2i1p1f1 115 62 53 55 60 66 49 34 21 28 32
MPI-ESM1-2-LR_r10i1p1f1 115 54 61 50 65 51 64 20 30 34 31
MPI-ESM1-2-LR_r3i1p1f1 115 59 56 64 51 58 57 33 31 26 25
MPI-ESM1-2-LR_r5i1p1f1 115 64 51 61 54 42 73 26 35 38 16
MPI-ESM1-2-LR_r8i1p1f1 115 59 56 51 64 57 58 26 25 33 31
MPI-ESM1-2-LR_r7i1p1f1 115 50 65 68 47 23 92 13 55 37 10
MPI-ESM1-2-LR_r9i1p1f1 115 60 55 58 57 65 50 34 24 26 31
MPI-ESM1-2-LR_r4i1p1f1 115 64 51 55 60 48 67 26 29 38 22
MPI-ESM1-2-LR_r6i1p1f1 115 52 63 61 54 58 57 28 33 24 30
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Table A10. Number of years for every regime for reanalysis and CMIP6 simulations 241–289.

Complete period AMV+ AMV− PDV+ PDV− In-phase Out-of-phase PDV+/AMV+ PDV+/AMV− PDV−/AMV+ PDV−/AMV−

Reanalysis 115 56 59 59 56 50 65 25 34 31 25
MPI-ESM1-2-LR_r1i1p1f1 115 64 51 66 49 57 58 36 30 28 21
NorCPM1_r20i1p1f1 115 58 57 49 66 48 67 20 29 38 28
NorCPM1_r19i1p1f1 115 54 61 58 57 27 88 12 46 42 15
NorCPM1_r13i1p1f1 115 53 62 51 64 31 84 10 41 43 21
NorCPM1_r29i1p1f1 115 56 59 53 62 52 63 23 30 33 29
NorCPM1_r4i1p1f1 115 53 62 44 71 48 67 15 29 38 33
NorCPM1_r18i1p1f1 115 59 56 58 57 40 75 21 37 38 19
NorCPM1_r30i1p1f1 115 63 52 52 63 62 53 31 21 32 31
NorCPM1_r27i1p1f1 115 52 63 65 50 44 71 23 42 29 21
NorCPM1_r2i1p1f1 115 56 59 61 54 34 81 18 43 38 16
NorCPM1_r5i1p1f1 115 57 58 47 68 55 60 22 25 35 33
NorCPM1_r22i1p1f1 115 59 56 47 68 37 78 14 33 45 23
NorCPM1_r3i1p1f1 115 56 59 65 50 48 67 27 38 29 21
NorCPM1_r16i1p1f1 115 44 71 59 56 26 89 7 52 37 19
NorCPM1_r17i1p1f1 115 66 49 48 67 35 80 17 31 49 18
NorCPM1_r9i1p1f1 115 60 55 56 59 33 82 17 39 43 16
NorCPM1_r8i1p1f1 115 46 69 52 63 55 60 19 33 27 36
NorCPM1_r11i1p1f1 115 50 65 43 72 54 61 16 27 34 38
NorCPM1_r6i1p1f1 115 65 50 64 51 54 61 34 30 31 20
NorCPM1_r23i1p1f1 115 55 60 65 50 29 86 17 48 38 12
NorCPM1_r1i1p1f1 115 57 58 70 45 44 71 28 42 29 16
NorCPM1_r14i1p1f1 115 61 54 55 60 63 52 32 23 29 31
NorCPM1_r21i1p1f1 115 54 61 50 65 33 82 11 39 43 22
NorCPM1_r7i1p1f1 115 59 56 57 58 55 60 28 29 31 27
NorCPM1_r10i1p1f1 115 64 51 56 59 87 28 46 10 18 41
NorCPM1_r26i1p1f1 115 54 61 47 68 40 75 13 34 41 27
NorCPM1_r25i1p1f1 115 65 50 63 52 67 48 40 23 25 27
NorCPM1_r12i1p1f1 115 60 55 53 62 54 61 26 27 34 28
NorCPM1_r24i1p1f1 115 58 57 56 59 43 72 21 35 37 22
NorCPM1_r28i1p1f1 115 66 49 50 65 31 84 16 34 50 15
NorCPM1_r15i1p1f1 115 67 48 45 70 65 50 31 14 36 34
UKESM1-0-LL_r16i1p1f2 115 62 53 67 48 70 45 42 25 20 28
UKESM1-0-LL_r3i1p1f2 115 63 52 58 57 54 61 30 28 33 24
UKESM1-0-LL_r8i1p1f2 115 46 69 59 56 44 71 17 42 29 27
UKESM1-0-LL_r14i1p1f2 115 57 58 59 56 73 42 37 22 20 36
UKESM1-0-LL_r13i1p1f2 115 49 66 52 63 80 35 33 19 16 47
UKESM1-0-LL_r11i1p1f2 115 71 44 56 59 12 103 12 44 59 0
UKESM1-0-LL_r12i1p1f2 115 68 47 69 46 26 89 24 45 44 2
UKESM1-0-LL_r9i1p1f2 115 59 56 54 61 46 69 22 32 37 24
UKESM1-0-LL_r7i1p1f3 115 60 55 74 41 37 78 28 46 32 9
UKESM1-0-LL_r17i1p1f2 115 50 65 68 47 35 80 19 49 31 16
UKESM1-0-LL_r1i1p1f2 115 62 53 51 64 44 71 21 30 41 23
UKESM1-0-LL_r5i1p1f3 115 65 50 50 65 72 43 36 14 29 36
UKESM1-0-LL_r2i1p1f2 115 45 70 49 66 47 68 13 36 32 34
UKESM1-0-LL_r10i1p1f2 115 47 68 51 64 47 68 15 36 32 32
UKESM1-0-LL_r19i1p1f2 115 73 42 57 58 39 76 27 30 46 12
UKESM1-0-LL_r18i1p1f2 115 48 67 66 49 41 74 20 46 28 21
UKESM1-0-LL_r6i1p1f3 115 70 45 60 55 47 68 31 29 39 16
UKESM1-0-LL_r4i1p1f2 115 56 59 63 52 52 63 28 35 28 24
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Figure A1. Similar to Fig. 7 but for the 12 CMIP6 models during the complete 1900–2014 period. Each panel has a label stating the model
name and the number of ensemble members between parentheses. The auto-MCI values were not taken into consideration.

Figure A2. Similar to Fig. 7 but for the 12 CMIP6 models during the out-of-phase regime. Each panel has a label stating the model name
and the number of ensemble members between parentheses. The auto-MCI values were not taken into consideration.
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Figure A3. Similar to Fig. 7 but for the 12 CMIP6 models during the in-phase regime. Each panel has a label stating the model name and
the number of ensemble members between parentheses. The auto-MCI values were not taken into consideration.

Code and data availability. The complete CVDP-LE di-
agnostic for the 1900–2014 historical run can be found
on the CESM CVCWG CVDP-LE Data Repository under
https://www.cesm.ucar.edu/projects/cvdp-le/data-repository,
CMIP6 Comparisons, historical 1900–2014, last access:
17 March 2023, (Phillips et al., 2020). The Tigramite pack-
age for causal discovery is available under the following public
GitHub repository: https://github.com/jakobrunge/tigramite/ (last
access: 17 March 2023, Runge et al., 2023). The code used to
reproduce results and to plot most figures for this paper will be
accessible at the time of publication of the paper in the following
GitHub repository: https://github.com/EyringMLClimateGroup/
karmouche23esd_CausalModelEvaluation_Modes, last access:
17 March 2023, (Karmouche, 2023).
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