A Momentum Subspace-based Model Order Reduction for Finite Element Models in Nonlinear Dynamic Analyses Kautuk Sinhaⁱ, Farbod Alijani, Wolf R. Krüger, Roeland De Breuker ⁱGerman Aerospace Center, Institute of Aeroelasticity, Researcher ⁱDelft University of Technology, Ph.D. Candidate E-Mail: kautuk.sinha@dlr.de Introduction Theoretical formulation Adaptation for dynamics Results and Discussions Conclusions and Outlook # Introduction - Structural nonlinearities is of interest in several engineering fields. - Full finite element (FE) solution can be computationally expensive. - Reduced order models (ROM) provide an efficient solution to such problems. - The momentum subspace ROM, discussed here, is an adaptation of the <u>Koiter-Newton reduction</u> technique (K. Liang et al., 2013). - Extended to dynamics (Sinha et al., 2020) with focus on panel structures. - Current studies on cantilevers. ### **Theoretical Formulation** The equilibrium equations (statics) are expanded up to the third order in Taylor series. $$f(\mathbf{u}) = \mathcal{L}(\mathbf{u}) + Q(\mathbf{u}, \mathbf{u}) + C(\mathbf{u}, \mathbf{u}, \mathbf{u}) = f_{\text{ext}} = \mathbf{F}\boldsymbol{\phi}$$ (1) • The equilibrium displacement u is parametrised by generalized displacements ξ . $$\mathbf{u}(\xi) = \mathbf{u}_{\alpha} \xi_{\alpha} + \mathbf{u}_{\alpha \beta} \xi_{\alpha} \xi_{\beta} \tag{2}$$ ■ In the reduced subspace, a similar assumption is made for the equilibrium equation. $$\bar{\mathcal{L}}(\xi) + \bar{\mathcal{Q}}(\xi, \xi) + \bar{\mathcal{C}}(\xi, \xi, \xi) = \phi \tag{3}$$ Work equivalence to fix the parametrisation. $$(\mathbf{F}\boldsymbol{\phi})' \cdot \delta \mathbf{u} = \boldsymbol{\phi}' \cdot \delta \xi \tag{4}$$ ### **Theoretical Formulation** • By regrouping the coefficients of ξ , a set of ROM equations are obtained. $$\begin{bmatrix} \mathbf{L} & -\mathbf{F} \\ -\mathbf{F} & \mathbf{0} \end{bmatrix} \begin{Bmatrix} \mathbf{u}_{\alpha} \\ \bar{\mathbf{L}}_{\alpha} \end{Bmatrix} = \begin{Bmatrix} \mathbf{0} \\ \mathbf{E}_{\alpha} \end{Bmatrix} \quad \mathbf{u}(\xi) = \mathbf{u}_{\alpha} \xi_{\alpha} + \mathbf{u}_{\alpha\beta} \xi_{\alpha} \xi_{\beta}$$ $$\begin{bmatrix} \mathbf{L} & -\mathbf{F} \\ -\mathbf{F} & \mathbf{0} \end{bmatrix} \begin{Bmatrix} \mathbf{u}_{\alpha\beta} \\ \bar{\mathbf{Q}}_{\alpha\beta} \end{Bmatrix} = \begin{Bmatrix} \mathbf{Q} (\mathbf{u}_{\alpha}, \mathbf{u}_{\beta}) \\ \mathbf{0} \end{Bmatrix}$$ $$\overline{C}_{\alpha\beta\gamma\delta} = C(u_{\alpha}, u_{\beta}, u_{\gamma}, u_{\delta}) - \frac{2}{3} \left[u^{t}_{\alpha\beta} L(u_{\delta\gamma}) + u^{t}_{\beta\gamma} L(u_{\delta\alpha}) + u^{t}_{\gamma\alpha} L(u_{\delta\beta}) \right]$$ The stiffness tensors are obtained as higher order derivatives of strain energy. # Adaptations for dynamics Full FE equations described by $$M\ddot{\mathbf{u}} + D\dot{\mathbf{u}} + L\mathbf{u} + Q\mathbf{u}\mathbf{u} + C\mathbf{u}\mathbf{u}\mathbf{u} = \mathbf{F}(t)$$ - 1st order differential equations in order to perform parametric continuation (AUTO, Doedel, 2007) - Hamiltonian formulation to derive the equations of motion. $$H(\boldsymbol{u},\boldsymbol{p}) = T(\boldsymbol{u},\boldsymbol{p}) + V(\boldsymbol{u})$$ - Conservative system damping and external force excluded initially. - An assumption is made for the momentum: $$\mathbf{p} = \mathbf{P}\pi$$, $\mathbf{P} = \mathbf{M}\mathbf{\Phi}$ where P is the basis matrix, π is a vector of amplitudes for the momentum vectors. # **Adaptations for dynamics** Potential energy in the reduced subspace: $$\bar{V} = \frac{1}{2} \bar{L}_{\alpha\beta} \xi_{\alpha} \xi_{\beta} + \frac{1}{3} \bar{Q}_{\alpha\beta\gamma} \xi_{\alpha} \xi_{\beta} \xi_{\gamma} + \frac{1}{4} \bar{C}_{\alpha\beta\gamma\delta} \xi_{\alpha} \xi_{\beta} \xi_{\gamma} \xi_{\delta}$$ • Kinetic energy in the reduced subspace: $$\bar{T} = \frac{1}{2} \pi' \left(\mathbf{\Phi}' \mathbf{M} \mathbf{\Phi} \right) \pi$$ $$\mathbf{\overline{M}}^{-1}$$ For a conservative system, $$\dot{\boldsymbol{\xi}} = \frac{\partial \overline{H}}{\partial \boldsymbol{\pi}} = \overline{\mathbf{M}}^{-1} \boldsymbol{\pi}$$ $$\dot{\boldsymbol{\pi}} = \frac{\partial \overline{H}}{\partial \boldsymbol{\xi}} = -\{\overline{\boldsymbol{L}}\boldsymbol{\xi} + \overline{\boldsymbol{Q}}\boldsymbol{\xi}\boldsymbol{\xi} + \overline{\boldsymbol{C}}\boldsymbol{\xi}\boldsymbol{\xi}\boldsymbol{\xi}\}$$ # **Adaptations for dynamics** Potential energy in the reduced subspace: $$\bar{V} = \frac{1}{2} \bar{L}_{\alpha\beta} \xi_{\alpha} \xi_{\beta} + \frac{1}{3} \bar{Q}_{\alpha\beta\gamma} \xi_{\alpha} \xi_{\beta} \xi_{\gamma} + \frac{1}{4} \bar{C}_{\alpha\beta\gamma\delta} \xi_{\alpha} \xi_{\beta} \xi_{\gamma} \xi_{\delta}$$ • Kinetic energy in the reduced subspace: $$\bar{T} = \frac{1}{2} \pi' \left(\mathbf{\Phi}' \mathbf{M} \mathbf{\Phi} \right) \pi$$ $$\mathbf{\bar{M}}^{-1}$$ ■ For a non-conservative system, $$\dot{\boldsymbol{\xi}} = \frac{\partial \overline{H}}{\partial \boldsymbol{\pi}} = \overline{\mathbf{M}}^{-1} \boldsymbol{\pi}$$ $$\dot{\boldsymbol{\pi}} = -\frac{\partial \overline{H}}{\partial \boldsymbol{\xi}} = -\{\overline{\mathbf{L}}\boldsymbol{\xi} + \overline{\mathbf{Q}}\boldsymbol{\xi}\boldsymbol{\xi} + \overline{\mathbf{C}}\boldsymbol{\xi}\boldsymbol{\xi}\boldsymbol{\xi}\} - \overline{\mathbf{D}}\overline{\mathbf{M}}^{-1}\boldsymbol{\pi} + \overline{\boldsymbol{\phi}}(t)$$ Rayleigh damping Quadratic damping model - Test case description - 1. Test case 1 : Simply supported square plate (M. Amabili, 2004). - 2. Test case 2 : Stiffened plate with free boundary conditions (Sinha et al, 2020). - 3. Test case 3 : Ongoing studies, cantilever beam. Test case 1: Rectangular plate, simply supported (M. Amabili, 2004) ### Analysis parameters: $$I = b = 0.3 \text{ m}$$ t = 0.001 m Damping ratio $\zeta = 0.065$ Applied force $f_{ext} = 1.74 \text{ N}$ (centre of the plate) Mesh size = 60×60 ### Material parameters: $$E = 70 GPa$$ $$\rho = 2778 \, \text{kg/m}^3$$ ### Pre-processing: Linear modes analysis Test case 1: Rectangular plate, simply supported (M. Amabili, 2004) Comparison to full FE solution in time domain simulation Excitation at ~ 0.997 . ω_1 Full FE solution time = 274.6 sec ROM solution time = 3.9 sec ROM pre-processing = 8.4 sec includes formulation of ROM parameters, stiffness tensors and modal eigenvalue analysis Total code run-time = 12.3 sec Test case 1: Rectangular plate, simply supported (M. Amabili, 2004) Analysis using the software AUTO (Doedel, 2007) Linear modal analysis (pre-processing) = 0.65 sec ROM formulation time = 0.99 sec AUTO analysis = 5.59 sec (1560 data points along the solution curve) Difference from reference solution (Amabili, 2004) = 0.43 % #### 1-DOF model DLR Test case 1: Rectangular plate, simply supported (M. Amabili, 2004) Convergence study - increase the number of modes in the reduction subspace. Test case 2: Stiffened plate with free boundary conditions (Sinha et al, 2020). ### Analysis parameters: $$l = 0.5 \text{ m}, b = 0.4 \text{ m}, t = 0.002 \text{ m}$$ $$ls = 0.4 \text{ m}$$, $bs = 0.008 \text{ m}$, $ts = 0.005 \text{ m}$ (stiffener) Damping ratio $\zeta = 0.0012$ (initial guess) Applied force $f_{ext} = 0.2 - 1 \text{ N}$ Excitation frequency = 32 - 40 Hz (sweep) ### Material parameters: $$E = 70 GPa$$ $$\rho = 2660 \, \text{kg/m}^3$$ #### 1st elastic mode at 36.78 Hz Excitation at (x, y) = (0.2, 0.16 m) Test case 2: Stiffened plate with free boundary conditions (Sinha et al, 2020). Test case 3: Ongoing studies, cantilever beam (Pany and Rao, 2002) ### Analysis parameters: I = 0.693166 m t = 0.001 m Damping ratio $\zeta = 0.0467$ Applied force $f_{ext} = 0.2 \text{ N}$ Excitation frequency = 10.6 rad/s ### Material parameters: E = 200 GPa $\rho = 7800 \, \text{kg/m}^3$ ### 1-cosine profile Test case 3: Ongoing studies, cantilever beam (Pany and Rao, 2002) Out-of-plane (OOP) displacement 3.2 % (of length) maximum IP deflection 23.5 % (of length) maximum OOP deflection Test case 3: Ongoing studies, cantilever beam (Pany and Rao, 2002) ### Double the force amplitude 11.5 % (of length) maximum IP deflection 42.7 % (of length) maximum OOP deflection # **Outlook and Conclusions** - ROM works well for various boundary conditions. - Experiments show us a need of nonlinear damping model. - Limited region of ROM validity. - Ongoing studies aim to extend the limit of validity for larger deflections, specially in cantilevers. - Intended application towards large scale model reduction of generic FE models. # Thank you for your attention! Kautuk Sinha German Aerospace Center Email: Kautuk.Sinha@dlr.de # Extra Orthogonality conditions derived from constraint equations: $$f'_{\alpha} u_{\beta} = \delta_{\alpha\beta}$$ $f'_{\alpha} u_{\beta\gamma} = 0$ Deriving the reduced force from conditions of work equivalence: $$(\mathbf{F}\boldsymbol{\phi})' \cdot \delta \mathbf{u} = \boldsymbol{\phi}' \cdot \delta \xi$$ Substitute for u: $$\mathbf{u}(\xi) = \mathbf{u}_{\alpha} \xi_{\alpha} + \mathbf{u}_{\alpha \beta} \xi_{\alpha} \xi_{\beta}$$ With use of the orthogonality constraints we get, $\phi = f_{ext} u_{\alpha}$ # Extra Dissipation energy $$E_d = \frac{1}{2} \dot{\boldsymbol{u}}' \mathbf{D} \dot{\boldsymbol{u}} = \frac{1}{2} (\boldsymbol{M}^{-1} \mathbf{P} \boldsymbol{\pi})' \mathbf{D} (\boldsymbol{M}^{-1} \mathbf{P} \boldsymbol{\pi})$$ $$E_d = \frac{1}{2} \dot{\xi} (\bar{M} P' M^{-1} D M^{-1} P \bar{M}) \dot{\xi}$$ von Karman Strain, beam element $$\epsilon = u_{,x} + \frac{1}{2}(u_{,x}^2 + w_{,x}^2)$$ $$\chi = w_{,xx}$$ Test case 3: Ongoing studies, cantilever beam (Pany and Rao, 2002) ### Analysis parameters: I = 0.693166 m t = 0.001 m Damping ratio $\zeta = 0.0467$ Applied force $f_{ext} = 0.2 \text{ N}$ Excitation frequency = 10.6 rad/s ### Material parameters: E = 200 GPa $\rho = 7800 \, \text{kg/m}^3$ ### Pre-processing: Linear modes analysis DIR Test case 3: Ongoing studies, cantilever beam (Pany and Rao, 2002) Convergence analysis | Number of modes | u_1 [m] | u_2 [m] | Simulation time [sec] | |-----------------|-----------|-----------|-----------------------| | 1 | -0.0222 | 0.1627 | 0.83 | | 2 | -0.0229 | 0.1643 | 1.65 | | 3 | -0.0229 | 0.1645 | 2.26 | | 4 | -0.0230 | 0.1645 | 2.40 | | 5 | -0.0230 | 0.1646 | 2.74 | | 8 | -0.0230 | 0.1646 | 4.68 | | 10 | -0.0230 | 0.1646 | 6.58 |