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Abstract—Ship recognition and georeferencing using moni-
toring cameras are crucial to many applications in maritime
situational awareness. Although deep learning algorithms are
available for ship recognition tasks, there is a need for innovative
approaches that attain higher precision rates irrespective of
ship sizes, types, or physical hardware limitations. Furthermore,
their deployment in maritime environments requires embedded
systems capable of image processing, with balanced accuracy,
reduced latency and low energy consumption. To achieve that, we
build upon the foundations of the standard YOLOv8 and present
a novel architecture that improves the segmentation and georef-
erencing of ships in the context of maritime awareness using a
real-world dataset (ShipSG). Our architecture synergizes global
and local features in the image for improved ship segmentation
and georeferencing. The 2D scattering-transform enhances the
YOLOv8 backbone by extracting global structural features from
the image. The addition of convolutional block attention module
(CBAM) in the head allows focusing on relevant spatial and
channel-wise regions. We achieve mAP of 75.46%, comparable
to larger YOLOv8 models at a much faster inference speed, 59.3
milliseconds per image, when deployed on the NVIDIA Jetson
Xavier AGX as target embedded system. We applied the modified
network to georeference the segmented ship masks, with a georef-
erencing distance error of 18 meters, which implies comparable
georeferencing performance to non-embedded approaches.

Index Terms—Real-time instance segmentation, YOLOv8, scat-
tering transform, attention, georeferencing, maritime awareness

I. INTRODUCTION

Based on the critical role of maritime infrastructures in
global trade, monitoring their security, integrity, and opera-
tional safety is paramount [1]. Research in maritime safety
and security focuses on developing, testing, and validating
innovative systems to assess the status of infrastructures for
real-time protection and security counter-measures [2], [3].

Optical monitoring cameras enhance maritime situational
awareness [4], but personnel may require support to track all
pertinent details with multiple cameras, given the large volume
of data generated [5]. Image processing on port monitoring
video enhances real-time maritime situational awareness by
enabling automatic ship detection, classification, and calcula-
tion of geographic position to be presented on a map. [6].
This allows maritime operators for faster assessment of the
situation compared to the Automatic Identification System
(AIS), which relies on intermittent ship transmissions every 2
to 10 seconds while underway. Additionally, it helps overcome
the limitations of AIS, such as operational disruptions or cyber

threats which may compromise its effectiveness [7]. Moreover,
using cameras for ship monitoring provides cost-effectiveness,
non-intrusiveness, and improved visual operational efficiency
compared to radar-based systems [8].

Ship georeferencing using optical monitoring cameras is
more accurately computed from segmented masks rather than
surrounding bounding boxes which may include irrelevant
background information [9]. Deep learning-based instance
segmentation enables refined information extraction from the
recognized ship, including the georeferencing of their position
on a geographic coordinate system [9]. The development of
image processing methodologies for maritime environments,
requires the use of real-world ship monitoring datasets and
precise algorithmic solutions. The practical application of
general deep learning models in maritime domains requires
effective approaches that can utilize training data and feature
information regardless of the ship size or position within
the image. To alleviate this, the use of the first-order 2D
scattering transform, a wavelet-based mathematical operator,
provides a hierarchical and sparse representation of the input
data, thus being amenable as an enhancement for computer
vision tasks [10], [11]. Additionally, attention models improve
real-time instance segmentation by selectively focusing on
informative regions, improving accuracy and efficiency of
object recognition [12].

Employing a GPU-accelerated embedded system, equipped
with a monitoring camera, enables deep-learning ship seg-
mentation and georeferencing directly at maritime infras-
tructures [13]. Processing images locally on the deployed
system offers reduced network bandwidth, minimized latency,
cost efficiency, and improved security. The NVIDIA Jetson
AGX Xavier1 in particular, is a high-performance and energy-
efficient embedded system for deep learning, with an energy
consumption from 10 to 30 Watts. Its compact size, optimized
neural network processing, and deployment flexibility make it
ideal for real-time inference in resource-constrained environ-
ments. Supported by a comprehensive developer ecosystem,
it simplifies computer vision applications deployment. Ships
recognized and georeferenced within the embedded system
can be seamlessly accessed via web services to the situational
awareness system for their display on a map to the operator,

1https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/
jetson-agx-xavier/, accessed on 9 June 2023
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enhancing real-time visualization and enriching overall mar-
itime situational awareness [6].

Using a real maritime dataset, this work improves the cur-
rent state-of-the-art in embedded real-time ship segmentation
and georeferencing for maritime situational awareness. The
contributions and results of this work are summarized as
follows:

1) We modify the lightest YOLOv8 instance segmentation
architecture [14], YOLOv8n, by adding:

a) ScatBlock, a 2D scattering-transform-based block
at the beginning of YOLOv8 backbone, replacing
the first convolutional block.

b) Convolutional Block Attention Module (CBAM) to
the head.

2) The improved architecture achieves comparable mean
Average Precision (mAP) as larger YOLOv8 models, at
a faster inference speed, with ShipSG dataset [9].

3) The georeferencing of the segmented ship masks, is
consistent with the state-of-the-art results on ShipSG.

4) We deploy the architecture in the NVIDIA Jetson Xavier
AGX, acting as embedded system.

The remainder of this paper is organized as follows: Sec-
tion II provides a literature overview of maritime datasets,
embedded ship segmentation, and georeferencing. Section III
describes YOLOv8 and our proposed architecture using scat-
tering transform with attention on the ShipSG dataset in an
embedded system. Section IV presents the implementation,
training, and validation details with experimental results. Sec-
tion V concludes the paper and outlooks future work.

II. RELATED WORKS

A. Ship datasets for maritime monitoring

As deep learning algorithms for ship segmentation rely on
supervised machine learning, it is necessary to use domain-
specific training datasets. Real-world maritime monitoring
requires image data with precise mask annotations for a broad
range of ships and ship classes. The available, general-purpose,
segmentation datasets such as COCO [16] or PASCAL VOC
[17], therefore, do not suit the task of ship segmentation and
georeferencing as benchmark datasets for maritime awareness.
Several datasets in the literature for ship detection on video
monitoring cameras are the Singapore Maritime Dataset [4],
Seaships7000 [18], and a dataset introduced by Chen et al.
[19]. However, these datasets lack a variety of ship classes in
their annotations and do not provide ship masks, necessary for
ship georeferencing. The MarSyn dataset [20] is a synthetic
ship dataset that contains images rendered from synthetic 3D
scenes for instance segmentation in six ship classes, without
georeference from the ships annotated. A publicly available
real-world dataset, for ship segmentation and georeferencing,
is ShipSG [9]. This dataset includes seven classes of ships and
two distinct views of a port location. The ShipSG dataset was
collected to develop and evaluate instance segmentation and
georeferencing methods for real-world maritime applications
and therefore is used in this work.

B. Embedded ship segmentation and georeferencing

State-of-the-art methods for real-time instance segmentation
with COCO [16], evaluated using mean Average Precision
(mAP) and inference time in milliseconds, include RTMDet-
Int-X with mAP 44.6% and 5.31 ms [21], YOLOv5x-seg with
mAP 41.4% and 4.50 ms [22] and YOLOv8x-seg with mAP
43.4% and 4.02 ms [14]. We observe that YOLOv8 provides
the fastest configuration at a high mAP, which is useful for
maritime applications. For real-time ship segmentation, as
seen in [9], the use of YOLACT [23] and Centermask-Lite
[24] on the ShipSG dataset [9] are proposed. However, the
use of embedded systems is not reported in these studies.
Real-time embedded instance segmentation has been explored
for its application in traffic videos [25], where the NVIDIA
Jetson AGX Xavier as system is used to deploy a modified
version of YOLACT [23] and SOLO [26]. Ship georeferencing
from maritime monitoring video is proposed by [27] where
a homography is created with reference pairs of latitude,
longitudes, and pixel coordinates. The work of [9] analyses
homography for georeferencing on the ShipSG dataset.

III. METHODS

A. Overview of YOLOv8 for instance segmentation

YOLOv8 [14] is a state-of-the-art real-time model on
COCO dataset [16], that builds upon previous YOLO versions.
YOLOv8 supports a full range of vision tasks, including
detection, instance segmentation, pose estimation, tracking,
and classification, with instance segmentation being the task
of interest for this work. The model utilizes a convolutional
neural network with a modified version of the CSPDarknet53
[28] architecture as the backbone, which includes the novel
C2f module that contains two convolutional blocks, a channel
split and a CSP bottleneck [28] (see Fig. 1(f)). The backbone
is followed by three segmentation heads, which learn to
predict the segmentation masks for the input image (see Fig.
1(g)). YOLOv8 also offers customizable architecture and five
model sizes, these being, from the lightest and fastest to the
deepest and most accurate: YOLOv8n, YOLOv8s, YOLOv8m,
YOLOv8l, and YOLOv8x.

B. Scattering-enhanced YOLOv8 with Convolutional Block
Attention Module

We propose a lightweight architecture, depicted in Fig.1(a),
based on YOLOv8n instance segmentation configuration [14],
for its deployment in the NVIDIA Jetson AGX Xavier. The
additions performed in our proposed architecture to modify
YOLOv8n are the following:

1) 2D scattering transform block (ScatBlock): The 2D
scattering transform is a specialized mathematical operator that
extracts invariant feature representations by decomposing the
input image data into a set of scattering coefficients. Each
scattering coefficient is a translation-invariant feature map rep-
resentation that captures local variations in an image [10]. We
blend the 2D scattering transform in the backbone of YOLOv8
to enhance the input image for instance segmentation. To
achieve this, we conceive a ScatBlock (see Fig. 1(b)) that
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Fig. 1. Our proposed architecture with the ScatBlock in the backbone of YOLOv8n and CBAM modules in the head. (a) We place ScatBlock at the beginning
of the YOLOv8n backbone to render a set of sparse feature maps, replacing the first Conv block of the original YOLOv8 backbone. The CBAM module is
placed at the output of the head blocks of YOLOv8 to distill valuable object shape information for the segmentation task. The numbers next to every block
represent the sequential order followed by the implementation, from input to output (b) The scattering block contains an upsample operation, followed by the
scattering layer and a ReLU activation (c) CBAM module depicting the channel and spatial attention mechanisms [15] (d) Standard YOLOv8 convolutional
block (e) Spatial Pyramid Pooling Fast module of YOLOv8 (f) C2f with split channel operation and a CSP Bottleneck. (g) Segment block of YOLOv8 that
performs segmentation. In-depth description of SPPF, C2f and Segment modules is found in the original YOLOv8 [14].

contains the first-oder 2D scattering transform of the input
image X . The ScatBlock computes the scattering transform
from a set of dilated and rotated versions of a mother wavelet
ψ, and a low-pass filter ϕJ , with J being the spatial scale of
the scattering transform, and L, the number of mother wavelet
rotations. The computation of the scattering transform requires
the convolution of the input image X with a set of pre-defined
filter banks ψλ, which are the scaled and rotated version
λ of the mother wavelet ψ. The convolved image is then
subjected to an element-wise complex modulus operation. The
resulting feature maps are smoothed using the low-pass filter
ϕJ , with a down-sampling factor of 2J , to ensure invariance
to small translations [10]. The scattering transform is similar
to convolutional neural networks (CNNs) in that it involves an
iterative process to compute multiple coefficients on the input
data to extract hierarchical features [10]. In contrast, CNNs
focus on spatially local features and are trainable models,
while the 2D scattering transform explicitly captures global
structural information and is a fixed transform. At layer ℓ,
the wavelet filter-bank produces the representation U (ℓ)

λ which
corresponds to the application of each filter followed by

application of taking the modulus, |.|, as:

U
(ℓ)

λ(ℓ),λ(ℓ−1),...,λ(1) = |(ψλ ⋆ U
(ℓ−1)

λ(ℓ−1),...,λ(1))|, (1)

with U (0), the initialization at the first scattering layer or 0th-
order coefficients. The output of each layer ℓ is obtained with
a smoothing operation using the low-pass filter as:

S
(ℓ)

λ(ℓ),...,λ(1) = U
(ℓ)

λ(ℓ),...,λ(1) ⋆ ϕJ , (2)

with S
(ℓ)

λ(ℓ),...,λ(1) the scattering representation at layer ℓ, of
size H × W , with J × L + 1 channels representing each
scattering order. These sparse feature maps are then forwarded
to a ReLU activation function. Our ScatBlock computes the
first-order scattering coefficients. Albeit the computation of
subsequent orders, i.e., second or third order, is achievable by
incorporating more layers, only first-order coefficients hold
significant energy for mainstream tasks [10]. The ScatBlock
performs an upsampling operation to the input image X , to
(2×H)×(2×W ), to achieve H×W as the output resolution of
the first-order coefficient maps before the computation of the
scattering transform. With this, the ScatBlock maintains the
image proportionality for the successive YOLOv8 backbone
blocks.
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2) Convolutional Block Attention Module (CBAM): The
CBAM (Convolutional Block Attention Module), introduced
by [15], enhances CNNs by incorporating attention mecha-
nisms at a very low computational cost. The CBAM consists
of two components (see Fig. 1(c)). The first component, the
channel attention module, captures interdependencies among
feature channels, that is, emphasizes informative channels
while suppressing irrelevant ones. The second component,
the spatial attention module, selectively highlights important
spatial regions in the feature maps. By integrating both
attention mechanisms, CBAM allows the network to focus
on relevant spatial regions whilst emphasizing informative
channels, thus leading to improved feature representation and
better localization. The work of [15] incorporates the CBAM
block into a broad range of deep learning models across
diverse classification and detection datasets; with significant
performance improvements observed. For instance segmenta-
tion tasks, CBAM successfully refined object boundaries and
enhanced the accuracy of segmented individual objects within
an image.

3) ScatYOLOv8n + CBAM: Our proposed architecture for
real-time ship segmentation, as depicted in Fig.1(a), replaces
the first convolutional block of the YOLOv8n backbone with
a ScatBlock that uses the first-order 2D scattering transform.
This block increases the number of channels in the feature
map from 3 (RGB) to 3 × (J × L + 1), with J = 1 and
L = 6. The ScatBlock is used in forward mode, since it
contains fixed filters and therefore, no filter parameter update
is backpropagated during training. In the second modification,
inspired by [29], where YOLOv5 is used for aerial object
detection, we incorporate the CBAM block after C2f blocks
of the YOLOv8 head. The aim of incorporating the CBAM
block is then twofold: to help the network to find regions of
interest, that is, ships, and use those selected regions as input
for the consecutive blocks in the head.

C. Dataset for maritime awareness and embedded device

The maritime dataset selected for this work is the ShipSG
dataset [9], which is publicly available2. The ShipSG dataset
consists of 3505 images and ship annotations of two different
views of part of the port of Bremerhaven, Germany. The
images were acquired during daylight hours with varying
weather conditions. The annotations of ShipSG contain 11625
annotated ship instances, divided into seven ship classes
(cargo, law enforcement, passenger/pleasure, special 1, spe-
cial 2, tanker, and tug). Moreover, each image contains one
geographic annotation of one of the ship masks (latitude and
longitude) present in the image. An example image of ShipSG
can be seen in Fig. 2(a).

The selected target system for deploying our proposed ship
segmentation and georeferencing architecture is the NVIDIA
Jetson AGX Xavier. The AGX Xavier is an embedded com-
puting module with low power consumption (30 Watts) that
contains: an octa-core ARM CPU, 512-core Volta GPU, and

2https://www.dlr.de/mi/shipsg, accessed on 9 June 2023

support for a range of deep learning frameworks, making it a
versatile platform for developing and deploying vision-based
systems.

IV. RESULTS

A. Network implementation

We use the ShipSG dataset [9] to evaluate our implemented
model. Following the common practice in the field, we report
mAP as performance metric, computed as the mean of all
average precisions for Intersection over Union (IoU) from 0.5
to 0.95 with a step size of 0.05. We implement our proposed
model with Pytorch 2.0, CUDA 11.7 and YOLOv8 Ultralytics
v8.0.51. For the measurement of inference times, we use the
NVIDIA Jetson AGX Xavier with JetPack 5.0 as the target
embedded system for deployment.

We trained all models using a NVIDIA A100 GPU with
random weight initialization for all models. The number of
training epochs is 300, with the default settings provided by
YOLOv8 [14]. The input size used for all models is 640×640
pixels. We implemented the ScatBlock (see block number 0
of Fig.1(a)) using the 2D Wavelet transformations by [30],
with the Python module pytorch wavelets, which has CUDA
support for GPU operations. The scattering layer we selected
uses Symlet wavelets with 6 convolutional calls or filters (L)
and 1 scale (J). Given that the resulting number of channels
from an RGB image is 3× (J ×L+1), the output number of
channels of our ScatBlock is 21.

Fig. 2. Instance segmentation process of our proposed architecture on ShipSG.
(a) ShipSG input sample image. (b) Output of the ScatBlock (here, for
visualization, the mean of output channels). (c) Output of CBAM (module
number 21 in Fig. 1). (d) ShipSG image with segmented and classified ships
using our proposed architecture ScatYOLOv8n + CBAM.

An example of ship segmentation inference on ShipSG
using our architecture is shown in Fig. 2. We observe that the
ships present in the image are effectively enhanced by employ-
ing the 2D scattering transform (wavelets). This transformation
improves the visual quality and perceptibility of the edges,
resulting in clearer and more prominent delineation of the
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present ships. As for the output of the CBAM, we observe that
the attention mechanisms implemented (channel- and spatial-
wise) learned to synergize with the scattering transform and
leverage the location of the ship within the image whilst
ignoring the background. The sensitivity of the rotated wavelet
filters to the image information that is meaningful for ship
segmentation, makes the ships prominent against the image
background. CBAM takes each feature map and extracts local
ship mask details to generate more refined attention maps in
which the background appearance is mitigated.

TABLE I
COMPARISON OF STATE-OF-THE-ART REAL-TIME SEGMENTATION

PERFORMANCES ON SHIPSG WITH YOLOV8N AND OUR ARCHITECTURE

Segmentation model Input Size (pixel) mAP (%)
YOLACT700 [9] 700×700 58.20
Centermask-LiteV 39 [9] 800×600 64.40
YOLOv8n 640×640 70.15
ScatYOLOv8n + CBAM (this work) 640×640 75.46

Both YOLOv8n and our proposed ScatYOLOv8n + CBAM,
as seen in Table I, improve significantly the mAP of pre-
vious approaches for ship segmentation on ShipSG. The
baseline YOLOv8n shows 5.75% improvement compared to
the Centermask-Lite implementation proposed by [9] and our
ScatYOLOv8n + CBAM achieves a 11.06% improvement.

B. Ablation study

We evaluate the significance of the proposed additions in
our architecture, namely ScatBlock and CBAM. To assess
their impact, Table II presents individual performance results,
including mAP and inference times on NVIDIA Jetson AGX
Xavier. The first part of Table II shows the performance of
each YOLOv8 model. The second part details the individual
and combined additions of this work. The increments show
the difference when compared with the YOLOv8n model. We
list here the observed effects of the added modules:

• Convolutional Block Attention Module (CBAM). The
addition of attention to the end of the prediction heads
produces an improved mAP for the network, with and
without scattering, at a minimal increase in inference
time. This proves that the use of CBAM is, in this case,
worth the computational cost.

• Scattering-enhanced backbone (ScatYOLOv8). The
use of the ScatBlock at the beginning of the backbone,
instead of the first Conv block of CSPDarknet53 [28],
produces a mAP improvement of 4.07% when compared
to YOLOv8n at a small increase in inference time for the
embedded system of 29.5 ms. Together with the CBAM
modules on the head, the ScatBlock and CBAM leverage
the performance of the network with a mAP improvement
5.11% and an increase in inference of 30.6 ms.

As shown in the ablation study, our proposed architecture
ScatYOLOv8 + CBAM, provides a mAP comparable to the
deeper and heavier YOLOv8l (75.46% vs 75.89%). Yet, our
model has a much lower inference speed (59.3ms vs 127.1ms)
on the NVIDIA Jetson AGX Xavier.

TABLE II
ABLATION STUDY OF YOLOV8 SEGMENTATION MODELS AND OUR
PROPOSED IMPLEMENTATIONS AFTER TRAINING ON SHIPSG AND

INFERENCE TIMES ON THE NVIDIA JETSON AGX XAVIER.

Segmentation model mAP (%) Inference (ms)
YOLOv8n 70.35 - 28.7 -
YOLOv8s 71.99 (↑1.64) 32.2 (↑3.5)
YOLOv8m 74.84 (↑4.49) 72.4 (↑43.7)
YOLOv8l 75.89 (↑5.54) 127.1 (↑98.4)
YOLOv8x 76.45 (↑6.10) 196.6 (↑167.9)
ScatYOLOv8n 74.42 (↑4.07) 58.2 (↑29.5)
YOLOv8n + CBAM 70.75 (↑0.40) 29.9 (↑1.2)
ScatYOLOv8n + CBAM 75.46 (↑5.11) 59.3 (↑30.6)

C. Ship georeferencing for maritime situational awareness

We calculate the georeference of ships from ShipSG images
using segmented masks from our proposed instance segmen-
tation architecture. The georeferencing method [9] defines a
homography matrix (H) to calculate the latitude and longitude
of the segmented ship masks, as given in equation (3),

 Latitude
Longitude

1

 = H

Cx

Cy

1

 =

h11 h12 h13
h21 h22 h23
h31 h32 1

Cx

Cy

1

 (3)

The coefficients of H are calculated using the georefer-
encing annotations of ShipSG [9]. The variables Cx and Cy

express the pixel coordinates of the ship from which the
latitude and longitude are computed. For this, the lowest
pixel on the mask in the vertical direction, representing the
ship hull and water intersection, is used for georeferencing
[9]. The Georeferencing Distance Error (GDE), measured in
meters, assesses the performance by comparing true ShipSG
annotations with the georeferences derived from the mask
and homography. To compute the GDE, we use the haversine
equation to compare the geolocation of the segmented ship
and ground truth.

Fig. 3. The segmented ship masks are georeferenced as geographic map
locations using a homography matrix to improve maritime awareness. (a)
ShipSG image with segmented and classified ships using our ScatYOLOv8n
+ CBAM architecture. (b) Georeferenced ships displayed on OpenStreetMap
[31] using the homography method by [9] on segmented masks.

Despite using an embedded system, our ScatYOLOv8n +
CBAM model achieves 75.46% mAP and allows a GDE of
18±13 meters on ShipSG. These are consistent results for
georeferencing at higher accuracy compared to [9], with a
previously reported mAP 64.40% mAP and 22±10 meters.
As seen in Fig. 3, when the georeferenced masks are accessed
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using web services, our work can support real-time decision
making, thus improving maritime awareness.

V. CONCLUSION

We presented an architecture, ScatYOLOv8n + CBAM,
for ship segmentation and georeferencing that improves the
state of the art in maritime awareness using a real-world ship
segmentation and georeferencing dataset (ShipSG). Our archi-
tecture uses ScatBlock, a 2D scattering-transform-based block,
to enhance the YOLOv8 backbone and attention (CBAM) in
the head. We verified that our architecture, applied to the
lightest YOLOv8, offers mAP of 75.46%, which is comparable
to larger YOLOv8 models but offering a faster inference
speed. The developed architecture is suitable for its use in
an embedded system, such as the NVIDIA Jetson Xavier
AGX, at an inference speed of 59.3 ms per image. We applied
the modified network for georeferencing the segmented ship
masks, attaining a georeferencing distance error of 18±13 me-
ters, thus leading to comparable georeferencing performance
to non-embedded state-of-the-art approaches.

This work paves the way for new studies to design feature
representations for light networks that synergize the scattering
transform with attention modules to render refined feature
maps, robust for computer vision applications, such as in-
stance segmentation for maritime awareness. These models
are paramount to embedded systems deployed in the field to
lessen the computational burden of more sophisticated models
often hosted in cloud computing servers.
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