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Abstract: This paper presents some of the first results obtained from the recently implemented 
linear frequency domain solver in CODA, the next generation flow solver framework. It uses 
automatic differentiation capability to compute the exact product of the Jacobian matrix with 
an arbitrary vector. Perturbation results for subsonic and transonic LANN wing cases show 
good agreement with experiments and results computed using DLR-TAU code. Computations 
have been performed using both one- and two-equation turbulence models for the NASA 
Common Research Model. Scalability assessment of the frequency-domain solver demonstrates 
the advantage of hybrid MPI/OpenMP partitioning over pure MPI partitioning. 
 
1 INTRODUCTION 

Aeroelasticity and loads considerations play an important role during the design, development, 
and certification of aircraft. Accurate modelling of the non-linear aerodynamics in the transonic 
regime is vital for prediction of static and dynamic loads imposed on the aircraft. Classical 
models based on potential flow equations such as the doublet lattice method [1], though 
efficient, neglect the nonlinearities, e.g., shock-wave/boundary-layer interaction. In contrast, 
computational fluid dynamics (CFD) is able to model such nonlinearities well. Therefore, CFD 
has become indispensable for modelling the complex unsteady aerodynamics in an industrial 
setting. In the context of aeroelasticity and loads, the linearised aerodynamics around such non-
linear states have become established [2], because aircraft application requires very large 
numbers of simulations in a vast parameter space. Hence, interest has narrowed down to the 
unsteady aerodynamic response due to harmonic forcing such as in the structural degrees-of-
freedom or due to external excitation (e.g., gust). 
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In recent years, there have been numerous advancements in CFD that have improved the 
modelling accuracy tremendously. These include the use of high-order schemes and advanced 
turbulence and transition models. Homogeneous and heterogeneous high-performance 
computing have significantly improved computational efficiency and scalability. Despite such 
advancements, the current industrial practice for aeroelasticity and loads predominantly relies 
on some variant of the one-equation Spalart-Allmaras (SA) turbulence model [3] with 
homogenous message passing interface (MPI) parallelisation only. 
 
The next generation flow solver CODA [4, 5] is being developed to take advantage of emerging 
computing capabilities to eliminate limitations faced by previous generation codes such as those 
mentioned earlier. The newly incorporated automatic differentiation (AD) capability allows 
matrix-vector products with the Jacobian operator to be evaluated accurately regardless of the 
complexity of the underlying discretization schemes and physical models. This is an important 
step forward from computing the Jacobian matrix by hand-differentiation which becomes 
cumbersome and error-prone for complex models. With AD, there is no need to construct and 
store the explicit Jacobian matrix which brings about significant memory gains, though 
performance needs scrutiny with respect to the matrix-forming approach. The exactness of the 
matrix-vector product operation is crucial for the preconditioned Krylov subspace linear solvers 
used in the linearised CFD approach. The performance of these linear solvers heavily hinges 
upon the effectiveness of the preconditioner. CODA uses the sparse linear algebra library 
SPLISS [6] for constructing and solving linear systems that arise from the conventional implicit 
and linearised CFD approaches. SPLISS operates on a two-level parallelism with partitioning 
across MPI processes (distributed memory) as well as OpenMP/GPU threads (shared memory) 
for enhanced scalability. This allows for more effective preconditioning with full parallelization 
at the shared memory level and a strict block-Jacobi type approach (i.e., no parallel 
communication) at the distributed memory level. 
 
The objectives of this work are (a) to verify and validate the recently implemented linear 
frequency domain (LFD) solver which capitalizes on the AD capability in CODA, and (b) to 
assess the performance/scalability of the solver on a large-scale case. The paper is organised as 
follows. In Section 2, a brief derivation of the LFD equation as implemented in CODA is 
provided. In Section 3, the main steps in the LFD solution procedure are outlined with some 
implementation details. Next, the results are presented in Section 4 for LANN wing and NASA 
CRM cases, concluding with an overview in Section 5 of the future work to be carried out. 
 
2 THEORETICAL BACKGROUND 

Standard time integration methods are very inefficient for computing the unsteady aerodynamic 
response to periodic structural deformation because time integration has to be performed for 
several cycles to eliminate transient effects with a large number of time steps per cycle. A faster 
and cheaper alternative is the LFD method which computes the periodic response directly. To 
derive the LFD equation, we begin with the unsteady Reynolds-averaged Navier-Stokes 
(URANS) equations written in a semi-discrete form, 
 
 d

dᵅ�
(M ⋅ ᵆ�) + ᵆ�(ᵆ�, ᵆ�, ᵆ̇�) = ᵼ� (1) 

   

in which ᵆ�(ᵅ�) = [ᵰ�, ᵰ�ᵆ�, ᵰ�ᵃ�, … ] refers to the vector of conserved variables including those 

from the turbulence/transition models where ᵰ� is the density, ᵆ� is the velocity vector in 
Cartesian coordinates and ᵃ� is the specific total energy. The symbols ᵆ� and ᵆ̇� denote the grid 
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node positions and velocities, respectively. The term ᵆ�(ᵆ�, ᵆ�, ᵆ̇�) represents the spatially 

discretised non-linear residual vector. Lastly, M(ᵆ�) is the diagonal mass matrix consisting of 
the cell volumes in the finite volume context. 
 

Linearising Eq. (1) about a steady-state solution ᵆ������� , where ᵆ��ᵆ������� , ᵆ�����, ᵼ�� = ᵼ�, and assuming 

small amplitude, harmonic perturbations (ᵆ�� exp(ᵅ�ᵱ�ᵅ�) and ᵆ̂� exp(ᵅ�ᵱ�ᵅ�)) yields the standard 
LFD equation [7], 
 
 �ᵅ�ᵱ�M������ + ᵱ�ᵆ�

ᵱ�ᵆ�
� ᵆ�� = − �ᵱ�ᵆ�

ᵱ�ᵆ�
ᵆ̂� + ᵅ�ᵱ� �dM

dᵆ�
ᵆ̂�ᵆ������� + ᵱ�ᵆ�

ᵱ�ᵆ̇�
ᵆ̂��� (2) 

   

where M������ ≡ M(ᵆ�����) refers to the mass matrix of the undeformed grid. Equation (2) is a linear 

system which, for a given ᵆ̂� and ᵱ�, must be solved for ᵆ�� . The solution ᵆ��  is the linear 
aerodynamic response to the grid deformation ᵆ̂�, both oscillating harmonically at frequency ᵱ�. 
The grid deformation ᵆ̂� is computed from the structural deformation mode obtained, for 
instance, from free-vibration analysis of a finite-element structural model. A similar approach 
can be followed for computing the perturbation response to sinusoidal gust excitation. 
 
3 METHODOLOGY 

The LFD equation as given in Eq. (2) is not in the most suitable form for implementation in 
CODA because the non-linear residual vector and, correspondingly, the Jacobian matrix-vector 
product come pre-multiplied with the inverse of the mass matrix. To recast the LFD equation 

in a more suitable form, let us pre-multiply M������−� to Eq. (2) and substitute ᵆ� = Mᵆ�� where ᵆ�� 
denotes the residual vector computed in CODA. Upon simplification, this leads to a modified 
LFD equation, 
 
 

(ᵅ�ᵱ�I + J)ᵆ�� = −�M������−�
ᵱ��Mᵆ���

ᵱ�ᵆ�
ᵆ̂� + ᵅ�ᵱ� �M������−� dM

dᵆ�
ᵆ̂�ᵆ������� + ᵱ�ᵆ��

ᵱ�ᵆ̇�
ᵆ̂��� (3) 

   

where J = ᵱ�ᵆ�� ᵱ�ᵆ�⁄  denotes the Jacobian matrix as defined in CODA. 
 
The LFD procedure begins with a static aeroelastic coupled steady state solution of Eq. (1). The 
steady state solutions were computed in CODA using the implicit backward Euler scheme with 
local time stepping until the density and turbulence-variable residual norms dropped by ten 
orders of magnitude. Courant-Friedrich-Levy (CFL) number ramping of the local time steps 
was employed to accelerate non-linear convergence. The linear system at each outer iteration 
was solved using a generalized minimum residual (GMRES) solver [8] until the linear residual 
norm dropped by one order of magnitude. The solver used a maximum of 50 Krylov vectors 
with no restarts and a Jacobi-type iterative solver as preconditioner. Given a linear system 
ᵃ�ᵆ� = ᵆ�,  matrix ᵃ� can be decomposed into ᵃ� = ᵃ�� + ᵃ�  where ᵃ�� is a generalized block 

diagonal matrix that may include off-diagonal blocks while matrix ᵃ�  consists of the remaining 
off-diagonal blocks. A Jacobi-type iteration can be defined as ᵆ��+� = ᵆ�� + ᵃ��

−�(ᵆ� − ᵃ�ᵆ��). 
The key criterion for ᵃ�� is that it must be relatively easy to invert. The preconditioner was 
constructed using an explicit but approximate Jacobian matrix with contributions from the local 
time steps added along the main diagonal. The block tri-diagonal part of this approximate 
matrix was taken to be ᵃ�� (also known as ‘lines inversion’) and 50 Jacobi-type iterations were 
performed to precondition each Krylov vector. 
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With the steady state solution obtained, the right-hand-side (RHS) vector of Eq. (3) is computed 
next. To this end, the grid deformation vector ᵆ̂� is first computed from a prescribed structural 
mode. For simple rigid-body motions such as those considered in this paper, the grid 
deformation can be prescribed analytically. For more complicated motions, they can be 
computed using radial-basis-function volume-interpolation methods [9, 10]. With ᵆ̂� available, 
the terms in the RHS are computed using central difference approximations as follows.  
 
 

    M������−�
ᵱ��Mᵆ���

ᵱ�ᵆ�
ᵆ̂� ≈ M������−�

2ᵱ�
�

M(ᵆ����� + ᵱ�ᵆ̂�) ᵆ���ᵆ������� , ᵆ����� + ᵱ�ᵆ̂�, ᵼ��          
        −M(ᵆ����� − ᵱ�ᵆ̂�) ᵆ���ᵆ������� , ᵆ����� − ᵱ�ᵆ̂�, ᵼ��

�   (4a) 

 
M������−� ᵃ�M

ᵃ�ᵆ�
ᵆ̂�ᵆ������� ≈ M������−�

2ᵱ�
[M(ᵆ����� + ᵱ�ᵆ̂�) − M(ᵆ����� − ᵱ�ᵆ̂�)]ᵆ�������    (4b) 

 
              ᵱ�ᵆ��

ᵱ�ᵆ̇�
ᵆ̂� ≈ 1

2ᵱ�
�ᵆ���ᵆ������� , ᵆ�����, +ᵱ�ᵆ̂�� − ᵆ���ᵆ������� , ᵆ�����, −ᵱ�ᵆ̂���   (4c) 

   

The symbol ᵱ� denotes a small number, typically 10−8, used for the finite differences. The 
arguments ᵆ����� ± ᵱ�ᵆ̂� indicate that the quantities are computed on deformed grids. It must be 
mentioned that these matrix-vector products will also be computed using AD in future. After 
computation, the term in Eq. (4a) and the sum of the terms in Eqs. (4b) & (4c) are stored 
separately for ease of generating the RHS vector for any frequency ᵱ� provided at runtime. 
 
The final step in the LFD procedure is to solve the linear system given in Eq. (3). The linear 
system is solved using a Krylov subspace method which requires a means to compute the 
matrix-vector product with the linear operator (ᵅ�ᵱ�I + J). For an arbitrary complex vector ᵆ�, 

the matrix-vector product (ᵅ�ᵱ�I + J)ᵆ� can be computed as,  
 
 (ᵅ�ᵱ�I + J)ᵆ� = ᵅ�ᵱ�ᵆ� + �J ⋅ ℛℯ(ᵆ�)�

��
+ ᵅ��J ⋅ ℐ�(ᵆ�)�

��
 (5) 

   
whereby the subscript ‘AD’ refers to the fact that the matrix-vector product is computed in a 
matrix-free manner using AD. The product (Jᵆ�) is computed component-wise since the matrix-
vector product using AD permits only real vectors in the implementation in CODA. The LFD 
computations were performed with a restarted GMRES solver until the linear residual dropped 
by ten orders of magnitude. The solver used 100 Krylov vectors with a maximum of nine 
restarts. Preconditioning was performed using 100 Jacobi-type iterations with ᵃ�� taken to be 

the block diagonal part of the approximate Jacobian matrix with ᵅ�ᵱ� added along the main 
diagonal. The preconditioner was chosen after testing different numbers of Jacobi-type 
iterations with both block diagonal and block tri-diagonal decompositions (refer to Section 4.2.1). 
 
4 RESULTS & DISCUSSION 

4.1 LANN Wing 

The AGARD LANN wing [11] is a high-aspect-ratio trapezoidal wing with a supercritical 
aerofoil section. The configurations for a subsonic case (CT1) and a transonic case (CT5), 
following the experimental set-up, are given in Table 1. The wing has a quarter-chord sweep 
angle of 25 and an aspect ratio of 7.92.  It has a semi-span length of ᵅ� = 1 m and a root chord 
length of ᵃ�� = 0.3608 m. The Reynolds number and the non-dimensional frequency are both 

defined based on the mean aerodynamic chord ᵃ��� = 0.268 m. In both cases, the wing is 
assumed to be rigid as it undergoes sinusoidal pitching oscillations. The pitching axis location 
is located at ᵅ� = 0.224 m and ᵅ� = 0 m as shown in Figure 1. The two configurations, CT1 and 
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CT5, were computed in CODA using a hybrid, unstructured mesh consisting of about 
0.328×106 cells. The hemispherical domain extends 50 m from the origin. The wing surface 
and symmetry plane grids are shown in Figure 1. 
 
Inviscid fluxes were computed using the Roe scheme with an entropy-fix coefficient of 0.1. 
The SA-negative model was used to model turbulence. Spatial reconstruction was performed 
by representing the variables as cell-wise linear functions. The cell gradients were computed 
using Green-Gauss method with the face values initially approximated using distance-weighted 
averages of the neighbouring cell average values. The gradients were then bounded using a 
quintic spline limiter to prevent spurious oscillations before being used to reconstruct the final 
face values. Viscous fluxes were computed based on average face gradients obtained by 
augmenting the neighbouring cell gradients [12]. 
 
The steady and unsteady pressure coefficients sampled from two spanwise locations ᵅ�/ᵅ� = 0.2 

and ᵅ�/ᵅ� = 0.65 are plotted in Figures 2 and 3 for cases CT1 and CT5, respectively. 
Corresponding results from DLR-TAU code as well as experimental data are plotted in the 
figures. The setup in TAU used the production code’s default settings. In particular, Jameson-
Schmidt-Turkel (JST) flux scheme [13] was used to compute the inviscid fluxes in TAU. The 
LFD linear system was solved using a GMRES solver with preconditioning done using an 
incomplete lower-upper (ILU) factorisation with zero fill-in. The uncertainties for the 
experimental unsteady pressure coefficients were computed from the LANN wing report as 
±(0.02 + 0.05|ᵅ�|), where ᵅ� is ℛℯ�Δᵃ��� or ℐ��Δᵃ���. 

 
It can be observed from Figure 2 that the results from CODA and TAU agree excellently with 
each other for the subsonic case. The agreement with experimental data is also reasonably good.  

Table 1: LANN wing case configurations. 

 CT1 CT5 

Mach number 0.62 0.82 
Mean angle of attack 0.6 
Reynolds number  
ᵃ�ᵃ� = ᵰ��ᵃ��ᵅ����/ᵰ��  

4.82 × 106 5.43 × 106 

Reference length (ᵅ���� = ᵃ���) 0.268 m 

Non-dimensional frequency 
ᵱ�∗ = ᵱ�ᵅ����/ᵃ��  

0.198 0.152 
 

 

Figure 1: (left) LANN wing planform with the pitching axis & spanwise sampling locations and (right) wing 
surface and symmetry plane grids. 
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Figure 2: Steady and unsteady pressure coefficients for LANN wing case CT1. 

 
As for the transonic case, it can be seen from Figure 3 that, although the general trends agree 
well between CODA and TAU, there are significant differences in the regions where the steady 
state solution exhibits abrupt changes. For instance, notice from Figure 3(a) that the shock 
position on the upper surface captured by experiment lies at ᵅ� ᵃ�⁄ ≈ 0.48 while the shock positions 
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Figure 3: Steady and unsteady pressure coefficients for LANN wing case CT5. 
 
captured by TAU and CODA lie at ᵅ� ᵃ�⁄ ≈ 0.52 and ᵅ� ᵃ�⁄ ≈ 0.54, respectively. This difference 
in shock positions clearly affects the locations of the peaks observed in Figure 3(c). In contrast, 
since CODA and TAU both agree with the experimental shock location at ᵅ� ᵃ�⁄ ≈ 0.36 in Figure 
3(b), the corresponding peak locations also align well in Figure 3(d). The discrepancies can be 
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attributed to the use of a rather coarse mesh which was chosen for testing and debugging 
purposes. On a different note, CODA consistently produces lower peak amplitudes compared 
to TAU. This is most likely due to the increased numerical dissipation of the Roe scheme 
compared to the JST scheme as evident from the more diffused shock profiles in Figures 3(a) 
and 3(b). 
 
4.2 NASA CRM 

The NASA Common Research Model (CRM) [14] is based on a typical civil transport aircraft. 
The case configuration is given in Table 2. The wing has a quarter-chord sweep angle of 35 
and an aspect ratio of 9.0. It has a semi-span length of ᵅ� = 0.79337 m. The Reynolds number 
and non-dimensional frequency are both defined based on the reference chord  
ᵃ���� = 0.18915 m. Note that these dimensions correspond to the wind tunnel model used in the 
European Transonic Wind Tunnel campaign for this model. The pitching axis was chosen close 
to the wing root quarter chord position as indicated on the left of Figure 4 and the non-
dimensional frequency was arbitrarily chosen to be 1.0. 
 
The grids were obtained from the Fifth Drag Prediction Workshop (DPW5) grids database [15]. 
Out of a series of six structured grids of varying refinements, the first four grids (L1, L2, L3 & 
L4 consisting of respectively 0.64×106, 2.16×106, 5.11×106 & 17.3×106 hexahedral cells and a 
similar number of vertices) were used in this study. The grids were deformed according to the 
aeroelastic deflection of the wing at the chosen case configuration [16]. The aeroelastic 
deflections were measured in the European Transonic Wind Tunnel campaign of this model. 
The wing-body surface of the deformed grid L1 is shown on the right of Figure 4. The steady 
state and LFD computations were performed on the deformed grids. The discretization setup is 
similar to that described earlier for the LANN wing cases. The SA-negative turbulence model 
was used on all four grids while the ᵅ�-ᵱ� SST (simply SST henceforth) turbulence model [17] 
was used only on grid L3. The problem was also computed using TAU with the SA-negative 

Table 2: NASA CRM case configuration. 

Mach number 0.85 
Mean angle of attack 3.0 
Reynolds number  
ᵃ�ᵃ� = ᵰ��ᵃ��ᵅ����/ᵰ��  

5.0 × 106 

Reference length (ᵅ���� = ᵃ���� ) 0.18915 m 

Non-dimensional frequency 
ᵱ�∗ = ᵱ�ᵅ����/ᵃ��  

1.0 
 

 

Figure 4: (left) CRM planform with the pitching axis & spanwise sampling locations and (right) wing-body 
surface and symmetry plane for grid L1. 
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model on grid L3 to serve as a reference solution. Grid L3 was chosen for these two cases since 
it was found to yield sufficiently grid converged solutions for our purpose. 
 
The steady state and LFD convergence histories are plotted in Figure 5. The steady states were 
computed in two stages – first with first order reconstruction until the density and turbulence-
variables residual norms dropped by five orders of magnitude followed by second order 
reconstruction until the residual norms dropped by the desired ten orders of magnitude. The 
peaks observed midway during convergence in Figure 5(a) correspond to the restart with second 
order reconstruction. All cases converged to the required tolerance. Steady state convergence 
for the SST model on grid L3 required nearly three times the number of iterations as the SA-
negative model on the same grid but LFD convergence required only slightly more iterations. 
The convergence of the SST model for a large-scale LFD problem is a promising development. 
It has not been possible previously to apply the SST model for LFD problems in TAU due to 
the stiffness of the original formulation of the model in which the specific dissipation rate ᵱ� 
could vary by many orders of magnitude throughout the flow field. In CODA, the SST model 
has been implemented with the transformed variable ln(ᵱ�) instead which reduces the stiffness 
of the linear system. The reformulation and AD capability have enabled convergence of the 
LFD problem with the SST model. Similarly, we expect that more sophisticated 
turbulence/transition models will become available. 
 
The steady and unsteady pressure coefficients were sampled at two spanwise locations  
ᵅ� ᵅ�⁄ = 0.2 and ᵅ� ᵅ�⁄ = 0.65. Results from CODA with the SA-negative model for all four grids 
are plotted in Figure 6. As expected, the size of the smallest features captured decrease and the 
peak amplitudes increase with grid refinement. CODA results for both turbulence models and 
TAU results for the SA-negative model, all computed on grid L3, are plotted in Figure 7. Steady 
state and LFD solutions from the SST model are similar to those computed with the SA-
negative model with slight differences in the shock positions only. LFD results from TAU 
display larger peak amplitudes compared to CODA. This is, once again, an indication of the 
reduced numerical dissipation of the JST scheme used in TAU. However, insufficient numerical 
dissipation also leads to non-smooth wiggles in the LFD solutions from TAU at ᵅ� ᵅ�⁄ = 0.65  
(Figures 7(d) and 7(f)) which are highly reminiscent of Gibbs phenomenon near shocks. Indeed, 
one notices an undershoot and some minor oscillations in the steady state solution aft of the shock 

 

Figure 5: Steady state and LFD residual convergence histories for NASA CRM case. 
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Figure 6: Grid convergence study for NASA CRM case on CODA with the SA-negative turbulence model. 
 
in Figure 7(b). Since the LFD solution represents the perturbations about the steady state, any 
non-smoothness in the steady state solution becomes amplified in the LFD solution. 
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Figure 7: Steady and unsteady pressure coefficients for NASA CRM case on grid L3. 
 
4.2.1 Computational Efficiency 
The LFD problem using the SA-negative model on grid L3 was chosen for the scalability 
assessment. The problem was solved with Intel Xeon Gold 6230 CPU processors (2.10 GHz 
and 27.5 MB cache) which consist of 20 cores each. Each compute node comprises of two such 
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processors making a total of 40 cores available on each node. The problem was computed in 
CODA using MPI partitioning alone (one thread per MPI process) as well as the hybrid 
MPI/OpenMP partitioning (multiple threads per MPI process). Hybrid partitionings were done 
with 10, 20 and 40 threads per MPI process but 40 threads per MPI process was found to be a   
poor choice due to the node architecture. Hence, they are not included here. The problem was 
computed in TAU using MPI partitioning alone since it is the only one available. For 
conciseness, a particular partitioning is denoted as ‘(number of MPI processes) × (number of 
OpenMP threads per process)’. The product of these two numbers gives the total number of 
computational units. For instance, cases 40×1, 2×20 and 4×10 all use 40 computational units in 
total. Figure 8 shows the relative wall clock times plotted against the total number of 
computational units for the various cases tested. The wall clock times for TAU and CODA have 
been normalized with respect to the pure MPI cases 10×1 from the respective solvers. 
 
TAU exhibits less-than-ideal scaling from case 10×1 to case 40×1 but improves thereafter and 
maintains near-ideal scaling up to cases 80×1 and 160×1. Since the ILU factorisation in TAU 
is only local to each core, it becomes more fragmented, and therefore less effective, with more 
partitions resulting in a greater number of linear iterations. While the scaling is reasonably good 
for the current case, the deterioration can be more rapid in other cases. CODA exhibits rather 
poor scaling with pure MPI partitioning from case 10×1 to case 20×1 which improves to near-
ideal scaling from case 20×1 to case 40×1 before becoming extremely expensive and inefficient 
for a greater number of computational units. For greater than 10 computational units, hybrid 
partitionings take shorter times compared to pure MPI partitioning in CODA. With 10 threads 
per MPI process, the scaling improves considerably compared to pure MPI partitioning. It is 
less than ideal from case 1×10 to case 2×10 but becomes close to ideal from case 2×10 to case 
4×10. Similarly, with 20 threads per MPI process, there is less-than-ideal scaling from case 
1×20 to case 2×20 but becomes near-ideal from case 2×20 to case 4×20. Using 10 threads per 
process leads to some performance loss from case 4×10 to case 8×10 which becomes so 
excessive from case 8×10 to case 16×10 that there is almost no improvement achieved. Using 
20 threads per process on the other hand does offer some improvement from case 4×20 to case 
8×20 but it is less than ideal. The general trend of the CODA results seems to indicate that the 
loss of scalability encountered when using a large number of computational units can be 
somewhat offset with hybrid partitionings. 

 

Figure 8: Scalability of LFD solvers for NASA CRM case on grid L3. 
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A preliminary profiling analysis of the CODA runs revealed that the majority of the time was 
spent during the preconditioning. Since the Jacobi-type iterations of the preconditioner were 
performed with a block diagonal decomposition, the preconditioner is perfectly parallel, i.e., its 
convergence is indifferent to how the problem is partitioned. Consequently, all the CODA LFD 
runs in the scalability test took identically 163 linear iterations to converge. In contrast, TAU 
required between 700 and 900 linear iterations to converge depending on the partitioning. The 
computation time in CODA is, therefore, solely determined by the efficiency of the 
preconditioner. Since the ILU factorisation is precomputed in TAU, each preconditioning step 
costs roughly as much as a single matrix-vector product (actually, less than this since it is 
process-local). On the other hand, with 100 Jacobi-type iterations, each preconditioning step in 
CODA requires 100 matrix-vector products with the approximate matrix and the precomputed 
block diagonal inversion and inter-process communication of 100 vectors. Hence, the 
preconditioning operation in CODA can currently be assumed to be roughly 100 times costlier 
than that in TAU. Note that preconditioning is only one operation in a single GMRES iteration 
and, therefore, the factor of 100 does not fully apply to a GMRES iteration. Despite the large 
difference in cost, it is remarkable that, even after accounting for the reduced number of linear 
iterations required in CODA, the computation times in CODA using hybrid partitionings were 
at most only twice greater than those of TAU. This implies that there is considerable advantage 
to be gained from the hybrid MPI/OpenMP parallelism since the use of shared memory by the 
OpenMP threads helps to keep the inter-process communication low. 
 
Last but not least, the performances of different preconditioners in CODA for case 4×20 are 
compared in Figure 9 in terms of the wall clock times and the number of linear iterations. Both 
block diagonal and block tri-diagonal decompositions were tested with 10, 25, 50, 100 and 200 
Jacobi-type iterations. The ILU factorisation in TAU is computed on a weighted average of two 
Jacobian matrices, 
 J = ᵯ�J� + (1 − ᵯ�)J� (6) 
   

where matrix J� is constructed with compact stencils considering only the immediate face 

neighbours and matrix J� is constructed with extended stencils considering the neighbours’ 

neighbours as well. Using a weight of ᵯ� = 0 is analogous to the approximate Jacobian matrix 
in CODA while using a weight of ᵯ� = 0.5 represents the current best practice in TAU. Both 

 

Figure 9: Effect of preconditioner for NASA CRM case on grid L3. 
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values of ᵯ� were tested for case 80×1. TAU results are indicated in Figure 9 at one Jacobi-type 
iteration as the ILU factorisations were applied only once per GMRES iteration. Multiple 
Jacobi-type iterations were tested with the ILU factorisations in TAU but they produced worse 
results for this case which might be a result of the numerical instabilities arising from the matrix 
ordering [18]. It can be seen from Figure 9(a) that a single application of the ILU factorisation 
in TAU with the approximate and the weighted Jacobian matrices is equivalent to about 10 and 
25 Jacobi-type iterations with block diagonal decomposition in CODA, respectively. Clearly, 
the choice of the matrix used for factorisation affects the efficiency of the preconditioner as 
demonstrated by McCracken, et al. [19]. Judging from the wall clock times shown in 
Figure 9(b), the ILU factorisations in TAU are about twice as fast as their equivalents in CODA. 
This shows that the efficiency of the preconditioner in CODA could also be improved by using 
more advanced factorisations. Focusing on the effect of the number of Jacobi-type iterations, it 
can be seen from Figure 9(a) that using more Jacobi-type iterations leads to a reduction in the 
number of linear iterations and for a given number of Jacobi-type iterations, block tri-diagonal 
decomposition results in a stronger preconditioner compared to block diagonal decomposition. 
However, beyond 100 Jacobi-type iterations, the reduction in the number of linear iterations 
becomes less significant and the cost of preconditioning becomes overwhelming. As seen from 
Figure 9(b), the wall clock times, which initially decrease with the number of Jacobi-type 
iterations, start to increase later. The results indicate that 100 Jacobi-type iterations with block 
diagonal decomposition is optimal in terms of the time taken. Future work will look into more 
advanced preconditioners. 
 
5 CONCLUSIONS AND OUTLOOK 

The recently implemented LFD solver in the next-generation flow solver CODA benefits from 
the AD capability that allows computation of the exact Jacobian matrix-vector product. The 
LFD results from CODA have been validated with experimental data for subsonic and transonic 
LANN wing cases. They have been demonstrated to be on par with the LFD results from DLR-
TAU code for the LANN wing cases and a transonic CRM case. The ᵅ�-ᵱ� SST turbulence model 
has been successfully used in computing the LFD solutions for the CRM case. A scalability 
assessment of the LFD solvers from CODA and TAU showed that, despite the use of much 
costlier preconditioner, the LFD solver in CODA took only slightly longer than TAU when 
using hybrid MPI/OpenMPI partitionings. 
 
While some of these developments are a definite step forward from previous generation solvers, 
there are several areas which can be improved further. First of all, computation of the exact 
right-hand-side vector with AD would be more efficient and accurate compared to the finite 
difference approach used presently. Secondly, linear solver convergence could be improved by 
using multigrid methods which allow convergence independent of grid refinement. Thirdly, the 
performance of the preconditioner could be improved with the use of a more accurate, if 
possible exact, Jacobian matrix and more advanced factorisations. All three areas mentioned 
are being actively pursued. 
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