
International Forum on Aeroelasticity and Structural Dynamics
IFASD 2022

13-17 June 2022, Madrid, Spain

1

NEXT-GENERATION COMPUTATIONAL FLUID DYNAMICS
CAPABILITY FOR AIRCRAFT AEROELASTICITY AND LOADS

U S Vevek1, Sebastian Timme1, John Pattinson2, Bernd Stickan3 and Adam Büchner4

1 University of Liverpool

Liverpool, England L69 3GH, United Kingdom
vevek.u-s@liverpool.ac.uk

sebastian.timme@liverpool.ac.uk

2 Airbus Operations Ltd
Aerospace Avenue, Filton, Bristol BS34 7PA, United Kingdom

john.pattinson@airbus.com

3 Airbus Operations GmbH (Loads and Aeroelastics)
Airbus-Allee 1, 28199 Bremen, Germany

bernd.b.stickan@airbus.com

4 German Aerospace Center (DLR) − Institute of Software Methods for Product Virtualization
Zwickauer Straße 46, 01069 Dresden, Germany

adam.buechner@dlr.de

Keywords: linear frequency domain, automatic differentiation, solver scalability.

Abstract: This paper presents some of the first results obtained from the recently implemented
linear frequency domain solver in CODA, the next generation flow solver framework. It uses
automatic differentiation capability to compute the exact product of the Jacobian matrix with
an arbitrary vector. Perturbation results for subsonic and transonic LANN wing cases show
good agreement with experiments and results computed using DLR-TAU code. Computations
have been performed using both one- and two-equation turbulence models for the NASA
Common Research Model. Scalability assessment of the frequency-domain solver demonstrates
the advantage of hybrid MPI/OpenMP partitioning over pure MPI partitioning.

1 INTRODUCTION

Aeroelasticity and loads considerations play an important role during the design, development,
and certification of aircraft. Accurate modelling of the non-linear aerodynamics in the transonic
regime is vital for prediction of static and dynamic loads imposed on the aircraft. Classical
models based on potential flow equations such as the doublet lattice method [1], though
efficient, neglect the nonlinearities, e.g., shock-wave/boundary-layer interaction. In contrast,
computational fluid dynamics (CFD) is able to model such nonlinearities well. Therefore, CFD
has become indispensable for modelling the complex unsteady aerodynamics in an industrial
setting. In the context of aeroelasticity and loads, the linearised aerodynamics around such non-
linear states have become established [2], because aircraft application requires very large
numbers of simulations in a vast parameter space. Hence, interest has narrowed down to the
unsteady aerodynamic response due to harmonic forcing such as in the structural degrees-of-
freedom or due to external excitation (e.g., gust).

IFASD-2022-025

2

In recent years, there have been numerous advancements in CFD that have improved the
modelling accuracy tremendously. These include the use of high-order schemes and advanced
turbulence and transition models. Homogeneous and heterogeneous high-performance
computing have significantly improved computational efficiency and scalability. Despite such
advancements, the current industrial practice for aeroelasticity and loads predominantly relies
on some variant of the one-equation Spalart-Allmaras (SA) turbulence model [3] with
homogenous message passing interface (MPI) parallelisation only.

The next generation flow solver CODA [4, 5] is being developed to take advantage of emerging
computing capabilities to eliminate limitations faced by previous generation codes such as those
mentioned earlier. The newly incorporated automatic differentiation (AD) capability allows
matrix-vector products with the Jacobian operator to be evaluated accurately regardless of the
complexity of the underlying discretization schemes and physical models. This is an important
step forward from computing the Jacobian matrix by hand-differentiation which becomes
cumbersome and error-prone for complex models. With AD, there is no need to construct and
store the explicit Jacobian matrix which brings about significant memory gains, though
performance needs scrutiny with respect to the matrix-forming approach. The exactness of the
matrix-vector product operation is crucial for the preconditioned Krylov subspace linear solvers
used in the linearised CFD approach. The performance of these linear solvers heavily hinges
upon the effectiveness of the preconditioner. CODA uses the sparse linear algebra library
SPLISS [6] for constructing and solving linear systems that arise from the conventional implicit
and linearised CFD approaches. SPLISS operates on a two-level parallelism with partitioning
across MPI processes (distributed memory) as well as OpenMP/GPU threads (shared memory)
for enhanced scalability. This allows for more effective preconditioning with full parallelization
at the shared memory level and a strict block-Jacobi type approach (i.e., no parallel
communication) at the distributed memory level.

The objectives of this work are (a) to verify and validate the recently implemented linear
frequency domain (LFD) solver which capitalizes on the AD capability in CODA, and (b) to
assess the performance/scalability of the solver on a large-scale case. The paper is organised as
follows. In Section 2, a brief derivation of the LFD equation as implemented in CODA is
provided. In Section 3, the main steps in the LFD solution procedure are outlined with some
implementation details. Next, the results are presented in Section 4 for LANN wing and NASA
CRM cases, concluding with an overview in Section 5 of the future work to be carried out.

2 THEORETICAL BACKGROUND

Standard time integration methods are very inefficient for computing the unsteady aerodynamic
response to periodic structural deformation because time integration has to be performed for
several cycles to eliminate transient effects with a large number of time steps per cycle. A faster
and cheaper alternative is the LFD method which computes the periodic response directly. To
derive the LFD equation, we begin with the unsteady Reynolds-averaged Navier-Stokes
(URANS) equations written in a semi-discrete form,

 d

dᵅ�
(M ⋅ ᵆ�) + ᵆ�(ᵆ�, ᵆ�, ᵆ̇�) = ᵼ� (1)

in which ᵆ�(ᵅ�) = [ᵰ�, ᵰ�ᵆ�, ᵰ�ᵃ�, …] refers to the vector of conserved variables including those

from the turbulence/transition models where ᵰ� is the density, ᵆ� is the velocity vector in
Cartesian coordinates and ᵃ� is the specific total energy. The symbols ᵆ� and ᵆ̇� denote the grid

IFASD-2022-025

3

node positions and velocities, respectively. The term ᵆ�(ᵆ�, ᵆ�, ᵆ̇�) represents the spatially

discretised non-linear residual vector. Lastly, M(ᵆ�) is the diagonal mass matrix consisting of
the cell volumes in the finite volume context.

Linearising Eq. (1) about a steady-state solution ᵆ������� , where ᵆ��ᵆ������� , ᵆ�����, ᵼ�� = ᵼ�, and assuming

small amplitude, harmonic perturbations (ᵆ�� exp(ᵅ�ᵱ�ᵅ�) and ᵆ̂� exp(ᵅ�ᵱ�ᵅ�)) yields the standard
LFD equation [7],

 �ᵅ�ᵱ�M������ + ᵱ�ᵆ�

ᵱ�ᵆ�
� ᵆ�� = − �ᵱ�ᵆ�

ᵱ�ᵆ�
ᵆ̂� + ᵅ�ᵱ� �dM

dᵆ�
ᵆ̂�ᵆ������� + ᵱ�ᵆ�

ᵱ�ᵆ̇�
ᵆ̂��� (2)

where M������ ≡ M(ᵆ�����) refers to the mass matrix of the undeformed grid. Equation (2) is a linear

system which, for a given ᵆ̂� and ᵱ�, must be solved for ᵆ�� . The solution ᵆ�� is the linear
aerodynamic response to the grid deformation ᵆ̂�, both oscillating harmonically at frequency ᵱ�.
The grid deformation ᵆ̂� is computed from the structural deformation mode obtained, for
instance, from free-vibration analysis of a finite-element structural model. A similar approach
can be followed for computing the perturbation response to sinusoidal gust excitation.

3 METHODOLOGY

The LFD equation as given in Eq. (2) is not in the most suitable form for implementation in
CODA because the non-linear residual vector and, correspondingly, the Jacobian matrix-vector
product come pre-multiplied with the inverse of the mass matrix. To recast the LFD equation

in a more suitable form, let us pre-multiply M������−� to Eq. (2) and substitute ᵆ� = Mᵆ�� where ᵆ��
denotes the residual vector computed in CODA. Upon simplification, this leads to a modified
LFD equation,

(ᵅ�ᵱ�I + J)ᵆ�� = −�M������−�
ᵱ��Mᵆ���

ᵱ�ᵆ�
ᵆ̂� + ᵅ�ᵱ� �M������−� dM

dᵆ�
ᵆ̂�ᵆ������� + ᵱ�ᵆ��

ᵱ�ᵆ̇�
ᵆ̂��� (3)

where J = ᵱ�ᵆ�� ᵱ�ᵆ�⁄ denotes the Jacobian matrix as defined in CODA.

The LFD procedure begins with a static aeroelastic coupled steady state solution of Eq. (1). The
steady state solutions were computed in CODA using the implicit backward Euler scheme with
local time stepping until the density and turbulence-variable residual norms dropped by ten
orders of magnitude. Courant-Friedrich-Levy (CFL) number ramping of the local time steps
was employed to accelerate non-linear convergence. The linear system at each outer iteration
was solved using a generalized minimum residual (GMRES) solver [8] until the linear residual
norm dropped by one order of magnitude. The solver used a maximum of 50 Krylov vectors
with no restarts and a Jacobi-type iterative solver as preconditioner. Given a linear system
ᵃ�ᵆ� = ᵆ�, matrix ᵃ� can be decomposed into ᵃ� = ᵃ�� + ᵃ� where ᵃ�� is a generalized block

diagonal matrix that may include off-diagonal blocks while matrix ᵃ� consists of the remaining
off-diagonal blocks. A Jacobi-type iteration can be defined as ᵆ��+� = ᵆ�� + ᵃ��

−�(ᵆ� − ᵃ�ᵆ��).
The key criterion for ᵃ�� is that it must be relatively easy to invert. The preconditioner was
constructed using an explicit but approximate Jacobian matrix with contributions from the local
time steps added along the main diagonal. The block tri-diagonal part of this approximate
matrix was taken to be ᵃ�� (also known as ‘lines inversion’) and 50 Jacobi-type iterations were
performed to precondition each Krylov vector.

IFASD-2022-025

4

With the steady state solution obtained, the right-hand-side (RHS) vector of Eq. (3) is computed
next. To this end, the grid deformation vector ᵆ̂� is first computed from a prescribed structural
mode. For simple rigid-body motions such as those considered in this paper, the grid
deformation can be prescribed analytically. For more complicated motions, they can be
computed using radial-basis-function volume-interpolation methods [9, 10]. With ᵆ̂� available,
the terms in the RHS are computed using central difference approximations as follows.

 M������−�
ᵱ��Mᵆ���

ᵱ�ᵆ�
ᵆ̂� ≈ M������−�

2ᵱ�
�

M(ᵆ����� + ᵱ�ᵆ̂�) ᵆ���ᵆ������� , ᵆ����� + ᵱ�ᵆ̂�, ᵼ��
 −M(ᵆ����� − ᵱ�ᵆ̂�) ᵆ���ᵆ������� , ᵆ����� − ᵱ�ᵆ̂�, ᵼ��

� (4a)

M������−� ᵃ�M

ᵃ�ᵆ�
ᵆ̂�ᵆ������� ≈ M������−�

2ᵱ�
[M(ᵆ����� + ᵱ�ᵆ̂�) − M(ᵆ����� − ᵱ�ᵆ̂�)]ᵆ������� (4b)

 ᵱ�ᵆ��

ᵱ�ᵆ̇�
ᵆ̂� ≈ 1

2ᵱ�
�ᵆ���ᵆ������� , ᵆ�����, +ᵱ�ᵆ̂�� − ᵆ���ᵆ������� , ᵆ�����, −ᵱ�ᵆ̂��� (4c)

The symbol ᵱ� denotes a small number, typically 10−8, used for the finite differences. The
arguments ᵆ����� ± ᵱ�ᵆ̂� indicate that the quantities are computed on deformed grids. It must be
mentioned that these matrix-vector products will also be computed using AD in future. After
computation, the term in Eq. (4a) and the sum of the terms in Eqs. (4b) & (4c) are stored
separately for ease of generating the RHS vector for any frequency ᵱ� provided at runtime.

The final step in the LFD procedure is to solve the linear system given in Eq. (3). The linear
system is solved using a Krylov subspace method which requires a means to compute the
matrix-vector product with the linear operator (ᵅ�ᵱ�I + J). For an arbitrary complex vector ᵆ�,

the matrix-vector product (ᵅ�ᵱ�I + J)ᵆ� can be computed as,

 (ᵅ�ᵱ�I + J)ᵆ� = ᵅ�ᵱ�ᵆ� + �J ⋅ ℛℯ(ᵆ�)�

��
+ ᵅ��J ⋅ ℐ�(ᵆ�)�

��
 (5)

whereby the subscript ‘AD’ refers to the fact that the matrix-vector product is computed in a
matrix-free manner using AD. The product (Jᵆ�) is computed component-wise since the matrix-
vector product using AD permits only real vectors in the implementation in CODA. The LFD
computations were performed with a restarted GMRES solver until the linear residual dropped
by ten orders of magnitude. The solver used 100 Krylov vectors with a maximum of nine
restarts. Preconditioning was performed using 100 Jacobi-type iterations with ᵃ�� taken to be

the block diagonal part of the approximate Jacobian matrix with ᵅ�ᵱ� added along the main
diagonal. The preconditioner was chosen after testing different numbers of Jacobi-type
iterations with both block diagonal and block tri-diagonal decompositions (refer to Section 4.2.1).

4 RESULTS & DISCUSSION

4.1 LANN Wing

The AGARD LANN wing [11] is a high-aspect-ratio trapezoidal wing with a supercritical
aerofoil section. The configurations for a subsonic case (CT1) and a transonic case (CT5),
following the experimental set-up, are given in Table 1. The wing has a quarter-chord sweep
angle of 25 and an aspect ratio of 7.92. It has a semi-span length of ᵅ� = 1 m and a root chord
length of ᵃ�� = 0.3608 m. The Reynolds number and the non-dimensional frequency are both

defined based on the mean aerodynamic chord ᵃ��� = 0.268 m. In both cases, the wing is
assumed to be rigid as it undergoes sinusoidal pitching oscillations. The pitching axis location
is located at ᵅ� = 0.224 m and ᵅ� = 0 m as shown in Figure 1. The two configurations, CT1 and

IFASD-2022-025

5

CT5, were computed in CODA using a hybrid, unstructured mesh consisting of about
0.328×106 cells. The hemispherical domain extends 50 m from the origin. The wing surface
and symmetry plane grids are shown in Figure 1.

Inviscid fluxes were computed using the Roe scheme with an entropy-fix coefficient of 0.1.
The SA-negative model was used to model turbulence. Spatial reconstruction was performed
by representing the variables as cell-wise linear functions. The cell gradients were computed
using Green-Gauss method with the face values initially approximated using distance-weighted
averages of the neighbouring cell average values. The gradients were then bounded using a
quintic spline limiter to prevent spurious oscillations before being used to reconstruct the final
face values. Viscous fluxes were computed based on average face gradients obtained by
augmenting the neighbouring cell gradients [12].

The steady and unsteady pressure coefficients sampled from two spanwise locations ᵅ�/ᵅ� = 0.2

and ᵅ�/ᵅ� = 0.65 are plotted in Figures 2 and 3 for cases CT1 and CT5, respectively.
Corresponding results from DLR-TAU code as well as experimental data are plotted in the
figures. The setup in TAU used the production code’s default settings. In particular, Jameson-
Schmidt-Turkel (JST) flux scheme [13] was used to compute the inviscid fluxes in TAU. The
LFD linear system was solved using a GMRES solver with preconditioning done using an
incomplete lower-upper (ILU) factorisation with zero fill-in. The uncertainties for the
experimental unsteady pressure coefficients were computed from the LANN wing report as
±(0.02 + 0.05|ᵅ�|), where ᵅ� is ℛℯ�Δᵃ��� or ℐ��Δᵃ���.

It can be observed from Figure 2 that the results from CODA and TAU agree excellently with
each other for the subsonic case. The agreement with experimental data is also reasonably good.

Table 1: LANN wing case configurations.

 CT1 CT5

Mach number 0.62 0.82
Mean angle of attack 0.6
Reynolds number
ᵃ�ᵃ� = ᵰ��ᵃ��ᵅ����/ᵰ��

4.82 × 106 5.43 × 106

Reference length (ᵅ���� = ᵃ���) 0.268 m

Non-dimensional frequency
ᵱ�∗ = ᵱ�ᵅ����/ᵃ��

0.198 0.152

Figure 1: (left) LANN wing planform with the pitching axis & spanwise sampling locations and (right) wing
surface and symmetry plane grids.

IFASD-2022-025

6

Figure 2: Steady and unsteady pressure coefficients for LANN wing case CT1.

As for the transonic case, it can be seen from Figure 3 that, although the general trends agree
well between CODA and TAU, there are significant differences in the regions where the steady
state solution exhibits abrupt changes. For instance, notice from Figure 3(a) that the shock
position on the upper surface captured by experiment lies at ᵅ� ᵃ�⁄ ≈ 0.48 while the shock positions

IFASD-2022-025

7

Figure 3: Steady and unsteady pressure coefficients for LANN wing case CT5.

captured by TAU and CODA lie at ᵅ� ᵃ�⁄ ≈ 0.52 and ᵅ� ᵃ�⁄ ≈ 0.54, respectively. This difference
in shock positions clearly affects the locations of the peaks observed in Figure 3(c). In contrast,
since CODA and TAU both agree with the experimental shock location at ᵅ� ᵃ�⁄ ≈ 0.36 in Figure
3(b), the corresponding peak locations also align well in Figure 3(d). The discrepancies can be

IFASD-2022-025

8

attributed to the use of a rather coarse mesh which was chosen for testing and debugging
purposes. On a different note, CODA consistently produces lower peak amplitudes compared
to TAU. This is most likely due to the increased numerical dissipation of the Roe scheme
compared to the JST scheme as evident from the more diffused shock profiles in Figures 3(a)
and 3(b).

4.2 NASA CRM

The NASA Common Research Model (CRM) [14] is based on a typical civil transport aircraft.
The case configuration is given in Table 2. The wing has a quarter-chord sweep angle of 35
and an aspect ratio of 9.0. It has a semi-span length of ᵅ� = 0.79337 m. The Reynolds number
and non-dimensional frequency are both defined based on the reference chord
ᵃ���� = 0.18915 m. Note that these dimensions correspond to the wind tunnel model used in the
European Transonic Wind Tunnel campaign for this model. The pitching axis was chosen close
to the wing root quarter chord position as indicated on the left of Figure 4 and the non-
dimensional frequency was arbitrarily chosen to be 1.0.

The grids were obtained from the Fifth Drag Prediction Workshop (DPW5) grids database [15].
Out of a series of six structured grids of varying refinements, the first four grids (L1, L2, L3 &
L4 consisting of respectively 0.64×106, 2.16×106, 5.11×106 & 17.3×106 hexahedral cells and a
similar number of vertices) were used in this study. The grids were deformed according to the
aeroelastic deflection of the wing at the chosen case configuration [16]. The aeroelastic
deflections were measured in the European Transonic Wind Tunnel campaign of this model.
The wing-body surface of the deformed grid L1 is shown on the right of Figure 4. The steady
state and LFD computations were performed on the deformed grids. The discretization setup is
similar to that described earlier for the LANN wing cases. The SA-negative turbulence model
was used on all four grids while the ᵅ�-ᵱ� SST (simply SST henceforth) turbulence model [17]
was used only on grid L3. The problem was also computed using TAU with the SA-negative

Table 2: NASA CRM case configuration.

Mach number 0.85
Mean angle of attack 3.0
Reynolds number
ᵃ�ᵃ� = ᵰ��ᵃ��ᵅ����/ᵰ��

5.0 × 106

Reference length (ᵅ���� = ᵃ����) 0.18915 m

Non-dimensional frequency
ᵱ�∗ = ᵱ�ᵅ����/ᵃ��

1.0

Figure 4: (left) CRM planform with the pitching axis & spanwise sampling locations and (right) wing-body
surface and symmetry plane for grid L1.

IFASD-2022-025

9

model on grid L3 to serve as a reference solution. Grid L3 was chosen for these two cases since
it was found to yield sufficiently grid converged solutions for our purpose.

The steady state and LFD convergence histories are plotted in Figure 5. The steady states were
computed in two stages – first with first order reconstruction until the density and turbulence-
variables residual norms dropped by five orders of magnitude followed by second order
reconstruction until the residual norms dropped by the desired ten orders of magnitude. The
peaks observed midway during convergence in Figure 5(a) correspond to the restart with second
order reconstruction. All cases converged to the required tolerance. Steady state convergence
for the SST model on grid L3 required nearly three times the number of iterations as the SA-
negative model on the same grid but LFD convergence required only slightly more iterations.
The convergence of the SST model for a large-scale LFD problem is a promising development.
It has not been possible previously to apply the SST model for LFD problems in TAU due to
the stiffness of the original formulation of the model in which the specific dissipation rate ᵱ�
could vary by many orders of magnitude throughout the flow field. In CODA, the SST model
has been implemented with the transformed variable ln(ᵱ�) instead which reduces the stiffness
of the linear system. The reformulation and AD capability have enabled convergence of the
LFD problem with the SST model. Similarly, we expect that more sophisticated
turbulence/transition models will become available.

The steady and unsteady pressure coefficients were sampled at two spanwise locations
ᵅ� ᵅ�⁄ = 0.2 and ᵅ� ᵅ�⁄ = 0.65. Results from CODA with the SA-negative model for all four grids
are plotted in Figure 6. As expected, the size of the smallest features captured decrease and the
peak amplitudes increase with grid refinement. CODA results for both turbulence models and
TAU results for the SA-negative model, all computed on grid L3, are plotted in Figure 7. Steady
state and LFD solutions from the SST model are similar to those computed with the SA-
negative model with slight differences in the shock positions only. LFD results from TAU
display larger peak amplitudes compared to CODA. This is, once again, an indication of the
reduced numerical dissipation of the JST scheme used in TAU. However, insufficient numerical
dissipation also leads to non-smooth wiggles in the LFD solutions from TAU at ᵅ� ᵅ�⁄ = 0.65
(Figures 7(d) and 7(f)) which are highly reminiscent of Gibbs phenomenon near shocks. Indeed,
one notices an undershoot and some minor oscillations in the steady state solution aft of the shock

Figure 5: Steady state and LFD residual convergence histories for NASA CRM case.

IFASD-2022-025

10

Figure 6: Grid convergence study for NASA CRM case on CODA with the SA-negative turbulence model.

in Figure 7(b). Since the LFD solution represents the perturbations about the steady state, any
non-smoothness in the steady state solution becomes amplified in the LFD solution.

IFASD-2022-025

11

Figure 7: Steady and unsteady pressure coefficients for NASA CRM case on grid L3.

4.2.1 Computational Efficiency
The LFD problem using the SA-negative model on grid L3 was chosen for the scalability
assessment. The problem was solved with Intel Xeon Gold 6230 CPU processors (2.10 GHz
and 27.5 MB cache) which consist of 20 cores each. Each compute node comprises of two such

IFASD-2022-025

12

processors making a total of 40 cores available on each node. The problem was computed in
CODA using MPI partitioning alone (one thread per MPI process) as well as the hybrid
MPI/OpenMP partitioning (multiple threads per MPI process). Hybrid partitionings were done
with 10, 20 and 40 threads per MPI process but 40 threads per MPI process was found to be a
poor choice due to the node architecture. Hence, they are not included here. The problem was
computed in TAU using MPI partitioning alone since it is the only one available. For
conciseness, a particular partitioning is denoted as ‘(number of MPI processes) × (number of
OpenMP threads per process)’. The product of these two numbers gives the total number of
computational units. For instance, cases 40×1, 2×20 and 4×10 all use 40 computational units in
total. Figure 8 shows the relative wall clock times plotted against the total number of
computational units for the various cases tested. The wall clock times for TAU and CODA have
been normalized with respect to the pure MPI cases 10×1 from the respective solvers.

TAU exhibits less-than-ideal scaling from case 10×1 to case 40×1 but improves thereafter and
maintains near-ideal scaling up to cases 80×1 and 160×1. Since the ILU factorisation in TAU
is only local to each core, it becomes more fragmented, and therefore less effective, with more
partitions resulting in a greater number of linear iterations. While the scaling is reasonably good
for the current case, the deterioration can be more rapid in other cases. CODA exhibits rather
poor scaling with pure MPI partitioning from case 10×1 to case 20×1 which improves to near-
ideal scaling from case 20×1 to case 40×1 before becoming extremely expensive and inefficient
for a greater number of computational units. For greater than 10 computational units, hybrid
partitionings take shorter times compared to pure MPI partitioning in CODA. With 10 threads
per MPI process, the scaling improves considerably compared to pure MPI partitioning. It is
less than ideal from case 1×10 to case 2×10 but becomes close to ideal from case 2×10 to case
4×10. Similarly, with 20 threads per MPI process, there is less-than-ideal scaling from case
1×20 to case 2×20 but becomes near-ideal from case 2×20 to case 4×20. Using 10 threads per
process leads to some performance loss from case 4×10 to case 8×10 which becomes so
excessive from case 8×10 to case 16×10 that there is almost no improvement achieved. Using
20 threads per process on the other hand does offer some improvement from case 4×20 to case
8×20 but it is less than ideal. The general trend of the CODA results seems to indicate that the
loss of scalability encountered when using a large number of computational units can be
somewhat offset with hybrid partitionings.

Figure 8: Scalability of LFD solvers for NASA CRM case on grid L3.

IFASD-2022-025

13

A preliminary profiling analysis of the CODA runs revealed that the majority of the time was
spent during the preconditioning. Since the Jacobi-type iterations of the preconditioner were
performed with a block diagonal decomposition, the preconditioner is perfectly parallel, i.e., its
convergence is indifferent to how the problem is partitioned. Consequently, all the CODA LFD
runs in the scalability test took identically 163 linear iterations to converge. In contrast, TAU
required between 700 and 900 linear iterations to converge depending on the partitioning. The
computation time in CODA is, therefore, solely determined by the efficiency of the
preconditioner. Since the ILU factorisation is precomputed in TAU, each preconditioning step
costs roughly as much as a single matrix-vector product (actually, less than this since it is
process-local). On the other hand, with 100 Jacobi-type iterations, each preconditioning step in
CODA requires 100 matrix-vector products with the approximate matrix and the precomputed
block diagonal inversion and inter-process communication of 100 vectors. Hence, the
preconditioning operation in CODA can currently be assumed to be roughly 100 times costlier
than that in TAU. Note that preconditioning is only one operation in a single GMRES iteration
and, therefore, the factor of 100 does not fully apply to a GMRES iteration. Despite the large
difference in cost, it is remarkable that, even after accounting for the reduced number of linear
iterations required in CODA, the computation times in CODA using hybrid partitionings were
at most only twice greater than those of TAU. This implies that there is considerable advantage
to be gained from the hybrid MPI/OpenMP parallelism since the use of shared memory by the
OpenMP threads helps to keep the inter-process communication low.

Last but not least, the performances of different preconditioners in CODA for case 4×20 are
compared in Figure 9 in terms of the wall clock times and the number of linear iterations. Both
block diagonal and block tri-diagonal decompositions were tested with 10, 25, 50, 100 and 200
Jacobi-type iterations. The ILU factorisation in TAU is computed on a weighted average of two
Jacobian matrices,
 J = ᵯ�J� + (1 − ᵯ�)J� (6)

where matrix J� is constructed with compact stencils considering only the immediate face

neighbours and matrix J� is constructed with extended stencils considering the neighbours’

neighbours as well. Using a weight of ᵯ� = 0 is analogous to the approximate Jacobian matrix
in CODA while using a weight of ᵯ� = 0.5 represents the current best practice in TAU. Both

Figure 9: Effect of preconditioner for NASA CRM case on grid L3.

IFASD-2022-025

14

values of ᵯ� were tested for case 80×1. TAU results are indicated in Figure 9 at one Jacobi-type
iteration as the ILU factorisations were applied only once per GMRES iteration. Multiple
Jacobi-type iterations were tested with the ILU factorisations in TAU but they produced worse
results for this case which might be a result of the numerical instabilities arising from the matrix
ordering [18]. It can be seen from Figure 9(a) that a single application of the ILU factorisation
in TAU with the approximate and the weighted Jacobian matrices is equivalent to about 10 and
25 Jacobi-type iterations with block diagonal decomposition in CODA, respectively. Clearly,
the choice of the matrix used for factorisation affects the efficiency of the preconditioner as
demonstrated by McCracken, et al. [19]. Judging from the wall clock times shown in
Figure 9(b), the ILU factorisations in TAU are about twice as fast as their equivalents in CODA.
This shows that the efficiency of the preconditioner in CODA could also be improved by using
more advanced factorisations. Focusing on the effect of the number of Jacobi-type iterations, it
can be seen from Figure 9(a) that using more Jacobi-type iterations leads to a reduction in the
number of linear iterations and for a given number of Jacobi-type iterations, block tri-diagonal
decomposition results in a stronger preconditioner compared to block diagonal decomposition.
However, beyond 100 Jacobi-type iterations, the reduction in the number of linear iterations
becomes less significant and the cost of preconditioning becomes overwhelming. As seen from
Figure 9(b), the wall clock times, which initially decrease with the number of Jacobi-type
iterations, start to increase later. The results indicate that 100 Jacobi-type iterations with block
diagonal decomposition is optimal in terms of the time taken. Future work will look into more
advanced preconditioners.

5 CONCLUSIONS AND OUTLOOK

The recently implemented LFD solver in the next-generation flow solver CODA benefits from
the AD capability that allows computation of the exact Jacobian matrix-vector product. The
LFD results from CODA have been validated with experimental data for subsonic and transonic
LANN wing cases. They have been demonstrated to be on par with the LFD results from DLR-
TAU code for the LANN wing cases and a transonic CRM case. The ᵅ�-ᵱ� SST turbulence model
has been successfully used in computing the LFD solutions for the CRM case. A scalability
assessment of the LFD solvers from CODA and TAU showed that, despite the use of much
costlier preconditioner, the LFD solver in CODA took only slightly longer than TAU when
using hybrid MPI/OpenMPI partitionings.

While some of these developments are a definite step forward from previous generation solvers,
there are several areas which can be improved further. First of all, computation of the exact
right-hand-side vector with AD would be more efficient and accurate compared to the finite
difference approach used presently. Secondly, linear solver convergence could be improved by
using multigrid methods which allow convergence independent of grid refinement. Thirdly, the
performance of the preconditioner could be improved with the use of a more accurate, if
possible exact, Jacobian matrix and more advanced factorisations. All three areas mentioned
are being actively pursued.

6 ACKNOWLEDGEMENTS

The work leading to these results received funding through the UK project Development of
Advanced Wing Solutions (DAWS) and the German collaborative research project DIGIfly.
The DAWS project is supported by the Aerospace Technology Institute (ATI) Programme, a
joint government and industry investment to maintain and grow the UK’s competitive position
in civil aerospace design and manufacture. The programme, delivered through a partnership
between ATI, Department for Business, Energy & Industrial Strategy (BEIS) and Innovate UK,

IFASD-2022-025

15

addresses technology, capability and supply chain challenges. Adam Büchner recognizes and
appreciates the support by Airbus Operations GmbH. We thank the University of Liverpool for
computing time on the high-performance computing system. The simulation data that support
the findings of this study are available from the authors upon reasonable request.

7 REFERENCES

[1] Albano, E. and Rodden, W.P. (1969). A doublet-lattice method for calculating lift
distributions on oscillating surfaces in subsonic flows. AIAA Journal, 7(2), 279-285.

[2] Daumas, L., Forestier, N., Bissue, A., Broux, G., Chalot, F., Johan, Z., and Mallet, M.
(2017). Industrial frequency-domain linearized Navier-Stokes calculations for
aeroelastic problems in the transonic flow regime. International Forum on
Aeroelasticity and Structural Dynamics (IFASD) 2017. Como, Italy.

[3] Allmaras, S.R. and Johnson, F.T. (Year). Modifications and clarifications for the
implementation of the Spalart-Allmaras turbulence model. Seventh international
conference on computational fluid dynamics (ICCFD7). Big Island, HI.

[4] Leicht, T., Jägersküpper, J., Vollmer, D., Schwöppe, A., Hartmann, R., Fiedler, J., and
Schlauch, T. (2016). DLR-project Digital-X – Next generation CFD solver 'Flucs'.
Deutscher Luft- und Raumfahrtkongress 2016. Braunschweig, Germany.

[5] Wagner, M., Jägersküpper, J., Molka, D., and Gerhold, T. (2021). Performance analysis
of complex engineering frameworks, Tools for High Performance Computing 2018 /
2019. Mix, H., et al. (Eds.). Cham: Springer International Publishing. 123-138.

[6] Wagner, M. (2021). The CFD solver CODA and the sparse linear systems solver Spliss:
evaluation of performance and scalability. NHR CFD Workshop Day 2021. Germany.

[7] Thormann, R. and Widhalm, M. (2013). Linear-frequency-domain predictions of
dynamic-response data for viscous transonic flows. AIAA Journal, 51(11), 2540-2557.

[8] Saad, Y. and Schultz, M.H. (1986). GMRES: A generalized minimal residual algorithm
for solving nonsymmetric linear systems. SIAM Journal on scientific and statistical
computing, 7(3), 856-869.

[9] Sheng, C. and Allen, C.B. (2012). Efficient mesh deformation using radial basis
functions on unstructured meshes. AIAA Journal, 51(3), 707-720.

[10] Jakobsson, S. and Amoignon, O. (2007). Mesh deformation using radial basis functions
for gradient-based aerodynamic shape optimization. Computers & Fluids, 36(6), 1119-
1136.

[11] Zwaan, R.J. (1985). LANN wing: pitching oscillation. AGARD-R-702, AGARD.
[12] Schwöppe, A. and Diskin, B. (2013). Accuracy of the cell-centered grid metric in the

DLR TAU-code, New Results in Numerical and Experimental Fluid Mechanics VIII:
Contributions to the 17th STAB/DGLR Symposium Berlin, Germany 2010. Dillmann,
A., et al. (Eds.). Berlin, Heidelberg: Springer Berlin Heidelberg. 429-437.

[13] Jameson, A., Schmidt, W., and Turkel, E.L.I. (1981). Numerical solution of the Euler
equations by finite volume methods using Runge Kutta time stepping schemes, 14th
Fluid and Plasma Dynamics Conference. American Institute of Aeronautics and
Astronautics.

[14] Vassberg, J., Dehaan, M., Rivers, M., and Wahls, R. (2008). Development of a common
research model for applied CFD validation studies. 26th AIAA Applied Aerodynamics
Conference. American Institute of Aeronautics and Astronautics.

[15] Morrison, J. (2021) DPW5 Grids and files from the Fifth Drag Prediction Workshop.
Available from: https://dpw.larc.nasa.gov/DPW5/multiblock_grids.REV01/.

[16] Keye, S. and Gammon, M.R. (2018). Development of deformed computer-aided design
geometries for the Sixth drag prediction workshop. Journal of Aircraft, 55(4), 1401-
1405.

IFASD-2022-025

16

[17] Menter, F.R., Kuntz, M., and Langtry, R. (2003). Ten years of industrial experience
with the SST turbulence model. Turbulence, heat and mass transfer, 4(1), 625-632.

[18] Anderson, W.K., Wood, S., and Jacobson, K.E. (2020). Node numbering for stabilizing
preconditioners based on incomplete LU decomposition, AIAA AVIATION 2020
FORUM. American Institute of Aeronautics and Astronautics.

[19] McCracken, A., Da Ronch, A., Timme, S., and Badcock, K.J. (2013). Solution of linear
systems in Fourier-based methods for aircraft applications. International Journal of
Computational Fluid Dynamics, 27(2), 79-87.

COPYRIGHT STATEMENT
The authors confirm that they, and/or their company or organization, hold copyright on all of
the original material included in this paper. The authors also confirm that they have obtained
permission, from the copyright holder of any third party material included in this paper, to
publish it as part of their paper. The authors confirm that they give permission, or have obtained
permission from the copyright holder of this paper, for the publication and distribution of this
paper as part of the IFASD-2022 proceedings or as individual off-prints from the proceedings.

