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Abstract—Running and jumping are locomotion modes that
allow legged robots to rapidly traverse great distances and
overcome difficult terrain. In this article, we show that the
three-dimensional Divergent Component of Motion (3D-DCM)
framework, which was successfully used for generating walking
trajectories in previous works, retains its validity and coherence
during flight phases, and, therefore, can be used for planning
running and jumping motions. We propose a highly efficient
motion planner that generates stable center-of-mass (CoM)
trajectories for running and jumping with arbitrary contact
sequences and time parametrizations. The proposed planner
constructs the complete motion plan as a sequence of motion
phases that can be of different types: stance, flight, transition
phases, etc. We introduce a unified formulation of the CoM and
DCM waypoints at the start and end of each motion phase,
which makes the framework extensible and enables the efficient
waypoint computation in matrix and algorithmic form. The
feasibility of the generated reference trajectories is demonstrated
by extensive whole-body simulations with the humanoid robot
TORO.

Index Terms—Bipedal locomotion, running, jumping, diver-
gent component of motion, gait generation, gait transitions.

I. INTRODUCTION

B IPEDALISM, as a form of locomotion, is commonly
associated with four basic modes of motion:

• Standing: characterized by actively maintaining balance
with one or both legs in contact with the ground;

• Walking: alternating single and double support phases,
switching the stance leg at each step. At least one leg is
always in contact with the ground;

• Running: alternating stance and flight phases, switching
the stance leg at each step;

• Jumping: alternating stance and flight phases, using both
legs simultaneously during the stance phases.

Humans are particularly well adapted to perform these
modes of motion, and humanoid robots are expected to achieve
similar performance or even outperform humans on common
locomotion tasks such as walking or running. Early results
of Takenaka et al. show the humanoid robot Asimo running
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at 10 km/h [1], Kojima et al. demonstrate a 30 cm high
jumping motion with 0.5 s flight time performed by the
humanoid robot JAXON3-P [2], while more recent videos
from Boston Dynamics highlight their robot’s capabilities of
traversing parkour-like environments and performing complex
somersaults [3]. However, despite these successes, significant
research effort is still needed in the field of bipedal locomotion,
in particular regarding the online planning and execution
of highly dynamic motions such as running and jumping,
traversing uneven and rough terrain, or following a sequence
of arbitrarily placed stepping stones.

A. Related work

In addition to the increasingly popular reinforcement learn-
ing approaches [4], [5], a widely used method of implementing
robotic bipedal locomotion is to focus on the center-of-mass
(CoM) dynamics. As observed in biological systems [6], the
CoM dynamics covers the most important aspects of loco-
motion. Especially during motion planning, the whole-body
dynamics is often replaced by heuristics [7], simplified models
such as the Linear Inverted Pendulum (LIP) [8] or the Spring-
Loaded Inverted Pendulum (SLIP) [9], and reduced models
such as the three-dimensional Divergent Component of Motion
(3D-DCM) [10]. Of these, the SLIP model, grounded in
biomechanical studies of human running [11], has been widely
used in generating running motions for legged robots [12],
[13] and bipedal hopping behaviour [14], [15]. However, the
SLIP model dynamics is nonlinear and cannot be analytically
integrated to produce closed-form solutions, and, therefore, it
is poorly suited for generating running trajectories for aperi-
odic locomotion with arbitrary footstep placement and time
parametrization. One method addressing these limitations was
proposed by Englsberger et al. as the Biologically Inspired
Deadbeat (BID) controller [16], with a recent work by Egle
et al. [17] implementing the transitions between BID-based
running and DCM-based walking.

An alternative approach is to build upon the insights and
experience gained over the last decades in bipedal walking
research. One immediate challenge is that some of the methods
developed for bipedal walking, such as the widely-used Zero
Moment Point (ZMP) [18] and the instantaneous Capture Point
(iCP) [19], [20], are not defined or are difficult to use during
the flight phases. The proposed solutions for running [1],
[21], [22] and hopping [23] combine ZMP-based trajectories
during stance phases with ballistic trajectories during flight
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phases. The horizontal and vertical motions are generated
independently, and the CoM trajectory is obtained by solving
the dynamics numerically. Further development driven by the
requirement to generate a vertical CoM motion has led to
the Variable-Height Inverted Pendulum (VHIP) model [24], an
extension of LIP that removes the assumption of constant CoM
height above ground. The VHIP model was used in a Model
Predictive Controller (MPC) formulation by Ahn and Cho
[25] to generate jumping motions with the vertical trajectory
computed offline, and by Smaldone et al. [26] in walking and
running motions. An alternative approach to extend the ZMP
to three-dimensional space and generate seamless transitions
between walking and running was proposed by Sugihara et al.
[27], and was used for running [28] and hopping as a push
recovery strategy [29].

One drawback of the ZMP-based methods is that the CoM
equations of motion are coupled, with the vertical CoM accel-
eration appearing in the equations of the horizontal motion,
which is caused by utilizing the vertical offset between the
CoM and the ZMP. The 3D-DCM framework [10] avoids this
problem by introducing the Virtual Repellent Point (VRP); the
VRP offset above ground can be used as a free motion param-
eter instead of the CoM-ZMP offset, leading to a decoupled
and identical dynamics on all three axes. The equations of
motion can be solved in closed-form [30], and the 3D-DCM
framework has been successfully used for dynamic walking on
various terrains [31], walking on moving support surfaces [32],
and multi-contact locomotion [33]. A time-varying 3D-DCM
method was introduced by Hopkins et al. [34], but the resulting
equations of motion can no longer be solved in closed-form;
a piecewise constant approach for the time-varying DCM
with offline computation of the constant values was recently
proposed by Hanasaki et al. [35].

B. Contributions

The main contributions of this work are: (i) we extend the
3D-DCM framework with flight phase equations of motion
and introduce a unified formulation that can be used for
walking, running, and jumping motions; (ii) we propose a
highly efficient waypoint computation algorithm for a gen-
eral sequence of motion phases including stance, flight, and
transition phases; (iii) within the 3D-DCM framework, we
implement the transitions between the four mentioned modes
of motion (standing, walking, running, and jumping). In this
context, we introduce a time-varying DCM motion phase
with online computation of the equations of motion, using
a piecewise constant approach.

This article is organized as follows. In Sec. II, we present
the main concepts regarding the 3D-DCM framework. Section
III gives a short overview of the proposed motion planner,
followed by a detailed presentation in Sec. IV. The implemen-
tation of gait transitions is presented in Sec. V. In Sec. VI,
we give a brief overview of the whole-body motion generation
and control methods used in conjunction with the CoM motion
planner. Extensive whole-body simulations with the humanoid
robot TORO [36], demonstrating the capabilities of the pro-
posed motion planner, are presented in Sec. VII, followed in

Sec. VIII by a discussion of the planner’s advantages and
limitations. Section IX concludes the paper.

II. FUNDAMENTALS

In this section, we review the main results from our previous
works [10], [30] regarding the three-dimensional Divergent
Component of Motion (DCM) framework, setting the main
focus on its usage for reference trajectory generation.

Formally, the motion planning problem for the center-of-
mass (CoM) x ∈ R3 of a legged robot consists of finding a
trajectory that connects the initial state (xs, ẋs) to the goal
state (xf , ẋf ), subject to the second-order CoM dynamics

ẍ =
1

m
fext + g, (1)

where m denotes the total mass of the robot, fext ∈ R3

is the sum of all external forces acting on the robot, and
g = (0 0 −g)T is the gravitational acceleration vector.

A. Three-dimensional Divergent Component of Motion (3D-
DCM) framework

The 3D-DCM framework introduced in [10] is a reformula-
tion of the CoM dynamics (1) without loss of generality. First,
the 3D-DCM framework introduces two points separated by a
constant vertical offset ∆z: the Enhanced Centroidal Moment
Pivot (eCMP) and the Virtual Repellent Point (VRP). The
eCMP e ∈ R3 encodes the direction and magnitude of the
external force fext via

fext =
m

b2
(x− e), (2)

where b is a time constant defined as

b :=

√
∆z

g
. (3)

Similarly, the VRP v ∈ R3 encodes the direction and
magnitude of the CoM acceleration ẍ:

ẍ =
1

b2
(x− v). (4)

Combining (1), (2), and (4) into one equation confirms the
stated relation between the eCMP and VRP to be

v = e+ (0 0 ∆z)T . (5)

Remark 1: The eCMP point is closely related to the Cen-
troidal Moment Pivot (CMP) [37]. While the eCMP is a three-
dimensional point that is not necessarily bound to the ground
surface, the CMP is located at the intersection of the ground
surface with the line connecting the eCMP and the CoM.

Remark 2: The introduction of the VRP and the VRP offset
∆z leads to a decoupled and identical dynamics on all three
Cartesian axes. The VRP offset ∆z is a motion parameter
that can be chosen arbitrarily, as long as it remains strictly
positive. For example, if ∆z is chosen to be equal to the
vertical distance between the CoM and eCMP, ∆z = xz − ez ,
the vertical CoM acceleration ẍz becomes 0, which is typically
used when generating walking trajectories on flat terrain.
When walking on uneven terrain, ∆z can be interpreted as
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Fig. 1. Relations between the CoM (x) and the points defined by the 3D-
DCM framework: DCM (ξ), VRP (v), and eCMP (e). The image depicts
the robot pose and the instantaneous quantities during the stance phase of a
running gait.

the average CoM height above ground, assuming that the
eCMP is placed on the ground. In this work, we propose an
algorithm for computing ∆z for running and jumping such that
the generated CoM trajectory fulfills kinematic reachability
constraints (Section IV-G).

A further point, the three-dimensional Divergent Component
of Motion (DCM) ξ is defined in [10] as a linear combination
of the CoM position and velocity using the time constant b:

ξ := x+ b ẋ. (6)

From (6) and (4), the relation between DCM and VRP is found
to be

ξ̇ =
1

b
(ξ − v). (7)

The relations between the CoM and the points defined by the
3D-DCM framework are shown in Fig. 1.

Through the introduction of the DCM, the second-order
CoM dynamics (4) is split into two first-order dynamics: the
stable CoM dynamics relative to the DCM obtained from (6)

ẋ = −1

b
(x− ξ), (8)

and the unstable DCM dynamics (7) with respect to the VRP.

B. Stable DCM dynamics in reverse time

One of the main ideas presented in [10] is the generation
of the DCM reference trajectory by starting at the end of the
motion (t = tf ), choosing the goal DCM position1 ξ(tf ) = ξf ,
and computing the DCM trajectory in reverse time. The key

1Typically, the goal DCM is chosen to be stationary (ξ̇f = 0), i.e., the
final DCM and VRP coincide, ξf = vf , according to (7).

insight is that the unstable DCM dynamics (7) becomes stable
when the time flow is reversed:

ξ̇(−t) = −1

b

(
ξ(−t)− v(−t)

)
. (9)

Remark 3: This property of the DCM dynamics allows the
motion planner to generate the CoM trajectory by combining
two stable dynamics, the DCM dynamics in reverse time and
the CoM dynamics in forward time. In this work, we refer to
the generated reference trajectories obtained by integrating the
two stable dynamics as stable trajectories. In the absence of
perturbations, the reference trajectories can be followed by a
tracking controller using a purely feedforward approach. How-
ever, although the reference DCM trajectory is stable when
using the reverse time method, the actual DCM dynamics
remains unstable; any deviation from the reference trajectory
requires stabilization such as the one provided by the DCM
Controller [10].

The reverse time approach brings two major benefits. First,
for any reference VRP trajectory given as a spatial piecewise-
linear interpolation over an arbitrary sequence of waypoints
(vi)

n
i=1, the generated DCM trajectory is stable by construc-

tion. In effect, the set of all possible DCM trajectories is
bounded by the convex hull constructed with the waypoints
vi and ξf as vertices, as shown in [30]. Second, the reference
DCM trajectory is stable for any duration T of the generated
motion, making the duration a parameter of the motion that can
be chosen freely. Lower and upper bounds on the duration are
imposed only by the limitations of the physical robotic system
(kinematic reachability limits, friction cone constraints, etc.),
and not by capturability concerns [38].

C. DCM and CoM reference trajectory generation

As shown in our previous work [30], a complete, C2

continuous CoM reference trajectory can be generated for
walking or general multi-contact locomotion by splitting the
motion into a sequence of nφ phases. The VRP offset ∆z, the
VRP trajectory, and the phase durations are the free parameters
of the complete motion. For each phase φ with duration Tφ,
the reference VRP trajectory vφ(t) is designed as a spatial
and temporal linear interpolation2 between a start point vφ,0

and an end point vφ,T :

vφ(t) =

(
1− t

Tφ

)
vφ,0 +

t

Tφ
vφ,T , (10)

where t ∈ [0, Tφ] is the local time of the motion phase.
The DCM trajectory ξφ(t) is obtained by inserting (10)

into (7), and solving the resulting differential equation using
the DCM end point ξφ(Tφ) = ξφ,T as a boundary condition,
exploiting the reverse time stability of the DCM dynamics (9):

ξφ(t) =

(
1− t+ b

Tφ
+

b

Tφ
e

t−Tφ
b

)
vφ,0

+

(
t+ b

Tφ
− b+ Tφ

Tφ
e

t−Tφ
b

)
vφ,T + e

t−Tφ
b ξφ,T . (11)

2Higher order polynomials for temporal interpolation can be used to
generate smoother CoM trajectories, as detailed in [30].
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τ

xref
task

xtask

Fig. 2. Overview of the proposed motion planner. The main contributions of this work are highlighted in blue.

The DCM start point ξφ,0 of the current motion phase φ is
obtained by evaluating (11) for t = 0:

ξφ,0 =

(
1− b

Tφ
+

b

Tφ
e−

Tφ
b

)
vφ,0

+

(
b

Tφ
− b+ Tφ

Tφ
e−

Tφ
b

)
vφ,T + e−

Tφ
b ξφ,T . (12)

Similarly, the CoM trajectory is derived by inserting (11)
into (8) and solving the resulting linear differential equation
using the CoM start point xφ(0) = xφ,0 as a boundary con-
dition:

xφ(t) =

(
1− t

Tφ
+

b

Tφ
e−

Tφ
b sinh

(
t

b

)
− e−

t
b

)
vφ,0

+

(
t

Tφ
− b+ Tφ

Tφ
e−

Tφ
b sinh

(
t

b

))
vφ,T

+ e−
Tφ
b sinh

(
t

b

)
ξφ,T + e−

t
b xφ,0.

(13)

The CoM end point xφ,T of the current motion phase is
obtained by evaluating (13) for t = Tφ.

xφ,T =

(
b

Tφ
e−

Tφ
b sinh

(
Tφ

b

)
− e−

Tφ
b

)
vφ,0

+

(
1− b+ Tφ

Tφ
e−

Tφ
b sinh

(
Tφ

b

))
vφ,T

+ e−
Tφ
b sinh

(
Tφ

b

)
ξφ,T + e−

Tφ
b xφ,0.

(14)

The continuity of the complete trajectories is ensured by
linking the end points of a motion phase with the start points of
the subsequent phase, i.e., the following equalities hold for all
phases: vφ,T = vφ+1,0, ξφ,T = ξφ+1,0, and xφ,T = xφ+1,0.

The complete reference trajectories for the VRP, DCM,
and CoM can be described as piecewise interpolations over
sequences of nw = nφ + 1 waypoints using (10), (11), and
(13) as interpolation functions, respectively. Given the VRP
waypoints, the DCM and CoM waypoints can be computed
either sequentially or in matrix form using (12) and (14), as
shown in [30]. Once the waypoints are known, the instanta-
neous VRP, DCM, and CoM positions are computed using the

respective interpolation functions for the current phase φ and
current time t. Finally, the CoM velocity and acceleration are
obtained by evaluating (8) and (4), respectively.

III. OVERVIEW

An overview of the proposed motion planner is shown
in Fig. 2. The input consists of a sequence of footsteps
given by a footstep planner, the motion phase durations,
and the maximum distance between CoM and contact point
at touchdown and takeoff, which is used to compute the
VRP offset ∆z. The motion planner constructs a sequence
of motion phases with alternating stance and flight phases for
running, single and double support phases for walking steps,
and inserting gait transition phases into the phase sequence
as described in Sec. V. The phase sequence construction and
the VRP offset computation are performed asynchronously,
i.e., only once for a given footstep sequence. Based on the
motion phase sequence, the instantaneous CoM, the centroidal
angular momentum (CAM), and the foot reference trajectories
are computed synchronously at the execution rate of the
whole-body controller. Finally, the waist orientation and the
upper body reference trajectories are generated using a whole-
body optimization approach [39] to produce the whole-body
reference trajectory xref

task. This is tracked by the passivity-
based whole-body torque controller described in [31].

IV. RUNNING AND JUMPING

Running and jumping are locomotion patterns characterized
by alternating stance and flight phases; running switches
the stance leg at each step, while jumping uses both legs
simultaneously for takeoff and landing. In this section, we
show how to describe the flight phase equations of motion
such that they are compatible with the 3D-DCM framework.
Additionally, we provide waypoint equations similar to (12)
and (14) for the flight phase, and propose an algorithm for
computing the DCM and CoM waypoints given an arbitrary
sequence of motion phases, including flight phases.
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Fig. 3. Point relations of the 3D-DCM framework during a flight phase,
showing that the framework maintains its coherence and validity under the
free-falling condition fext = 03×1.

A. Stance phase

For bipedal running, the reference VRP trajectory during
the stance phase can be designed either as a fixed point placed
above the stance foot center p with the vertical offset ∆z

vφ(t) = p+ (0 0 ∆z)T , (15)

or as a heel-to-toe motion by positioning the VRP start and
end points, vφ,0 and vφ,T , with appropriate offsets relative to
the foot center. The DCM and CoM reference trajectories are
generated using the method presented in Sec. II-C.

B. Flight phase

During the flight phase, the CoM is affected only by
gravity and necessarily follows a parabolic trajectory. The
CoM equations of motion during a free-falling flight phase
can be written as:

xφ(t) = xφ,0 + t ẋφ,0 +
t2

2
g, (16)

ẋφ(t) = ẋφ,0 + t g. (17)

Note that during the flight phase, the VRP trajectory can no
longer be chosen freely, as was the case for the stance phase.
Nevertheless, the VRP trajectory is obtained from (4), using
the free-falling condition ẍ = g and the definition of b as

vφ(t) = xφ(t)− b2g = xφ(t) + (0 0 ∆z)T , (18)

which shows that the VRP trajectory follows the parabolic
CoM trajectory with a constant vertical offset equal to ∆z.
This is equivalent to the observation that, during the flight
phase, the eCMP trajectory eφ(t) is identical to the CoM
trajectory xφ(t), which can also be verified by applying the

free-falling condition fext = 03×1 to (2). This shows that the
3D-DCM framework is valid and coherent also during the
flight phase (see Fig. 3).

The DCM trajectory is obtained by multiplying (17) by the
time constant b, adding (16), and using the DCM definition
(6) for ξφ(t) and ξφ,0. The DCM trajectory with respect to
the start CoM xφ,0 and DCM ξφ,0 points is

ξφ(t) = ξφ,0 +
t

b
(ξφ,0 − xφ,0) +

t2 + 2tb

2
g. (19)

In order to use the reverse time approach described above, the
DCM start point ξφ,0 needs to be formulated with respect to
the end point ξφ,T . To this end, we evaluate (19) for t = Tφ

and rearrange the terms:

ξφ,0 =
b

b+ Tφ
ξφ,T +

Tφ

b+ Tφ
xφ,0 −

bT 2
φ + 2b2Tφ

2(b+ Tφ)
g. (20)

Remark 4: When the overall motion contains a flight phase,
the DCM waypoints can no longer be computed independently
of the CoM waypoints, as was the case in [30]. Here, in
(20), the DCM start point ξφ,0 of the flight phase depends on
the CoM start point xφ,0. Nevertheless, the DCM and CoM
waypoints can be computed together in matrix form or using
an algorithmic approach, as we show in the subsequent section.

The CoM end point xφ,T of the flight phase is obtained by
evaluating (16) for t = Tφ, using the DCM definition (6) for
ξφ,0 to eliminate the velocity term ẋφ,0, and replacing ξφ,0

with the result from (20):

xφ,T =
Tφ

b+ Tφ
ξφ,T +

b

b+ Tφ
xφ,0 −

bT 2
φ

2(b+ Tφ)
g. (21)

C. Unified formulation for waypoint equations

Recall that the complete motion plan consists of a sequence
of heterogeneous motion phases containing stance, flight, and
other transition phases which we introduce in subsequent
sections of this article. In order to develop a general waypoint
computation method, we propose a unified formulation of the
DCM and CoM waypoint equations. This approach makes the
framework extensible with new motion phase types.

Combining (12) and (20) into one equation produces the
general form for the DCM start point:

ξφ,0 = αφ,ξ vφ,0 + βφ,ξ vφ,T + γφ,ξ ξφ,T

+ δφ,ξ xφ,0 + εφ,ξ g. (22)

For the stance phase, the coefficients δφ,ξ and εφ,ξ are 0, while
αφ,ξ, βφ,ξ and γφ,ξ correspond to the coefficients in equation
(12). Accordingly, for the flight phase, the coefficients αφ,ξ

and βφ,ξ are 0, while γφ,ξ, δφ,ξ, and εφ,ξ correspond to the
respective coefficients in equation (20).

Similarly, combining (14) and (21) into one equation pro-
duces the general form for computing the CoM end point:

xφ,T = αφ,x vφ,0 + βφ,x vφ,T + γφ,x ξφ,T

+ δφ,x xφ,0 + εφ,x g, (23)

with the same considerations regarding the coefficients as
discussed above for equation (22).
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D. Waypoint computation in matrix form

The complete trajectories for VRP, DCM, and CoM
can be described as nφ piecewise interpolations over
nw = nφ + 1 waypoints. We collect the VRP waypoints in
a matrix V =

[
v1 . . . vnw

]T ∈ Rnw×3, the DCM waypoints
in Ξ =

[
ξ1 . . . ξnw

]T ∈ Rnw×3, and the CoM waypoints
in X =

[
x1 . . . xnw

]T ∈ Rnw×3. Our goal is to compute
the unknown DCM and CoM waypoints, Ξ and X , in
terms of the VRP waypoints V , the DCM final point ξf ,
the CoM start point xs, and the gravity vector g. To
this end, we use the derived equations (22) and (23). As
these equations are expressed in terms of start and end
points (vφ,0, vφ,T , etc.), we introduce two selection matri-
ces: S0 =

[
Inφ×nφ 0nφ×1

]
∈ Rnφ×nw selects the motion

phase start points, while ST =
[
0nφ×1 Inφ×nφ

]
∈ Rnφ×nw

selects the end points from any waypoint matrix V , Ξ, or X .
We write (22) in matrix form for all nφ phases as

S0Ξ = AξS0V +BξSTV + ΓξSTΞ

+∆ξS0X + εξ g
T , (24)

where Aξ, Bξ, Γξ, and ∆ξ are square (nφ × nφ), diagonal
matrices containing the coefficients αφ,ξ, βφ,ξ, γφ,ξ, and δφ,ξ

respectively, while εξ is a vector containing the coefficients
εφ,ξ. Note that (24) consists of nφ equations, whereas Ξ
contains nw waypoints. In order to bring (24) into square form,
we add the DCM terminal constraint, ξnw

= ξf , which can
be expressed in terms of Ξ as[

0nφ×nφ
0nφ×1

01×nφ
1

]
︸ ︷︷ ︸

Sn ∈Rnw×nw

Ξ =

[
0nφ×1

1

]
︸ ︷︷ ︸
sf ∈Rnw

ξTf . (25)

Multiplying (24) on the left with ST
0 , adding (25), and

grouping the Ξ and X terms on the left side yields

(I − ST
0 ΓξST )Ξ − ST

0 ∆ξS0X =

ST
0 (AξS0 +BξST )V + ST

0 εξ g
T + sf ξ

T
f , (26)

where we used the equality ST
0 S0 + Sn = Inw×nw

= I .
For the CoM waypoints, we write (23) in matrix form for

all nφ phases as

STX = AxS0V +BxSTV + ΓxSTΞ

+∆xS0X + εx g
T , (27)

gathering the coefficients αφ,x, βφ,x, γφ,x, δφ,x, εφ,x into the
square, diagonal matrices Ax, Bx, Γx, ∆x, and the vector εx,
respectively. Multiplying (27) on the left with ST

T , and adding
the CoM initial constraint at the start of the motion, x1 = xs,
expressed in terms of X as[

1 01×nφ

0nφ×1 0nφ×nφ

]
︸ ︷︷ ︸

S1 ∈Rnw×nw

X =

[
1

0nφ×1

]
︸ ︷︷ ︸
ss ∈Rnw

xT
s , (28)

yields

(I − ST
T∆xS0)X − ST

T ΓxSTΞ =

ST
T (AxS0 +BxST )V + ST

T εx g
T + ss x

T
s , (29)

where we used the equality ST
T ST + S1 = I .

Finally, stacking (26) and (29) into one equation leads to
the linear system[

I − ST
0 ΓξST −ST

0 ∆ξS0

−ST
T ΓxST I − ST

T∆xS0

] [
Ξ
X

]
=[

ST
0 AξS0 + ST

0 BξST

ST
TAxS0 + ST

TBxST

]
V +

[
ST
0 εξ

ST
T εx

]
gT

+

[
sf

0nw×1

]
ξTf +

[
0nw×1

ss

]
xT
s , (30)

which can be solved to find the unknown Ξ and X .

E. Highly efficient waypoint computation using an algorithmic
approach

The waypoint computation in matrix form, presented above
as equation (30), is a compact and mathematically appealing
way of computing the DCM and CoM waypoints. However,
the computational complexity of the algorithm is O(n3

φ) due
to the matrix multiplications involved and the requirement to
solve a linear system with 2nφ variables. From a practical
point of view, when implementing the algorithm on a realtime
robotic hardware, its high computational complexity is detri-
mental, potentially imposing an upper limit on the number of
phases nφ. Motivated by this shortcoming of the matrix form
algorithm, we propose an algorithm for waypoint computation
with a computational complexity of O(n2

φ) as Algorithm 1.
The algorithm requires three iterations over all motion

phases. The main idea is to compute partial solutions for the
DCM and CoM waypoints from the known quantities during
the first two iterations and to keep track of the coefficients
corresponding to the unknown CoM waypoints. During the
third iteration, the gathered coefficients are used to compute
the complete solution. The input to the algorithm consists of
the VRP waypoint matrix V , the DCM final point ξf , the CoM
start point xs, the phase durations given as a list T = (Ti)

nφ

i=1,
and the DCM time constant b. The term vi denotes the i-th
waypoint in the matrix V , with analogous notation for the
DCM and CoM waypoint matrices, Ξ and X . The algorithm
employs two square (nw × nw) matrices, Cξ and Cx, to
store the coefficients corresponding to the unknown CoM way-
points. The value at the i-th row and j-th column in the matrix
Cξ, written as Cξ[i, j], denotes the coefficient with which the
CoM waypoint xj needs to be multiplied when computing the
DCM waypoint ξi (Algorithm 1, line 31). The matrix Cx is
defined in a similar manner, with Cx[i, j] relating the CoM
waypoint xj with xi (line 27). The partial DCM and CoM
waypoints are stored in the matrices Ξp =

[
ξp1 . . . ξpnw

]T ∈
Rnw×3 and Xp =

[
xp
1 . . . xp

nw

]T ∈ Rnw×3, respectively.
In the following, we describe in detail how the formulas

for computing the partial DCM and CoM waypoints and the
coefficients Cξ and Cx are obtained from the previously de-
rived equations. We start by rewriting (22) using the waypoint
notation as

ξi = αξ vi + βξ vi+1 + γξ ξi+1 + δξ xi + εξ g. (31)
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Algorithm 1 Efficient algorithm for waypoint computation
Input: V , ξf ,xs,T , b
Output: Ξ,X

1: // backward iteration: partial solution for DCM waypoints
2: Cξ ← 0nw×nw

3: ξpnw
← ξf

4: for i← nφ to 1 do
5: αξ, βξ, γξ, δξ, εξ ← DCMCOEFFICIENTS(Ti, b)
6: ξpi ← αξ vi + βξ vi+1 + γξ ξ

p
i+1 + εξ g

7: Cξ[i, i]← δξ
8: for j ← i+ 1 to nw do
9: Cξ[i, j]← γξ Cξ[i+ 1, j]

10: end for
11: end for
12: // forward iteration: partial solution for CoM waypoints
13: Cx ← 0nw×nw

14: xp
1 ← xs

15: for i← 2 to nw do
16: αx, βx, γx, δx, εx ← COMCOEFFICIENTS(Ti−1, b)
17: η ← 1− γx Cξ[i, i]− δx Cx[i− 1, i]
18: xp

i ← (αx vi−1 + βx vi + γx ξ
p
i + δx x

p
i−1 + εx g) / η

19: for j ← i+ 1 to nw do
20: Cx[i, j]← (γx Cξ[i, j] + δx Cx[i− 1, j]) / η
21: end for
22: end for
23: // second backward iteration: complete solution
24: for i← nw to 1 do
25: xi ← xp

i

26: for j ← i+ 1 to nw do
27: xi ← xi +Cx[i, j]xj

28: end for
29: ξi ← ξpi
30: for j ← i to nw do
31: ξi ← ξi +Cξ[i, j]xj

32: end for
33: end for

It can be proven by induction that the DCM waypoint ξi can
be written as

ξi = ξpi +

nw∑
j=i

Cξ[i, j]xj . (32)

For i = nw, equation (32) holds due to the initialization of Cξ

and ξpnw
in lines 2 and 3. Assuming that equation (32) holds

for i+1, we replace ξi+1 in (31) with the corresponding form
from (32) and rearrange the terms to obtain

ξi =

ξp
i︷ ︸︸ ︷

αξ vi + βξ vi+1 + γξ ξ
p
i+1 + εξ g

+ δξ xi +

nw∑
j=i+1

γξ Cξ[i+ 1, j]xj . (33)

We take advantage of the fact that the first four terms are
independent of the unknown CoM waypoints X and can be
summed to produce the partial DCM waypoint ξpi (line 6).
The last two terms in (33) give the corresponding equations
for computing the DCM coefficients Cξ (lines 7 to 10).
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Fig. 4. Execution time comparison of the two waypoint computation methods.
Algorithm 1 outperforms the matrix form on the realtime robotic hardware
due to its lower computational complexity, O(n2

φ) versus O(n3
φ).

We proceed analogously for the CoM waypoints, by rewrit-
ing (23) using the waypoint notation as

xi = αx vi−1 + βx vi + γx ξi + δx xi−1 + εx g, (34)

and showing that it can also be written in the following form:

xi = xp
i +

nw∑
j=i+1

Cx[i, j]xj . (35)

The proof is again by induction. For i = 1, equation (35)
holds, i.e., x1 = xs, due to the initialization of Cx and xp

1 in
lines 13 and 14. Assuming that equation (35) holds for i− 1,
we replace in (34) the DCM waypoint ξi with the result from
(32) and xi−1 with the corresponding equation from (35):

xi = αx vi−1 + βx vi + γx ξ
p
i +

nw∑
j=i

γx Cξ[i, j]xj

+ δx x
p
i−1 +

nw∑
j=i

δx Cx[i− 1, j]xj + εx g. (36)

Note that xi appears on both sides of the equation (on
the right side, as part of the sum terms containing xj , for
j = i). Grouping all terms containing xi on the left side and
rearranging the terms allows us to bring (36) in conformance
to (35):

(1− γx Cξ[i, i]− δx Cx[i− 1, i]︸ ︷︷ ︸
η

)xi =

αx vi−1 + βx vi + γx ξ
p
i + δx x

p
i−1 + εx g

+

nw∑
j=i+1

(γx Cξ[i, j] + δx Cx[i− 1, j])xj . (37)

The sum of the first five terms on the right-hand side of the
equation divided by η represents the partial CoM waypoint
xp
i (line 18), while the last term provides the formula for

computing Cx[i, j] (lines 19 to 21).
To obtain the complete solution, the algorithm exploits the

structure of the equations (32) and (35) by iterating backwards
over all motion phases. During each iteration cycle, the CoM
waypoint xi is computed from the known future waypoints
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xi+1 to xnw
(lines 25 to 28). Once xi is known, the DCM

waypoint ξi can be computed immediately as it depends only
on the CoM waypoints xi to xnw (lines 29 to 32).

To verify the execution performance of the two waypoint
computation methods, Algorithm 1 and the matrix form (30),
we implemented both in C++ and tested them on the realtime
computer of our humanoid robot TORO. The median execution
time for various number of phases is shown in Fig. 4: the
algorithmic approach clearly outperforms the matrix form in
all cases due to its lower computational complexity.

F. Flight-to-stance and stance-to-flight motion phases

In our framework, we aim to avoid discontinuities in the
generated reference trajectories, which are undesirable for two
reasons. First, a real robot has limited control bandwidth,
which means that the controller is unable to follow the refer-
ence trajectory in case of a discontinuity. Second, discontinu-
ities tend to excite unmodeled joint and link elasticities on the
real robot, thereby further degrading the tracking performance
of the controller.

The continuity of the DCM and CoM reference trajectories
is ensured by linking the start and end points of adjacent
phases. In contrast, the VRP and eCMP trajectories presented
so far are discontinuous at the start and at the end of the
flight phase, leading to discontinuities in the generated forces.
For example, the eCMP trajectory during the flight phase is
identical to the CoM trajectory, while during the stance phase
it is designed to be a fixed point on the ground, coinciding
with the foot center. In order to eliminate the discontinuities,
we introduce two new motion phases: a flight-to-stance and
stance-to-flight phase. For these phases, we aim to express
the DCM start point ξφ,0 and the CoM end point xφ,T in
the general form given by (22) and (23), respectively, which
allows us to use the waypoint computation algorithm without
any modifications. During both motion phases, the VRP is
interpolated from a start point vφ,0 to an end point vφ,T using
the interpolation function (10). However, unlike the stance
phase, either the start or the end point is constrained by the
free-falling condition ẍ = g, the effects of which are discussed
in detail below.

Flight-to-stance phase: For the flight-to-stance phase, the
VRP start point vφ,0 can be written as

vφ,0 = xφ,0 − b2g, (38)

matching the preceding flight phase trajectory. This means that
the VRP start point vφ,0 is an unknown quantity that depends
on the CoM start point xφ,0, which is yet to be computed
using the waypoint computation algorithm. Inserting (38) into
(12) yields

ξφ,0 = βφ,ξ vφ,T + γφ,ξ ξφ,T + αφ,ξ xφ,0 − αφ,ξb
2g, (39)

which matches the general form (22) with αφ,ξ = 0 and
εφ,ξ = −αφ,ξb

2. Similarly, inserting (38) into (14) yields

xφ,T = βφ,x vφ,T + γφ,x ξφ,T

+ (αφ,x + δφ,x)xφ,0 − αφ,xb
2g, (40)
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Fig. 5. Reference trajectory generation example for two running steps. The
gray areas denote the stance-to-flight and flight-to-stance phases. The dots
indicate the start and end waypoints of each phase.

which matches the CoM end point general form (23).
Stance-to-flight phase: For the stance-to-flight phase, the

VRP end point vφ,T constraint can be written as

vφ,T = xφ,T − b2g. (41)

Replacing (41) in (14) and solving for xφ,T leads to a CoM
end point equation matching the general form:

xφ,T =
αφ,x

1− βφ,x
vφ,0 +

γφ,x

1− βφ,x
ξφ,T

+
δφ,x

1− βφ,x
xφ,0 −

βφ,xb
2

1− βφ,x
g. (42)

Note: it can be easily verified that βφ,x, the coefficient corre-
sponding to vφ,T in (14), satisfies the inequality 0 < βφ,x < 1
for all possible durations Tφ > 0 and time constants b > 0.
This guarantees that the denominator 1 − βφ,x can never be
equal to 0. Replacing (41) in (12) and substituting xφ,T with
the result obtained in (42) leads to a DCM start point equation
matching the general form:

ξφ,0 =

(
αφ,ξ +

βφ,ξ αφ,x

1− βφ,x

)
vφ,0

+

(
γφ,ξ +

βφ,ξ γφ,x

1− βφ,x

)
ξφ,T +

βφ,ξ δφ,x

1− βφ,x
xφ,0−

βφ,ξb
2

1− βφ,x
g.

(43)

The generated trajectories for two running steps are pre-
sented in Fig. 5, showing all the characteristics of the 3D-DCM
framework discussed so far. All trajectories are continuous
after the introduction of the flight-to-stance and stance-to-flight
phases. The eCMP and the VRP are identical on the x- and
y-axes, and separated by a fixed vertical offset on the z-axis
throughout the motion3. During the flight phase, the CoM and
the eCMP are identical, while on the x- and y-axes the offset
between the CoM and the DCM is constant, corresponding to
a constant CoM velocity.

3This explains why the eCMP is not visible in Fig. 5 in the x- and y-plots.
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Fig. 6. Modeling kinematic reachability constraints during running. The
continuous lines illustrate the trajectories during one running step from the
footstep p with step vector l, using a constant VRP v during the stance phase.
The distances between CoM and contact point at touchdown and takeoff are
denoted by dtd and dto, respectively, and can be computed as closed-form
functions of the VRP offset above ground ∆z.

G. Kinematic reachability constraint

In general, humanoid robotic walking avoids kinematic
reachability limits by employing a constant CoM height above
ground and limiting the step length. When walking with longer
steps, switching to a toe contact at the end of the stance phase
and using a heel contact at touchdown are common solutions
for avoiding knee singularities and kinematic reachability
limits. In contrast, humanoid running typically employs longer
step lengths, while the existence of the flight phases induces a
significant vertical motion of the DCM and CoM. In particular,
the motion parameter ∆z, denoting the vertical offset between
VRP and eCMP, can no longer be chosen and interpreted as
the average height of the CoM above ground, as in the case
of bipedal walking. As can be observed in the z-axis plot
of Fig. 5, for running, the VRP is notably lower than the
CoM and DCM trajectories during the stance phases; in this
example, a VRP offset of 0.476 m creates a CoM trajectory
with an average height above ground of 0.87 m. Therefore,
for bipedal running and jumping, the value of ∆z needs to be
chosen such that the kinematic reachability constraints are not
violated during the stance phases. In this section, we propose a
method of computing ∆z by specifying the maximum distance
between CoM and contact point at touchdown and takeoff (see
Fig. 6). The choice of this metric is motivated by the fact that
the motion planner generates trajectories for a reduced center-
of-mass model with no kinematic body.

Given a footstep p and a step vector l, we construct
a running cycle consisting of four phases: flight-to-stance,
stance, stance-to-flight, and flight. During the stance phase,

the VRP v is chosen to have a fixed position, with the vertical
offset ∆z above the footstep p. The coordinate system is
defined such that px and pz are both 0, py corresponds to
the footstep offset from the robot sagittal plane, and the x
and y components of the step vector l are positive. The
DCM waypoints Ξ =

[
ξ1 . . . ξ5

]T
, and the CoM waypoints

X =
[
x1 . . . x5

]T
can be obtained as closed-form functions

of ∆z by solving equation (30) with the following boundary
conditions:

ξf = ξ5 = Tr ξ1 + l, (44)

xs = x1 = Tr (x5 − l), (45)

where Tr =

1 0 0
0 −1 0
0 0 1

. Note that both the DCM and the

CoM waypoints change sign on the y-axis; this results from the
alternate succession of left and right footsteps during running.
For jumping, the procedure is similar, with two differences
regarding the y-axis: the VRP is placed in the center of the
support polygon, i.e. vy = 0, and the transformation matrix
Tr in (44) and (45) is replaced by the identity matrix, as there
are no alternating footsteps while jumping.

The distance between the CoM waypoint at touchdown x1

and the contact point p, can be written as

dtd(∆z) = ∥x1(∆z)− p∥, (46)

i.e., as a closed-form function of ∆z. Therefore, we can
also compute the derivative of dtd with respect to ∆z in
closed-form, and solve dtd = dmax iteratively using Newton’s
method, where dmax is a configuration parameter denoting
the kinematic reachability limit. We proceed similarly for the
distance between the CoM waypoint and the contact point at
takeoff

dto(∆z) = ∥x4(∆z)− p∥. (47)

Finally, the vertical offset ∆z is chosen such that kinematic
reachability limit is enforced for both waypoints.

Remark 5: If the durations of the flight-to-stance and stance-
to-flight phases are equal, then the CoM motion with respect
to the contact point p is symmetric, and the two distances
discussed above are identical dtd = dto.

V. GAIT TRANSITIONS

Motivated by the goal of generating continuous reference
trajectories, we propose explicit transition phases for connect-
ing the four mentioned modes: standing, walking, running,
and jumping. In this section, the transitions between standing,
walking, and running are discussed in detail. They can be
applied with small modifications to jumping, as the differences
between running and jumping manifest themselves only on the
y-axis.

A. Standing-to-running

In our framework, the standing state is characterized by
a stationary DCM (ξ̇ = 0), which corresponds to the DCM
being equal to the VRP, according to (7). In contrast to

This article has been accepted for publication in IEEE Transactions on Robotics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TRO.2023.3321396

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



IEEE TRANSACTIONS ON ROBOTICS 10

the commonly used definition for standing, the CoM is not
required to be stationary, as its stable dynamics means that
the CoM converges asymptotically to the DCM position at the
end of motion sequence. The standing-to-running transition is
implemented using two motion phases: the first phase, called
a stand-to-move phase, ensures the continuity of the DCM
trajectory during the transition; the second phase, called a
height-change motion phase, lowers the VRP from the initial
CoM height to the relative height above ground computed for
the running gait using the kinematic reachability constraint.
For both phases, we aim to write the DCM start point ξφ,0

and the CoM end point xφ,T in their respective general
forms given as equations (22) and (23), which, as shown
in Sec. IV-D, is a precondition for employing the waypoint
computation algorithm.

Stand-to-move phase: During the stand-to-move phase, the
VRP is shifted by a computed amount ∆v which ensures that,
for a given DCM final point ξφ,T , the initial DCM position
ξφ,0 coincides with the initial VRP vφ,0 (see Fig. 7). At the
end of the stand-to-move phase, the VRP returns to its initial
position, i.e. vφ,T = vφ,0. This phase has two parameters:
the duration Tshift of the VRP shift, occurring at the start
and at the end of the phase, and the amount of time Thold
that the VRP remains stationary; the total phase duration is
Tφ = Thold + 2Tshift. The described VRP motion can be also
interpreted as a sequence of three subphases: a shift from
vφ,0 to a yet undetermined VRP position vφ,1 = vφ,0 +∆v,
a holding subphase at vφ,1 with duration Thold, and a final
shift back to the initial position. Writing the DCM waypoint
equations for the three subphases using (12), imposing the
standing state condition at the start of phase (ξφ,0 = vφ,0),
and solving for ∆v yields the closed-form solution

∆v =
Tshift

b

e−Tφ/b(
1− e−Tshift/b

) (
1− e−(Tshift+Thold)/b

) (vφ,0−ξφ,T ).

(48)
The CoM end point equation for the stand-to-move phase

is obtained by writing the CoM waypoint equations for the
three subphases using (14), combining them with the DCM
waypoint equations, and replacing ∆v with the result from
(48). Remarkably, the resulting equation simplifies to

xφ,T =
1− e−

Tφ
b

2
vφ,0 +

1− e−
Tφ
b

2
ξφ,T + e−

Tφ
b xφ,0. (49)

Compared to the standing-to-walking transition introduced
in [40], where an additional VRP waypoint was inserted
into the VRP matrix V and computed by inverting a square
(nw × nw) matrix, the proposed stand-to-move phase in this
work has two advantages. First, at the end of the phase, the
VRP returns to its start position, keeping V fully determined,
which enables the usage of the efficient waypoint computation
algorithm presented above. Moreover, the computation of ∆v
requires only local information such as the start VRP position
vφ,0, the DCM final point ξφ,T , and the durations Tshift and
Thold. Second, given the same phase duration Tφ and DCM
final point ξφ,T , the proposed stand-to-move phase requires a
significantly smaller shift in the VRP position than the method
from [40]. For the example given in Fig. 7, the VRP shift is
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Fig. 7. Standing-to-running transition example. The individual motion phases
are depicted using alternating gray and white backgrounds. The dots indicate
the start and end waypoints of each phase.

reduced by a factor of approximately 2.2. The reduction in the
VRP movement increases the feasibility and the robustness of
the overall motion, as the VRP remains closer to the center of
the support area in the xy-plane during this phase.

Height-change phase: The height-change phase is char-
acterized by the vertical motion of the VRP, which can be
combined with a stationary VRP or a linearly interpolated
motion on the x- and y-axes4. In the standing-to-running
transition, the VRP remains stationary on the x-axis, while on
the y-axis it moves from the middle of the support polygon
corresponding to the double support stance towards the leg
that acts as the first stance leg during the running motion (see
Fig. 7). The running-to-standing and the walking-to-running
transitions also employ a height-change phase, but the VRP
motion on the y-axis is different than the one used here, as
explained in the corresponding sections.

During the height change phase, the VRP needs to be
lowered on the z-axis from the starting height corresponding
to the standing stance to the relative height above ground
computed for the running gait cycle. At the same time, the
eCMP should maintain its position on the z-axis (see Fig. 7),
such that the ground reaction forces are focused at the contact
point. This relative motion leads to a change in the offset ∆z
between the VRP and eCMP, which corresponds to a changing
DCM time factor b. However, in all equations so far, b was
chosen to be constant, as the DCM dynamics has no closed-
form solution for a time-varying b. Therefore, we propose to
implement the height change phase using a piecewise constant
approach for ∆z and b, where the discretization time interval
∆t can be chosen arbitrarily small, for example, equal to the
controller execution time interval.

First, we investigate the effect of an instantaneous change in
the DCM time constant b on the DCM and VRP positions. For
the same CoM position x and velocity ẋ, two DCM positions

4The VRP trajectory can be designed independently on the three Cartesian
axes.
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with different time constants b and b′ can be written as the
DCM definition (6) and

ξ′ = x+ b′ ẋ. (50)

Replacing ẋ in (50) with the corresponding value from (6)
leads to the DCM conversion formula

ξ′ =

(
1− b′

b

)
x+

b′

b
ξ. (51)

Similarly, starting from the VRP definition (4) and equating
ẍ in both equations, the VRP conversion formula is found to
be

v′ =

(
1− b′2

b2

)
x+

b′2

b2
v, (52)

where v′ denotes the VRP corresponding to the DCM time
constant b′. Intuitively, the conversion formulas can be under-
stood as a split of the DCM and VRP into their component
parts, followed by a reassembly using a different time constant.
In the process, the DCM and VRP computation becomes
dependent on the instantaneous CoM position, while the DCM
and VRP trajectories become discontinuous at the moment
of the time constant change. Note that, while the DCM
and VRP trajectories are discontinuous, the generated CoM
trajectory remains smooth, i.e., the CoM position, velocity and
acceleration are continuous throughout the motion.

In our framework, consisting of multiple motion phases,
the DCM time constant change is implemented at the phase
boundaries. For a phase φ, we denote by v′

φ,0 and ξ′φ,0 the
VRP and DCM waypoints vφ,0 and ξφ,0 after the transforma-
tion from the local DCM time constant bφ to the one of the
preceding phase bφ−1. We can then link adjacent phases with
vφ−1,T = v′

φ,0 and ξφ−1,T = ξ′φ,0, and employ the waypoint
computation algorithm. Applying (51) and (52) with b = bφ
and b′ = bφ−1 to the DCM waypoint equation (22) produces
the following result:

ξ′φ,0 =
αφ,ξ

rφ
v′
φ,0 + rφ βφ,ξ vφ,T + rφ γφ,ξ ξφ,T

+

(
1− rφ (1− αφ,ξ − δφ,ξ)−

αφ,ξ

rφ

)
xφ,0 + rφ εφ,ξ g,

(53)

where rφ = bφ−1/bφ denotes the ratio between the DCM time
constants. The CoM end point equation is obtained similarly
by applying (52) to (23), which yields

xφ,T =
αφ,x

r2φ
v′
φ,0 + βφ,x vφ,T + γφ,x ξφ,T

+

(
αφ,x + δφ,x −

αφ,x

r2φ

)
xφ,0 + εφ,x g. (54)

Remark 6: The waypoint equations (53) and (54) can
also be used for a sequence of running steps with different
time parametrization for each step. Following the approach
proposed in Sec. IV-G, for each step, a distinct offset ∆z is
computed based on the stance and flight duration parameters.
The instantaneous change of the DCM time constant can be
implemented most conveniently at the start of the flight phase,
as the waypoint equations (53) and (54) simplify significantly
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Fig. 8. Walking-to-running transition example. The individual motion phases
are depicted using alternating gray and white backgrounds. The dots indicate
the start and end waypoints of each phase.

due to the fact that the coefficients αφ,ξ, βφ,ξ, αφ,x, and βφ,x

are equal to 0 for the flight phase.
Using the equations derived above, the height-change phase

is implemented as a sequence of nh = Tφ/∆t subphases,
where Tφ is the total phase duration, and ∆t is the chosen
discretization interval. During each subphase i ∈ {1, . . . , nh},
the vertical offset ∆zφ,i is constant and equal to

∆zφ,i = ∆zφ,0 +
i

nh
(∆zφ,T −∆zφ,0), (55)

where ∆zφ,0 and ∆zφ,T denote the offset at the start and the
end of the height-change phase, respectively. The VRP motion
can be described as a linear interpolation over a sequence of
VRP waypoints vφ,i that can be written with respect to the
start and end points, vφ,0 and vφ,T , as

vφ,i =
nh − i

nh
vφ,0 +

i

nh
vφ,T . (56)

Applying (53) and (54) to each subphase, the DCM start
point coefficients for the height-change phase, αφ,ξ to εφ,ξ,
and the CoM end point coefficients, αφ,x to εφ,x, can be
computed using an algorithm similar to Algorithm 1. The only
difference is that instead of DCM and CoM waypoints, the
algorithm keeps track of the waypoint coefficients during the
backward and forward iterations over the nh subphases. The
computational complexity of the algorithm is O(n2

h).

B. Walking-to-running

On the z-axis, the walking-to-running transition (Fig. 8) is
implemented in a similar manner to the standing-to-running
transition, with the VRP trajectory consisting of a stand-
to-move and a height-change phase. On the x- and y-axes,
the VRP is stationary, as the walking-to-running transition is
designed to begin after a double support phase, such that the
subsequent single support phase of the walking gait seamlessly
transforms into the first stance phase of the running gait. Note,
however, that despite being stationary, the VRP trajectory on
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Fig. 9. Running-to-standing transition example. The individual motion phases
are depicted using alternating gray and white backgrounds, the dots indicate
the start and end waypoints of each phase. The start and end of the running-
to-standing transition are highlighted with black vertical lines.

the x- and y-axes consists of three distinct phases: the walking
single support, the height-change, and the running stance
phase. Each phase computes the DCM and CoM waypoints
using different equations or different DCM time constants b.

C. Running-to-standing

The running-to-standing transition consists of a single
height-change phase during which the VRP is raised from the
running gait height to the level corresponding to the standing
stance (see Fig. 9). On the x-axis, the VRP remains stationary,
while on the y-axis it moves from the last footstep position
to the center of support polygon, where it remains stationary
during the standing state. Note that, at the end of the running-
to-standing transition, the DCM is stationary, while the CoM
converges asymptotically to the final VRP and DCM common
waypoint.

D. Running-to-walking

The running-to-walking transition is implemented similarly
to both the running-to-standing and the walking-to-running
transitions. On the z-axis, the VRP trajectory is the same as
during the running-to-standing transition, while on the x- and
y-axes, the last stance phase of the running gait seamlessly
transforms into the first single support phase of the walking
gait (see Fig. 10).

VI. WHOLE-BODY MOTION GENERATION AND CONTROL

The proposed CoM reference trajectory planner is integrated
with the whole-body motion generation and control methods
presented in our previous works. The swing leg reference
trajectory including utilization of edge contacts (toe-off) is
described in [31], while the angular momentum generation
method from [39] is used to compensate the angular momen-
tum induced by the motion of the legs during running and
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Fig. 10. Running-to-walking transition example. The individual motion phases
are depicted using alternating gray and white backgrounds, the dots indicate
the start and end waypoints of each phase. The start and end of the running-
to-walking transition are highlighted with black vertical lines.

jumping. The generated reference trajectories are tracked by
the passivity-based whole-body controller presented in detail
in [31] and [41]. In this section, we give a short overview
of the angular momentum generation method, describing the
extension introduced in this work for handling the flight phase.

A. Dynamic model

Following the approach taken in [42], the humanoid robot
dynamics is described using a floating base model with the
CoM position x ∈ R3 and the waist orientation Rb ∈ SO(3)
as base coordinates. The corresponding linear and angular
velocities, ẋ ∈ R3 and ωb ∈ R3, are stacked into the velocity
vector ν = (ẋT ωT

b )
T . For a humanoid robot with n actuated

joints, the equations of motion can be written as

M

(
ν̇
q̈

)
+C

(
ν
q̇

)
+

(
−wg

0n×1

)
=

(
06×1

τ

)
+ τ̄ext, (57)

where M and C represent the inertia and Coriolis matrices,
respectively, wg = (mgT 0T

3×1)
T ∈ R6 denotes the gravi-

tational wrench, q ∈ Rn the joint positions, τ ∈ Rn is the
vector of actuator torques, while τ̄ext ∈ R6+n denotes the
generalized external forces.

The task space consists of the CoM position, the waist
orientation, the Cartesian position and orientation of the feet,
and the joint positions of the upper body [31]. The task
velocity vector can be written as

ν
νR

νL

q̇u


︸ ︷︷ ︸
ẋtask

=


I6×6 06×n

AdR JR

AdL JL

0nu×6 Su


︸ ︷︷ ︸

J

(
ν
q̇

)
, (58)

where νR ∈ R6 denotes the velocity vector, combining
translational and rotational velocities, AdR ∈ R6×6 is the
adjoint matrix, and JR ∈ R6×n the Jacobian matrix for the
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right foot. Analogous quantities for the left foot are denoted by
the subscript ”L”. The velocities of the nu upper body joints
are indicated by q̇u ∈ Rnu , with Su ∈ Rnu×n selecting the
corresponding joints from the complete vector q̇.

B. Angular momentum compensation

The centroidal angular momentum (CAM) lc ∈ R3, rep-
resenting the angular momentum expressed around the CoM,
depends linearly on the velocity vector

lc = Mω

(
ν
q̇

)
= MωJ

#︸ ︷︷ ︸
Ā

ẋtask, (59)

where Mω is the rotational part (i.e., the rows 4 to 6) of the
inertia matrix M [43]. Here, J# is a generalized damped
pseudo-inverse of the task space Jacobian that is robust to
singular configurations

J# = JT (JJT + ρ2I)−1 (60)

with ρ ∈ R as a damping factor.
The whole-body motion optimization [39] uses a subset of

the task space degrees of freedom (DoF) to actively generate
angular momentum with the goal of inducing a reference CAM
lrefc to the system. In this work, we choose these DoF to be the
waist orientation Rb and the upper body joints qu excluding
the wrist joints, as their contribution to the total angular
momentum is negligible. Let ẋa denote the velocity vector,
and Āa the matrix obtained by selecting the corresponding
rows from Ā for these DoF. Given a task space reference
velocity ẋref

task and a reference angular momentum lrefc , the
motion optimization finds optimal velocities ẋopt

a that fulfill
the angular momentum task while minimizing the deviation
from the reference task quantities (for details, see [39]).

For running and jumping, we generate the reference CAM
individually for the various motion phases presented in this
work. During the phases in which the robot is in contact with
ground, such as stance phases or gait transition phases, lrefc

is chosen to be
lrefc = Āaẋ

ref
a . (61)

Intuitively, equation (61) states that the angular momentum
induced by the selected DoF is required for the planned motion
and should not be compensated by the motion optimizer.
Specifically, the reference CAM of the complete system is
given only by the selected DoF, while the angular momentum
induced by the remaining DoF (i.e., the swing leg motion) is
undesirable and needs to be compensated. In many scenarios,
the reference velocities in ẋref

a are 0, such that the reference
angular momentum is also 0 (lrefc = 03×1). However, this
is not always the case, such as when running on a curved
trajectory (see Fig. 13).

During the flight phase, the total angular momentum is con-
stant. In order to generate consistent trajectories for the whole-
body motion, we choose the reference angular momentum to
be equal to the measured angular momentum

lrefc = lc. (62)

During the stance-to-flight and the flight-to-stance phases, the
reference angular momentum is linearly interpolated between

the two reference generation schemes. For example, during the
stance-to-flight phase, lrefc is generated by

lrefc =

(
1− t

Tφ

)
Āaẋ

ref
a +

t

Tφ
lc, (63)

where Tφ is the duration of the stance-to-flight phase, and
t ∈ [0, Tφ] is the local phase time.

VII. SIMULATIONS

We performed extensive simulations of the proposed CoM
trajectory generator with the passivity-based whole-body con-
troller in OpenHRP [44] using the torque controlled humanoid
robot TORO [36], a 27 DoF robot with a height of 1.74 m and
a total weight of 77.5 kg. Videos of the performed simulations
can be found in the multimedia attachment. The trajectory
generator and the whole-body controller are implemented in
Matlab/Simulink and are executed at a rate of 1 kHz. The
realtime capability of the algorithms was verified on the
TORO’s computation hardware, an Intel Core i7 computer; the
total computation time varied between 380 and 540 µs, with
the whole-body reference trajectory generator including the
angular momentum optimization accounting for 75 to 90 µs.

In all simulation scenarios, the robot starts and ends in
a standing stance, showcasing the ability of the proposed
method to initiate and complete highly dynamic motions such
as running and jumping while maintaining balance throughout
the motion. Unless stated otherwise, the default duration of
the stance-to-flight and flight-to-stance phases is 25 ms, the
duration of the height-change phase is 100 ms, while the
maximum distance between CoM and contact point, used as
a kinematic reachability constraint for computing the VRP
offset ∆z in Sec. IV-G, is dmax = 0.95 m. The whole-body
controller constrains the commanded ground reaction forces
using a friction coefficient of 0.4 and center-of-pressure (CoP)
bounds of ±0.08 m on the x-axis and ±0.035 m on the y-
axis relative to the center of the foot, expressed in local foot
coordinates. For comparison, TORO’s foot is 19 cm long and
9.5 cm wide.

The first scenario (Fig. 11) shows the robot performing
a sequence of three jumps, each with a length of 30 cm
and a height of 40 cm. The stance phase duration is set
to 300 ms, the flight phase duration is 350 ms, while the
kinematic reachability constraint used for computing the VRP
offset ∆z is chosen to be dmax = 0.9 m. The high stair
steps in this scenario are purposefully chosen to emphasize
the need for using both legs simultaneously (i.e., employing
a jumping gait), as the required force acting on the CoM
exceeds 2000 N during landing (see Fig. 11b). Figure 11b
also shows the importance of the stance-to-flight and flight-to-
stance phases in preserving the continuity of the commanded
contact forces. For example, at t = 1.1 s, during the flight-to-
stance phase, the trajectory of the normal force fz is similar
to a linear interpolation from 0 to 1000 N, thereby increasing
the feasibility of the motion and reducing the effort of tracking
the commanded force trajectory.

The second scenario (Fig. 12) shows a walking and running
gait progression, with increasing forward velocity (i.e., on
the x-axis). The motion starts with a stand-to-move phase

This article has been accepted for publication in IEEE Transactions on Robotics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TRO.2023.3321396

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



IEEE TRANSACTIONS ON ROBOTICS 14

0 0.3 0.6 0.9
x [m]

2.4

2

1.6

1.2

0.8

0.4

0

z 
[m

]
VRP
DCM
CoM
Feet

(a) Generated reference CoM trajectories (spatial side view). Contin-
uous lines show the trajectories during stance phases; dotted lines are
used during the flight phases. The dots mark the location of the start
and end points of each individual motion phase, while the triangles
mark the instantaneous quantities for the depicted robot.

-100

0

100
right foot left foot

0

500

1000

0 1 2 3time [s]
-0.08

0

0.08

(b) Commanded forces on the x- and z-axes, and commanded center of
pressure on the x-axis for both feet. Dotted lines denote flight phases.

Fig. 11. Descending a stair with large steps by jumping. Each stair step is
30 cm long and 40 cm high.

of 250 ms total duration (Tshift = 50 ms, Thold = 150 ms,
see Sec. V-A), which ensures the continuity of the trajectory
while transitioning from the standing stance to the walking
gait. The first three walking steps are 15 cm long and are
executed with single- and double-support phase durations of
TSS = 550 ms and TDS = 200 ms, corresponding to
a walking speed of 0.2 m/s. For the next four steps, the
step length is increased to 40 cm by employing the toe-
off edge contacts [31], with a simultaneous increase of the
single-support phase duration to TSS = 800 ms, resulting
in a walking speed of 0.4 m/s. During walking, the angular
momentum compensation is disabled for the x- and y-axes,
being active only on the z-axis (see Fig. 12c). These settings
significantly reduce the waist motion produced by the motion
optimizer [39], as the required angular momentum on the x-
and y-axes can be easily generated by the contact torques.
At t = 8 s, the robot transitions from walking to a running
gait using the walking-to-running transition method described
in Sec. V-B. The running gait uses toe-off edge contacts,
has a stance phase duration of 200 ms, and a flight phase
duration of 150 ms, for a total step time of 400 ms, including
the stance-to-flight and flight-to-stance phases. During the
first 4 seconds of running, the step length is chosen to be
40 cm, corresponding to a running speed of 1 m/s, while at
t = 11.5 s the step length is increased to 80 cm leading to the
maximum running speed of 2 m/s. During running, the angular
momentum is compensated on all three axes (Fig. 12c). Note
the spikes in angular momentum caused by foot impacts with
the ground at the end of the flight phases. At t = 16 s, the
robot transitions back to walking using the running-to-walking
transition method, before finally stopping at t = 19 s.

In the third scenario (Fig. 13), the robot runs along a
curved trajectory, avoiding large obstacles located in its path.
The running gait uses the same stance and flight phase
durations as the second scenario, while the standing-to-running
transition employs a stand-to-move phase of 350 ms duration
(Tshift = 25 ms, Thold = 300 ms). The longer duration of this
phase compared to the second scenario ensures that the VRP
remains within the support area (see Sec. V-A) for the more
dynamic type of motion (running vs. walking). During the
first four running steps, the step length is gradually increased
to 60 cm, which is subsequently used as the nominal running
gait, corresponding to a running speed of 1.5 m/s. Starting
with the fifth step, the footsteps are rotated in the xy-plane by
8◦ increments, turning first to the left (counterclockwise) for
four steps, then to the right over the course of eight steps, and
finally to the left for additional four steps, such that the final
orientation is the same as the initial one (see Fig. 13b). The
yaw angle of the planned waist orientation follows the footstep
orientations using fifth-order polynomial interpolations, while
the reference trajectory is generated online by the angular
momentum optimizer to compensate the effects of the leg
motion. The maximum tracking error of the waist orientation
over the whole motion is 1.7◦ for the roll angle, 2.4◦ for the
pitch, and 2.2◦ for the yaw (Fig. 13c), which demonstrates
the feasibility of the reference trajectories and the tracking
performance of the passivity-based whole-body controller.

In the fourth scenario (Fig. 14), the robot traverses a

This article has been accepted for publication in IEEE Transactions on Robotics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TRO.2023.3321396

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



IEEE TRANSACTIONS ON ROBOTICS 15

(a) Simulation images (solid images taken at 1 second intervals, translucent images at 0.2 s intervals during running and 0.5 s during walking).
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(b) Generated reference CoM trajectory (y- and z-axes), showing the start and end points of each motion phase on the y-axis. Gray background depicts double
support phases during walking, and flight phases during running.
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Fig. 12. Walking and running gait progression, starting with slow walking (0.2 m/s), followed by fast walking (0.4 m/s), slow running (1 m/s), and fast
running (2 m/s).
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(a) Simulation images, taken at 1 second intervals.
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(c) Planned, reference, and measured waist orientation. The reference tra-
jectory is generated by the angular momentum optimizer. Gray background
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Fig. 13. Running on a curved trajectory, avoiding obstacles.

sequence of 9 stepping stones modelled as cylindrical columns
1 m in height and with a diameter of 26 cm. The small contact
area provided by each column requires precise tracking of the
CoM and foot trajectories in order to successfully traverse the
given terrain. The robot starts on a platform 1.5 m long and
0.5 m wide, which is used to accelerate to the nominal running
speed of 1.5 m/s, corresponding to a step length of 60 cm,
stance phase duration of 200 ms, and flight phase duration
of 150 ms. The columns are placed with a large degree of
variability on all three Cartesian axes: on the x-axis, the
distance between the columns varies between 45 and 85 cm,
on the y-axis between 5 and 50 cm, and on the z-axis, the
sixth and the eighth columns are lowered by 10 cm, while
the seventh column is lowered by 20 cm. The final platform
is chosen to be shorter than the start platform (1 m long vs.
1.5 m), such that the robot is required to decelerate rapidly
after stepping onto the platform in order to come to a stop.
The maximum tracking error of the CoM position over the
whole motion is 3.7 cm on the x-axis, 0.9 cm on the y-axis,
and 1.6 cm on the z-axis (Fig. 14c). The spikes in the DCM
tracking error signal are caused by delayed contact acquisition
after the flight phases; for example, at t = 4.4 s when the robot
steps onto the seventh column, the spike is caused by a left
foot tracking error on the z-axis of 2.5 cm. Nevertheless, after
the contact is established, the DCM tracking error is quickly
corrected by the whole-body controller.

VIII. DISCUSSION

When discussing the advantages and limitations of the pro-
posed method, we need to differentiate between the 3D-DCM
framework and the specific trajectory generation method em-
ployed for running, jumping, and the various gait transitions.

A. 3D-DCM framework: advantages and limitations

The 3D-DCM framework, as a reformulation of the CoM
dynamics, retains its generality and can be used with any
legged robot; unlike simplified models such as SLIP or LIPM,
3D-DCM is a reduced model of the whole-body dynamics.
Taking advantage of the reverse time stability of the DCM
dynamics, the framework can be used to generate stable
reference trajectories for piecewise linearly interpolated VRP
trajectories with arbitrary durations. Notably, the framework
generates stable trajectories for arbitrarily slow motions, which
are particularly challenging for methods that only consider
the forward time dynamics of the DCM [26]. Furthermore,
the 3D-DCM framework utilizes closed-form continuous-time
trajectories, requiring no discretization of the dynamics, which
enables trajectory generation at arbitrary sampling rates. For
example, in our implementation, we compute the instantaneous
CoM, DCM, and VRP every millisecond, i.e., at the same rate
as the whole-body controller execution rate of 1 kHz.

A further advantage of the computation efficiency is that
the framework can generate CoM and DCM trajectories for
motions with long durations. For example, for running, we
use a preview window of 5 steps, which corresponds to a
plan duration of 2.6 seconds, including the running-to-standing
transition at the end of the motion. The rationale for this
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(a) Simulation images. Side view: solid images show the robot during the flight phases, translucent images during the stance
phases. Top-down view: only flight phases are shown.
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(b) Generated reference CoM trajectory. The individual motion phases are depicted with alternating gray and white backgrounds.
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Fig. 14. Running over a sequence of given stepping stones, placed with a large degree of variability on all three Cartesian axes.
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Steps Motion phases Total duration ∆ξx
1 10 1.0 s 0.1438 m
2 14 1.4 s 0.0389 m
3 18 1.8 s 0.0105 m
4 22 2.2 s 0.0028 m
5 26 2.6 s 0.0008 m

Table 1. Induced discontinuities in the instantaneous DCM computation by a
DCM final point change of 0.6 m, for different lengths of the motion plan’s
preview window.

choice is provided by the data given in Table 1. Due to the
reverse time computation approach, any change in the position
of the DCM final point ξf leads to a discontinuity of the
computed instantaneous DCM ξ. The magnitude of the dis-
continuity is reduced by longer preview windows; for 5 steps,
a DCM final point change on the x-axis of 0.6 m creates a
DCM discontinuity which is less than 1 mm. This choice is
made possible by employing a highly efficient algorithm for
waypoint computation: the DCM and CoM waypoints of the
corresponding 26 motion phases can be computed in approx.
25 µs with Algorithm 1 by TORO’s computing hardware.

Arguably, one limitation of the 3D-DCM framework is that
it cannot produce a particular contact force profile such as the
biologically-inspired forces proposed by BID [16]. By its very
nature, the 3D-DCM framework requires an eCMP trajectory
(or associated VRP trajectory), for which it computes the
corresponding CoM trajectory, while the contact force profile
is subsequently given by equation (2). A comparison of the
generated contact forces on the x- and z-axes for a running
stance phase is shown in Fig. 15. Note that the required
3D-DCM forces are smaller in magnitude than the BID forces
for the same motion parameters. On the other hand, although
continuous, the 3D-DCM forces are not continuously differ-
entiable, making them potentially more difficult to generate
on robots employing elastic elements in the legs. Neverthe-
less, if needed, smoother forces profiles can be produced
by the 3D-DCM framework using higher order polynomial
interpolations in the eCMP reference trajectories. A further
advantage of 3D-DCM is that using a common framework
for walking and running greatly simplifies the gait transition
implementation, as shown in Sec. V, whereas combining BID
for running with 3D-DCM for walking requires significantly
more computation effort [17].

These characteristics of the 3D-DCM framework can be
exploited by more computationally intensive methods like
Model Predictive Control (MPC) or reinforcement learning
(RL) in order to reduce the total computational effort. For
example, the reverse time DCM computation can be combined
with MPC as shown in [34], and RL can be used to learn VRP
offsets during the stance phase in order to generate a contact
force profile that is more similar to BID. We intend to pursue
these ideas in our future work.

B. Whole-body reference trajectories

One important factor affecting the robustness of dynamic
bipedal locomotion is the controller’s ability of keeping the
center-of-pressure close to the middle of the foot contact area
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Fig. 15. BID vs. 3D-DCM comparison of generated contact forces.

during the stance phases. This can be achieved by suitably
designed reference trajectories, or by using the upper body
to generate angular momentum, thereby reducing the required
contact torques. In this work, the eCMP reference trajectory
is generated using a constant angular momentum assumption;
the eCMP waypoints are either placed in the middle of the foot
contact area, or, alternatively, the eCMP follows a heel-to-toe
trajectory during each stance phase, which has the additional
advantage of reducing the magnitude of the necessary contact
forces on the local x-axis. The employed motion optimization
[39] significantly reduces the centroidal angular momentum
during running, as shown in the performed simulations (see
Fig. 12c). As part of our future work, we plan to include the
online learning algorithm proposed in [45] to generate eCMP
trajectories that lead to improved center-of-pressure tracking
during the contact phases.

The leg reference trajectories are generated using simple
fifth-order polynomials for each Cartesian translational and
rotational axis. Despite their simplicity, the controller is able to
track the generated motions without difficulty, as demonstrated
by the performed simulations. Nevertheless, one challenge
encountered during highly dynamic motions is avoiding knee
singularities. At takeoff and touchdown, this problem is ad-
dressed by the proposed VRP offset computation in Sec. IV-G,
which ensures that the distance between CoM and contact
point is bounded by a configurable maximum value. However,
during the flight phase, the independent computation of the leg
and CoM trajectories can lead to the kinematic constraint being
violated. We plan to address this issue in our future work.

One limitation of the angular momentum optimization is
given by the instantaneous computation of the upper body
motion without an explicitly planned angular momentum tra-
jectory or a preview over a future time-horizon. One noticeable
side-effect is the gradual upward movement of the arms over
the span of multiple running steps, which can be seen during
the fast running segment of the second simulation (Fig. 12a).

Finally, the whole-body simulations demonstrate the feasi-
bility of the generated trajectories with respect to maintaining
balance throughout the motion, controlling the angular mo-
mentum, and conforming to contact constraints (friction cone,
unilateral normal force, and limited contact area). However,
the required joint velocities and torques exceed the capabil-
ities of the real humanoid robot TORO, preventing us from
demonstrating the proposed method in an experimental setup.
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IX. CONCLUSION

In this work, we proposed a motion planner based on the
3D-DCM framework, capable of generating a CoM reference
trajectory for motions that include flight phases, such as
running and jumping. Taking advantage of the reverse time
stability of the DCM dynamics, the motion planner creates
stable reference trajectories for arbitrary contact sequences
and time parametrization. Furthermore, using the 3D-DCM
framework for running and jumping greatly simplifies the
implementation of gait transitions, such as walking-to-running
or running-to-walking transitions. The proposed motion plan-
ner was validated in various simulations with the humanoid
robot TORO, demonstrating the feasibility of the generated
trajectories.

Two key aspects of the proposed motion planner, the unified
approach of describing different motion phases and the high
efficiency in computing the reference trajectories, enhance the
planner’s versatility, making it well suited for usage on a
wide variety of legged robots: bipeds, quadrupeds, or fully
humanoid robots.
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