
Multi-objective Multiplexer Decision Making Benchmark
Problem

Boris Djartov1,2, Sanaz Mostaghim2
1Institute for flight guidance, German Aerospace center (DLR), Braunchweig, Germany

boris.djartov@dlr.de
2 Faculty of Computer Science, Otto-von-Guericke-University, Magdeburg, Germany

sanaz.mostaghim@ovgu.de
ABSTRACT
This paper proposes a novel multi-objective decision making bench-
mark problem. The problem addresses the need in themulti-objective
decision making realm for an easy to construct, scalable benchmark
problem in the vain of the DTLZ, ZTD, and WFG problems. The
problem is inspired by a real-world decision making problem that
pilots face in the cockpit. The new problem is an amalgamation
of two well-established problems within the literature, the DTLZ
and multiplexer problems. The problem additionally makes use of
the main concepts and ideas from Robust Decision Making and
Multi-scenario Multi-objective Robust Decision Making, especially
as these problems enable decision making problems to be somewhat
converted into an optimization task. The problem is showcased here
and is solved initially using a modified multi-objective optimiza-
tion variant of a Learning Classifier System, which shows superior
results when compared to a random agent.

CCS CONCEPTS
•Computingmethodologies→Machine learning approaches.

KEYWORDS
multi-objective optimization,multi-objective decisionmaking,multi-
objective benchmark problem, multi-objective decision making
benchmark problem
ACM Reference Format:
Boris Djartov1,2, Sanaz Mostaghim2, 1Institute for flight guidance, German
Aerospace center (DLR), Braunchweig, Germany, boris.djartov@dlr.de, 2
Faculty of Computer Science, Otto-von-Guericke-University, Magdeburg,
Germany, sanaz.mostaghim@ovgu.de . 2023. Multi-objective Multiplexer
Decision Making Benchmark Problem. In Genetic and Evolutionary Com-
putation Conference Companion (GECCO ’23 Companion), July 15–19, 2023,
Lisbon, Portugal. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/
3583133.3596360

1 INTRODUCTION
Dynamic alternate airport selection (DAAS) while flying is a de-
cision making task that pilots may find themselves facing. The
task requires decision makers and pilots to change their planned

GECCO ’23 Companion, July 15–19, 2023, Lisbon, Portugal
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0120-7/23/07.
https://doi.org/10.1145/3583133.3596360

mission and choose a new destination airport while possibly under
stressful and unforeseen conditions. The decision makers must take
into account multiple factors, such as the location of the airport,
their fuel levels, weather conditions, possible logistical problems
for the passengers, etc [1]. The pilots need to consider the inter-
dependence of all these factors as well as keep in mind the many
trade-offs when making their decision. For example, a pilot may
need to consider if the airport with a strong crosswind and a wet
runway of is more favorable than an airport that is further away
and has strong tailwind. Upon examining the literature, testing
problems or similar problems of this nature were difficult to find.
The closest type of problem were those related to multi-objective
sequential decision-making problems, as outlined in Cassimon’s
2012 survey [2]. However, these problems have a predetermined
number of objectives and are not easily scalable, Additionally, they
are often based on certain simplistic games as is very common in
the field of Reinforcement learning. Inspired by the lack of test
problems, this paper presents a new benchmark problem that is
created by fusing two well-known problems within the literature,
the multiplexer problem [3] and the DTLZ [4] [5] problem. The
multiplexer was chosen because it is characterized by the interac-
tivity between its features as well as its heterogeneous nature. This
mimics the need for pilots to prioritize and pay attention to certain
airport characteristics, which can vary based on the circumstances.
DTLZ was included to represent the trade-offs that come with the
pilot’s choice and also because the Pareto front is known and can
easily be scaled. Thus, this test problem aims to capture the charac-
teristics posed by DAAS; however, it also aims to be a conceptually
simple, scalable, and difficult test problem. The paper organiza-
tion borrows from the structure of [4] and [5] and is organized
in the following manner: The 1 section gives a brief theoretical
overview. The following section then gives the requirements for
a new multi-objective decision-making benchmark problem. The
newmulti-objective multiplexer problem (MOMP) is described next.
In section 5 the description of the modified version of a Learning
Classifier System (LCS) is given. The following section outlines the
results from the test problem’s debut appearance, along with why
approaches like the LCS are important and should be considered in
similar decision making problems. Finally, a summary of the work
and the conclusions drawn are given.

2 THEORETICAL BACKGROUND
2.1 Dynamic Alternate Airport Selection
Given that the inspiration for this benchmark problem was the
DAAS problem, it seems only prudent to give a short primer on it.

1676

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3583133.3596360
https://doi.org/10.1145/3583133.3596360
https://doi.org/10.1145/3583133.3596360
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3583133.3596360&domain=pdf&date_stamp=2023-07-24

GECCO ’23 Companion, July 15–19, 2023, Lisbon, Portugal Djartov and Mostaghim

The problem in a multi-objective optimization context was initially
proposed by [1]. DAAS is a decision-making problem where the
decision maker, in this case the pilot, needs to abruptly select a new
destination airport midflight. Thus, the problem consists of selecting
the best airport or solution from a list of possible alternatives,
defined by multiple characteristics. In [1], the authors determined
the following characteristics for each airport or option:

• Longest runway length available [𝑚]
• Wind speed at the location of the airport [𝑘𝑛]
• Wind direction at the location of the airport [°]
• Status of the breaking runway in terms of how dry or wet it
is, expressed as a value from 0 to 6

• Distance from current aircraft position to planned destina-
tion [𝑛𝑚]

• Distance from current aircraft position to appropriate alter-
nate airport [𝑛𝑚]

Additionally, DAAS problem also has additional factors that define
the state or the decision making context. The aircraft position, flight
level, fuel level and flight path define the circumstances in which
the decision needs to be made.

2.2 Multi-objective decision making
The DAAS problem was transformed into a bi-objective optimiza-
tion problem in [1], with risk and cost as the two objectives to
consider. The risk objective represented the possibility of physical
danger, while the cost objective represented the financial implica-
tion of each decision. These two objectives showcased the trade-offs
that pilots needed to consider when making their decision. How-
ever, in the DAAS problem, due to the dynamic nature of flying,
many of the characteristics are bound to change. Thus, it is not a
static decision-making context and depends on the changing factors
on the ground, such as the wind speed and weather phenomena, as
well as the status of the aircraft, its technical status, any medical
emergencies, etc.

Keeping in mind the variability in the circumstances that needed
to be taken into account before making the decision, the problem
borrowed certain elements from the Robust DecisionMaking (RDM)
[6] [7] framework, more specifically from Multi-Objective Robust
Optimization (MORO) [8] [9] [10]. Robust Decision Making (RDM)
is an approach to decision making that helps decision makers nav-
igate uncertainty and account for the potential for unexpected
events or changes in the future. RDM involves exploring multiple
possible scenarios or futures, analyzing the potential outcomes of
different decisions under each scenario, and selecting a decision
that is robust across a wide range of potential futures. RDM is of-
ten used in complex decision-making contexts where there is high
uncertainty and a need for long-term planning [6]. Namely, the
authors from [1] presented the problem as a RDM problem where
a synthetic data set was created corresponding to difficult scenar-
ios which could be encountered and needed a suggested course of
action.

This dynamic nature of DAAS problem, coupled with the fact
that the decision makers could be in unforeseen and stressful situa-
tions, necessitated the creation of a multi-objective decision support
system that was not reliant on the typical multi-objective decision-
making methods from the literature. Methods such as the AHP [11]

[12], VIKOR [13], PROMETHEE [14], ELECTRE [15] proved to be
insufficient as the decision makers could not be reliably asked to
give their preference in every situation when a decision needed to
be made, and it was unreasonable to give their preference before
hand for every possible situation that might occur. The methods
from RDM also do not provide a sufficiently good way to tackle the
problem. As previously stated they are geared more towards ana-
lyzing and selecting decisions in terms of long term planning. The
need to analyze each of the solutions necessitates greater attention
from the decision maker, which may not be possible in a stressful
situation. Thus, although the current literature helped shape this
problem, an added element was needed to cope with difficulties
that have arisen due to time and focus constraints. An intelligent
decision support system capable of giving good suggestions across
a multitude of varying scenarios would help the decision makers
achieve their goals even while burdened by atypical situations.

Problems from the literature similar to DAAS problem were
those found in the multi-objective reinforcement learning realm.
Decision-making problems with multiple objectives include Deeps
Sea Treasure [16], MO-Puddleworld [17], MO-Mountain-Car [18],
and Resource Gathering [19]. However, because they have a fixed
number of objectives, these problems are not scalable and they pri-
marily focus on sequential decision making. A visual representation
of the difference between multi-objective reinforcement learning
and the DAAS problem can be seen in figure 1. The figure aims
to highlight that the DAAS problem is a single decision needs to
be made with the actions available being very dynamic, i.e. the
characteristics of both the airport and the status of the airplane,
which is not usually encountered in the realm of reinforcement
learning, where the possible set of actions are often known and
determined. In terms of Robust decision making a similar and well
known problem was the lake problem, presented in initially in [20]
where the goal was to managing eutrophication in lakes subject to
potentially irreversible change. The problem involved identifying
and evaluating different management strategies that aim to balance
multiple objectives, such as improving water quality, preserving
biodiversity, and ensuring the sustainability of the lake ecosystem.
Although, greater focused seems to be placed on multi-objective
optimization where the goal is to generate new Pareto optimal
solutions or to find the Pareto front, once identified it seems that
decision makers and stakeholders need to select a subset, often one
solution, from the found solutions. To this end, decision making
methods, where an alternative needs to be chosen from a set of
possible alternatives, are relevant and vital. The ideas from RDM
and MORO of examining multiple probable possible circumstances
in order to have a robust and optimal decision together with the
added need to be used in a dynamical changing environment war-
rants a more established benchmark problems that can be used to
test and compare the intelligent decision support systems.

2.3 Component problems
In order to better understand the proposed problems that comprise
the Multi-objective Multiplexer Problem, a short primer will be
given on both the multiplexer and DTLZ problems.

The Boolean 𝑛-bit multiplexer problem, first presented by Koza
[3] is based on the electronic multiplexer (MUX), a device that takes

1677

Multi-objective Multiplexer Decision Making Benchmark Problem GECCO ’23 Companion, July 15–19, 2023, Lisbon, Portugal

State

Agent
situation

Choice 1

Choice 2

Choice 3

action End

State

Ac�on

State

…

End

Typical Reinforcement learning Dynamic Alternate Airport Selection

Figure 1: DAAS problem state to action relationship

Figure 2: 6-bit Multiplexer problem [21]

multiple analog or digital input signals and switches them into a
single output [21]. An example of a 6-bit multiplexer problem can
be seen on figure 2, courtesy of Urbanowicz and Borwne’s book
Introduction to Learning Classifier Systems [21]. The multiplexer
problem is a supervised learning classification problem where the
goal is to predict the class of a sequence of bits. The multiplexer data
set is generated by randomly creating strings of bits and assigning
a class to the sequence by examining the address bits and how they
relate to all the others elements in the sequence. The goal would
then be to train an algorithm to try and learn the pattern and be
able to successfully predict the outcome of a presented sequence of
bits. The multiplexer problem is characterised by its interactions
between the features/ bits and also it’s heterogeneity, where for dif-
ferent sets of instances, a distinct subset of features will determine
the class value. Although, easy to construct the multiplexer prob-
lem is non-trivial and is predicated on the existence of a somewhat
complicated pattern to determine the class. The problem can also
be easily scaled by simply expanding the number of address bits, so
its complexity can be modified with minor changes [21] [22]. The
presence of varying importance between the factors depending on
the situations is what makes the multiplexer problem and DAAS
problem so similar. Namely in DAAS problem the characteristics of
the actual aircraft i.e. its position, fuel level, altitude and planned
mission represent the address bits. They dictate what of the charac-
teristics that represent the airports should be considered more and
by how much more. This is one of the reasons that the multiplexer
problem was chosen.

The DTLZ benchmark problems were presented in [5] and [4].
Within the papers the writers specify a bottom up approach for the

Figure 3: The NSGA-II Population on Test Problem DTLZ2
[5] [4]

design of the test problem. Specifically, the mathematical function
that defines the Pareto-optimal front is assumed beforehand and
the objective space is constructed based on this front. The test-
ing suite contains multiple problems numbered from one to nine,
spread across the two papers. Here the DTLZ2 problem will only
be showcased. DTLZ2 mathematically is described as follows:

𝑚𝑖𝑛(𝑓1 (®𝑥)) = (1 + 𝑔(𝑥𝑚)) (cos(𝑥1𝜋/2)... cos(𝑥𝑚2𝜋/2) cos(𝑥𝑚𝜋/2),
𝑚𝑖𝑛(𝑓2 (®𝑥)) = (1 + 𝑔(𝑥𝑚)) (cos(𝑥1𝜋/2)...
... cos(𝑥𝑚−22𝜋/2) sin(𝑥𝑚−1𝜋/2),
𝑚𝑖𝑛(𝑓3 (®𝑥)) = (1 + 𝑔(𝑥𝑚)) (cos(𝑥1𝜋/2)... cos(𝑥𝑚−22𝜋/2),
...

𝑚𝑖𝑛(𝑓𝑚 (®𝑥)) = (1 + 𝑔(𝑥𝑚)) (sin(𝑥1𝜋/2),
with

𝑔(𝑥𝑚) =
∑︁

𝑥𝑖 ∈𝑥𝑚
(𝑥𝑖 − 0.5)2,

0 ≤ 𝑥𝑖 ≤ 1, for 𝑖 = 1, 2, ..., 𝑛

Where ®𝑥 is a vector constructed with 𝑘 = 𝑛 −𝑚 + 1 variables. The
Pareto-optimal solutions correspond to 𝑥𝑖 = 0.5 for all 𝑥𝑖 ∈ 𝑥𝑚 and
all objective function values must satisfy

∑𝑚
𝑖=1 𝑓

2
𝑖
= 1. The DTLZ2

as tackled by the NSGA-II algorithm, for 3 objectives is represented
visually on figure 3. The inclusion of a multi-objective optimiztion
component is in order to mimic the trade-offs that pilots need to
consider and make when deciding on an airport.

2.4 Learning Classifier systems
A Learning Classifier System (LCS) is a type of machine learning
algorithm that combines reinforcement learning with genetic algo-
rithms to learn and improve upon a set of rules or classifiers over

1678

GECCO ’23 Companion, July 15–19, 2023, Lisbon, Portugal Djartov and MostaghimJournal of Artificial Evolution and Applications 3

4
2

3 5
9

1

7

6

8

10

Reward

Action
selection

Environment

Prediction array

Credit assignment

Action
performed

Update
 par

am
ete

r(s
)

Learning strategy

Classifiern = condition : action :: parameter(s)

Classifierm

Classifiera

Classifiert–1

t–1[A]

Population [P]
Covering

Genetic
algorithm

Action set [A]

Discovery component
Performance component
Reinforcement component

Detectors

Effectors

Match set [M]

Figure 2: A Generic LCS—the values 1–10 indicate the typical steps included in a single learning iteration of the system. Thick lines indicate
the flow of information, thin lines indicate a mechanism being activated, and dashed lines indicate either steps that do not occur every
iteration, or mechanisms that might occur at different locals.

genotypes by recombining subparts of the genotypes of two
or more individuals (rules). Mutation operators randomly
modify an element in the genotype of an individual (rule).
The selection pressure which drives “better” organisms
(rules) to reproduce more often is dependent on the fitness
function. The fitness function quantifies the optimality of
a given rule, allowing that rule to be ranked against all
other rules in the population. In a simple classification
problem, one might use classification accuracy as a metric
of fitness. Running a genetic algorithm requires looping
through a series of steps for some number of iterations
(generations). Initially, the user must predefine a number of
parameters such as the population size (N) and the number
of generations, based on the user’s needs. Additionally the
GA needs to be initialized with a population of rules which
can be generated randomly to broadly cover the range of
possible solutions (the search space). The following steps will
guide the reader through a single iteration of a simple genetic
algorithm.

(1) Evaluate the fitness of all rules in the current
population.

(2) Select “parent” rules from the population (with
probability proportional to fitness).

(3) Crossover and/or mutate “parent” rules to form
“offspring” rules.

(4) Add “offspring” rules to the next generation.

(5) Remove enough rules from the next generation (with
probability of being removed inversely proportional
to fitness) to restore the number of rules to N.

As with LCSs, there are a variety of GA implementations
which may vary the details underlying the steps described

above (see Section 9.5). GA research constitutes its own field
which goes beyond the scope of this paper. For a more
detailed introduction to GAs we refer readers to Goldberg
[8, 11].

3.2. Learning. In the context of artificial intelligence, learn-
ing can be defined as, “the improvement of performance
in some environment through the acquisition of knowledge
resulting from experience in that environment” [12]. This
notion of learning via reinforcement (also referred to as
credit assignment [3]) is an essential mechanism of the
LCS architecture. Often the terms learning, reinforcement,
and credit assignment are used interchangeably within the
literature. In addition to a condition and action, each
classifier in the LCS population has one or more param-
eter values associated with it (e.g., fitness). The iterative
update of these parameter values drives the process of
LCS reinforcement. More generally speaking, the update
of parameters distributes any incoming reward (and/or
punishment) to the classifiers that are accountable for
it. This mechanism serves two purposes: (1) to identify
classifiers that are useful in obtaining future rewards and
(2) to encourage the discovery of better rules. Many of
the existing LCS implementations utilize different learning
strategies. One of the main reasons for this is that different
problem domains demand different styles of learning. For
example, learning can be categorized based on the manner
in which information is received from this environment.
Offline or “batch” learning implies that all training instances
are presented simultaneously to the learner. The end result
is a single rule set embodying a solution that does not
change with respect to time. This type of learning is often
characteristic of data mining problems. Alternatively, online

Figure 4: Visual representation of a LCS [22]

time. The general idea behind LCS was introduced by John Holland
in [23], as a way to model how natural selection and evolution work
in biological systems. The LCS approach involves creating a popu-
lation of potential classifiers, each of which represents a set of rules
that can be applied to input data. The system then evaluates the
fitness of each classifier, based on how well it performs on a given
task. The fittest classifiers are then selected to reproduce, with their
genetic material passed on to the next generation of classifiers. Over
time, the system converges on a set of high-performing classifiers
that can be used to make accurate predictions or decisions. One of
the strengths of the LCS approach is that it is highly interpretable.
Because the system generates a set of rules or classifiers that are
designed to capture the underlying patterns in the data, it is easier
for humans to understand how the system is making its choices.
This can be particularly useful in domains where transparency and
interpretability are important, such as healthcare, finance, or le-
gal settings. Another strength of the LCS approach is its ability to
handle noisy or complex data. Because the system uses a genetic
algorithm to evolve its classifiers over time, it is able to adapt to
changing environments and identify patterns in data that might be
difficult for other machine learning algorithms to detect. In addition
to its strengths in interpretability and handling complex data, the
Learning Classifier System (LCS) is also particularly well-suited for
tackling a specific problem known as the multiplexer problem. This
problem involves generating a set of rules or classifiers that can
accurately predict the output of a circuit with multiple inputs and
outputs, where the output depends on a specific combination of
input values. Overall, the Learning Classifier System is a powerful
machine learning algorithm that combines the benefits of reinforce-
ment learning and genetic algorithms to learn and improve upon a
set of rules over time. Its strengths in interpretability and ability
to handle complex data make it a promising approach for a wide
range of applications. A visual representation of a generic LCS can
be seen on figure 4

Figure 5: Typical framing of a reinforcement learning ap-
proach

3 BENCHMARK PROBLEM REQUIREMENTS
AND CHALLENGES

3.1 Requirements
It is important to determine the requirements that the benchmark
problem ought to have for a multi-objective decision making prob-
lem. Hence, it seams like a prudent step to take the already estab-
lished requirements presented in [5] and [4]. Thus the requirements
for this benchmark problem are:

• The benchmark problem should be easy to construct.
• The benchmark problem should be scalable and adjustable
in terms of its difficulty, especially in terms of the number
of objectives.

• The Pareto front should be known and determined for eas-
ier examination of the results as they relate to an optimal
solution.

• The benchmark problem should exhibit similarities to some
real world problems.

3.2 Difficulties
When it comes to decision making problems, what can be observed
from the literature, is that it is very subjective and dynamic process.
More accurately decision making is based on "context". One could
argue that the very idea of trying to capture and represent the
preferences of the decision maker as an ideal point, a weight vector,
or a type of trade-off matrix is to try and establish the context in
which the decision making is taking place. Examining the field of
reinforcement learning, through interactions with an uncertain
environment, a learning agent seeks to learn an ideal action policy.
Every step along the way, the learning agent is not informed clearly
what action to do, and instead it must choose and carry out the
appropriate course of action to maximize long-term benefits. A
scalar reward signal that assesses the impact of this state transition
is then sent to the agent once the chosen action causes the envi-
ronment’s current state to change into its subsequent one [24] [25].
An example of a reinforcement signal is presented in figure 5.

Thus, it appears that in reinforcement learning, the state serves
as a context for a decision. What is needed is to somehow provide
a context component that can be easily employed in a benchmark
problem. A context component can be defined as a subset of at-
tributes that interact with some other subset of attributes to in-
fluence the final decision in a significant manner. Thus, context

1679

Multi-objective Multiplexer Decision Making Benchmark Problem GECCO ’23 Companion, July 15–19, 2023, Lisbon, Portugal

0.5 0.966

0.5 1.06

0.5 0.866

0.966 1

0.966 0.866

1.06 0.866

Context Alternatives

0 3 0.5 0.966 1.06 0.866 3

Decision

1

2

3

4

5

6

Decision Objective values

.06

Figure 6: General structure of the MOMP

can be defined as the state with regard to reinforcement-learning
problems and as the presence of epistasis and heterogeneity for
multi-objective non-sequential decision making problems. The fact
that these two characteristics are present in the multiplexer prob-
lemmakes it a good starting point for a benchmark decision making
problem.

4 MULTI-OBJECTIVE MULTIPLEXER
PROBLEM

4.1 Description
Having defined the multiplexer and DTLZ problems, established the
requirements, and gone over the real-world problem that inspired
the multiplexer problem, we can now proceed to defining the multi-
objective multiplexer problem.

The multi-objective multiplexer problem (MOMP) can be defined
as a multi-objective multi-class classification problem, where the
goal is to select an appropriate class, i.e., make a choice from a set
of possible options. The problem is envisioned to be in the form
of a synthetic, user-generated data set, where each instance is a
sequence of positive real numbers. The sequence consists of two
main parts, similar to the multiplexer. The context part, which is
akin to the address bits, and the alternatives part, which is similar to
the register bits found in the multiplexer problem A visual represen-
tation of the general structure of the MOMP can be seen in figure
6. The string of numbers in the figure represents an instance from
a data set that can be easily generated. The correct context values
specify the location of the objective values that lie on the Pareto
front and are determined, in this case, via the objective values from
the DTLZ problem,

∑𝑚
𝑖=1 𝑓

2
𝑖
= 1. The number of possible options to

choose from represents the possible number of combinations that
the alternative values can be arranged in. The number of classes or
options is

(𝑛
𝑘

)
, where 𝑛 represents the number of desired alternative

values and 𝑘 represents the number of objectives. The number of
context variables is dependent on the number of objectives, which
is determined by the end user. Combinations were chosen instead
of permutations so as to avoid having more than one Pareto optimal
decision. An additional specification of the problem that should
be noted is that the objective values are always assigned from left
to right as they appear in the sequence of values. The possible
decisions and classes that can be assigned are also based on combi-
nations of the remaining alternative values. The way to generate
the decisions and combinations is arbitrary; what matters is that
the same method be used across all of the instances in the data set.

0 0.25 0.5 0.75 1

0 1 2 3

1

2

3

4

5

6

Decision Objective values

0.5 0.966

0.5 1.06

0.5 0.866

0.966 1

0.966 0.866

1.06 0.866

.06

0 3 0.5 0.966 1.06 0.866 3

Context Alternatives Decision

0.21 0.98 0.5 0.966 1.06 0.866 3

Figure 7: Final MOMP

For example, decision one should always refer to selecting the first
and second values of the sequence in that particular order.

To make the problem even more challenging and to blur the line
between the context and alternative values, the context values are
swapped out for values within a certain range. This is also done so
that it is harder for the algorithm to distinguish subsets of values,
as is the case in a real world problem like DAAS problem. This is
achieved by taking an interval, typically from 0 to 1, and dividing it
into a number of smaller intervals, with equal size. The number of
smaller intervals corresponds to the number of alternatives avail-
able. For example, in figure 6, there are four alternatives available,
and thus the number range can be divided in increments of 0.25.
Thus, a context value of 0 can be represented by any value from
the interval [0, 0.25]. The more accurate and complete version of
the problem is visually shown in figure 7.

MOMP is a multi-objective optimization problem where the goal
is to minimize the objectives. Specifically, the goals is to

𝑚𝑖𝑛(𝐹1, 𝐹2, 𝐹3, ..., 𝐹𝑚)
where 𝐹𝑚 is calculated as an average out of all the values for objec-
tive𝑚, across the entire data set of length 𝑛

𝐹𝑚 =
1
𝑛

𝑛∑︁
𝑖=1

𝑓𝑚

In essence the goal is for any algorithmic approach to understand
the relationship and select the decision that corresponds to the
objective values that lie on the Pareto front. Put simply, every
classification, i.e., decision, is evaluated by multiple objective values.
The goal is to simply select all the decisions such that, over the
entire data set, the objectives are minimized. This, however, is based
on the presented form of the problem which makes use of the DTLZ
test problem for a scalable objective function. However, the problem
is flexible, and the minimization or maximization of the objectives
can be entirely left up to the discretion of the end user.

4.2 Problem construction
Given that one of the requirements of a benchmark problem is
ease of construction, here the generic procedure for constructing a
bi-objective minimization MOMP problem of length six is outlined:

(1) Select the Pareto optimal front. The MOMP problem is en-
visioned to make use of the DTLZ problems, and for future

1680

GECCO ’23 Companion, July 15–19, 2023, Lisbon, Portugal Djartov and Mostaghim

steps, it is assumed that the DTLZ2 problem was chosen for
this step.

(2) To serve as the initial value for the Pareto front value, gen-
erate a random value between (0,1).

(3) Generate the additional corresponding value based onDTLZ2’s
formulation so that these two values together represent a
point on the Pareto front.

(4) Choose values for "padding numbers". The padding numbers
are added to the larger of the previously generated random
numbers (in a minimization context) The "padding numbers"
should be chosen such that these values together with any
other value must produce a point that is sub Pareto optimal.
The number of padding numbers should be 𝑝 = 𝑐 −𝑚, with
𝑚 representing the number of objectives and 𝑐 representing
the number of alternative values. An example for padding
numbers is 0.1 and 0.15.

(5) Create all possible permutations of the alternative sequence
of numbers, making note of the position of the optimal values
and changing accordingly. This means that for each set of
optimal numbers and "padded numbers" generated they can
appear in all positions in the alternatives sub array. Thus the
context values should be updated accordingly.

(6) Divide up the interval [0, 1] into smaller, equal intervals.
The number of intervals should be equal to the number of
alternative values.

(7) Assign the previously noted positions of a Pareto optimal
value to a specific interval.

(8) Generate the values for the context based on the previously
determined intervals.

(9) Repeat the previous steps until you have a data set of the
desired size.

(10) Shuffle the instances in the created data set so that the posi-
tion swapped instances are not next to one another.

4.3 Requirements satisfaction
This subsection serves as a quick checklist to determine if the
MOMP problems satisfy the previously stated requirements.

• Given the laid out steps, the problem is easy to construct. The
difficulty associated with its construction is the selection of
the function that represents the Pareto front. The following
steps are nothing more than random number generation,
given some constraints.

• Since the problem is based on the multiplexer and DTLZ
problems, it inherits their ease of scaling. Namely, to make
the problem more difficult, one can increase the length of
the sequence. The MOMP also allows users to adjust how
difficult the problem is, as the user can have a long sequence
but only two objectives. What is important to note is that the
number of alternatives should be at least 2+𝑐 , where c is the
number of context values. This is done so that the problem
can have sufficient amount of non-dominated options.

• The problem has a well-defined Pareto front, and like in the
multiplexer problem, the pattern to determine the proper
choice is known and easy for a human to check.

Algorithm 1 Multi-objective LCS
1: for 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 1.. to number of data set iterations (number of

times the LCS goes over the data set do
2: if no rule matches an instance then
3: create a new rule using covering operator
4:
5: else
6: evaluate rules -> calculate the average for each objective

based on the instances they matched and the decision that they
recommended

7: select the next population based on non-dominated
sorting and a predetermined population limit = number of
instances/4

8: apply uniform crossover
9: apply mutation
10: add the offspring to the initial population
11:

• The benchmark problem is based on the DAAS problem
and aims to mimic the nuances that were not accurately
represented by a benchmark problem in the literature.

5 MULTI-OBJECTIVE LEARNING CLASSIFIER
SYSTEM

This section serves to give a short description of the structure of
the LCS used to solve the proposed MOMP. The general structure
of the LCS remains mostly the same as the Michigan-Style Learning
Classifier System used to solve single-objective problem. The dif-
ference is in the inclusion of the Non-dominated sorting from the
NSGA-II algorithm [26]. The mutation operator was custom made
to suit the interval encoding that was chosen for the rules, i.e. the
rules were comprised of a set of intervals, lower and upper bounds
for all of the provided features of the data set. This interval based
encoding method was also chosen as it seams to be the easiest to
analyze later on and draw conclusions from. The general psudocode
implementation for the LCS is given in 1.

The presented LCS also makes use of covering operator. This
inclusion, commonly found inmore recent LCS, ensures that there is
at least one rule that can handle the current instance. Additionally, it
enables the construction of a more specific initial population, which
is not initialized at random but rather offers a good starting off
point. The crossover operator used is a standard uniform crossover
operator, while the mutation operator involved widening, shrinking
or converting the intervals to a "do not care" value. The pseudocode
for the mutation is given in algorithm 2.

The mutation operator can be applied on each interval in the
rule generated. It’s design was also motivated to reduce one of the
drawback that LCS are known for, namely their high number of
hyperparameters. Hence, although the size of the shrinking and
widening of the intervals could be tinkered with, it was chosen
to be based on the present intervals so that the algorithm can be
flexible in its changes to the mutations while not having to have
additional hyperparameter tuning.

1681

Multi-objective Multiplexer Decision Making Benchmark Problem GECCO ’23 Companion, July 15–19, 2023, Lisbon, Portugal

Algorithm 2 Interval Mutation operator
1: for 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 1.. to number of intervals do
2: generate mutation type number from [0,1]
3: if interval == "do not care interval" then
4: continue
5: else if mutation type number <= expand threshold value

then
6: exapender = upper bound - lower bound
7: upper bound += expander
8: lower bound += exapander
9:
10: else if expand threshold value < mutation type number <

shrink threshold value then
11: shrinker = (upper bound - lower bound) /4
12: upper bound = upper bound - shrinker
13: lower bound = lower bound + shrinker
14:
15: else
16: interval = "do not care" interval
17:

6 RESULTS ANALYSIS
The LCS was run on a constructed data set of the MOMP with
1200 instances and a length of six values with the DTLZ2 multi-
objective optimization problem as the objective function. Given
that it is a supervised problem and the optimal decisions are know
we can easily check the algorithms performance. It is important
to note however, that the algorithm should be given a vector of
values as feedback given that the problem is envisioned as a multi-
objective reinforcement learning problem. Treating it like a single-
objective classification problem defeats the purpose behind its main
ideas. Thus, the algorithms performance can be judged based simply
on the number of optimal classifications/decisions divided by the
number of total prediction, i.e how many correct decisions were
made from the total number of predictions.

The experiments were executed using python 3.6.8 and made
heavy use of the DEAP python package [27]. The experiments
were run 31 times and the results were compared to a random
agent. The comparison in performance can be observed in figure
8 and the result was also deemed statistically significant with a
Mann–Whitney U test with a p-value of 0.0004901 and 𝛼 = 0.05.
Although statistically significant the LCS was only slightly better
than the random agent and has a low number of accurate predic-
tions. This should indicate that this problem is not easy to solve
especially when incorporating a LCS. The reason for implementing
and focusing on LCS and straying away from neural networks, in
their current form, is due to the better interoperability of LCS. In
decision making in general and the aviation industry in particular
being able to understand how and why decisions are made is of
vital importance, thus interoperability and techniques for analysis
gain as much of an importance as the act of solving the problem.
This paper, its algorithms and proposed problems also aims at show-
casing this point. When important and difficult decisions need to
be made our methods must be more than black boxes and must be
as interpretable as possible.

Figure 8: Comparison between a random agent and the Multi-
objective LCS on MOMP

7 CONCLUSION AND FUTUREWORK
7.1 Conclusions drawn
This paper presents a new scalable, flexible benchmark problem
for multi-objective decision making. The problem was based on
the dynamic alternate airport selection problem encountered by
commercial airline pilots and aimed to provide more test problems
in the multi-objective decision-making literature. The multiplexer
and DTLZ problems were combined in order to create a new prob-
lem that is able to satisfy the requirements needed by a benchmark
problem in the field of multi-criteria decision making and also cap-
ture the nuances of the DAAS problem. Based on [21], Learning
Classifier Systems (LCS) are uniquely suited to tackle problems
such as the multiplexer problem. More specifically, problems that
are characterized by heterogeneity and epistasis can be tackled very
well with LCS. Being rule-based methods that make use of genetic
algorithms, they can easily be adapted to a multi-objective purpose
[28] [29]. Furthermore, their rule-based nature makes them more
transparent and interpretable than other popular machine learning
methods, such as deep neural networks [21]. Thus, to solve the
newly presented MOMP, employing and exploring a solution using
an LCS seems like a wise choice.

7.2 Avenues for future work
Regarding future endeavours two main ideas are currently being
considered and developed. First and foremost is to borrow yet again
from RDM and develop analytical tools to better understand and
interpret the behaviour of the intelligent decision support system,
specifically with regards to the multi-objective LCS. The second is
to try and capitalize on the ability of neural networks to generalize
by including them as a part of the LCS The aim is to use ideas
neuroevolution in order to generate rules which are basically neural
networks. With a focus on smaller and more interpretable neural
network the LCS would be leaning on its often neglected attribute
i.e. that it is an ensemble method as well. The ability for even
smaller neural networks to generalize coupled with the LCS ability
to segment and break down larger problems seems to merit further

1682

GECCO ’23 Companion, July 15–19, 2023, Lisbon, Portugal Djartov and Mostaghim

research and would hopefully yield greater success in tackling the
MOMP.

In conclusion, this paper presented a new benchmark problem
for multi-objective decision as well as methods and ideas on how to
tackle it that would hopefully fulfill a much-needed demand within
the field.

REFERENCES
[1] Anne Papenfuss Matthias Wies Boris Djartov, Sanaz Mostaghim. Description

and first evaluation of an approach for a pilot decision support system based
on multi-attribute decision making. In Proceedings of the 2022 IEEE Symposium
Series on Computational Intelligence (IEEE SSCI). IEEE, 2022.

[2] Thomas Cassimon, Reinout Eyckerman, Siegfried Mercelis, Steven Latré, and
Peter Hellinckx. A survey on discrete multi-objective reinforcement learning
benchmarks. In Proceedings of the Adaptive and Learning Agents Workshop (ALA
2022), 2022.

[3] John R Koza. Genetic programming as a means for programming computers by
natural selection. Statistics and computing, 4:87–112, 1994.

[4] Kalyanmoy Deb, Lothar Thiele, Marco Laumanns, and Eckart Zitzler. Scalable
test problems for evolutionary multiobjective optimization. Springer, 2005.

[5] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler. Scalable multi-objective op-
timization test problems. In Proceedings of the 2002 Congress on Evolutionary
Computation. CEC’02 (Cat. No.02TH8600), volume 1, pages 825–830 vol.1, 2002.

[6] Robert J Lempert, David G Groves, Steven W Popper, and Steve C Bankes. A
general, analytic method for generating robust strategies and narrative scenarios.
Management science, 52(4):514–528, 2006.

[7] David G Groves and Robert J Lempert. A new analytic method for finding
policy-relevant scenarios. Global Environmental Change, 17(1):73–85, 2007.

[8] Jan H Kwakkel, Marjolijn Haasnoot, and Warren E Walker. Developing dynamic
adaptive policy pathways: a computer-assisted approach for developing adaptive
strategies for a deeply uncertain world. Climatic Change, 132:373–386, 2015.

[9] Caner Hamarat, Jan H Kwakkel, Erik Pruyt, and Erwin T Loonen. An exploratory
approach for adaptive policymaking by using multi-objective robust optimization.
Simulation Modelling Practice and Theory, 46:25–39, 2014.

[10] BC Trindade, PM Reed, JD Herman, HB Zeff, and GW Characklis. Reducing
regional drought vulnerabilities and multi-city robustness conflicts using many-
objective optimization under deep uncertainty. Advances in Water Resources,
104:195–209, 2017.

[11] Thomas L Saaty. Decision making with the analytic hierarchy process. Interna-
tional journal of services sciences, 1(1):83–98, 2008.

[12] Thomas L Saaty. Fundamentals of decision making and priority theory with the
analytic hierarchy process. RWS publications, 1994.

[13] C-L Hwang and Abu SyedMdMasud. Multiple objective decision making—methods
and applications: a state-of-the-art survey, volume 164. Springer Science & Busi-
ness Media, 2012.

[14] R Venkata Rao and Bhisma K Patel. Decision making in the manufacturing
environment using an improved promethee method. International Journal of
Production Research, 48(16):4665–4682, 2010.

[15] Ali Jahan, Md Yusof Ismail, Faizal Mustapha, and Salit Mohd Sapuan. Material
selection based on ordinal data. Materials & Design, 31(7):3180–3187, 2010.

[16] Peter Vamplew, Richard Dazeley, Adam Berry, Rustam Issabekov, and Evan
Dekker. Empirical evaluation methods for multiobjective reinforcement learning
algorithms. 2011.

[17] Justin Boyan andAndrewMoore. Generalization in reinforcement learning: Safely
approximating the value function. Advances in neural information processing
systems, 7, 1994.

[18] Richard S Sutton. Generalization in reinforcement learning: Successful examples
using sparse coarse coding. Advances in neural information processing systems, 8,
1995.

[19] Alain Dutech, Timothy Edmunds, Jelle Kok, Michail Lagoudakis, Michael Littman,
Martin Riedmiller, Bryan Russell, Bruno Scherrer, Richard Sutton, Stephan Tim-
mer, et al. Reinforcement learning benchmarks and bake-offs ii. Advances in
Neural Information Processing Systems (NIPS), 17:6, 2005.

[20] Stephen R Carpenter, Donald Ludwig, and William A Brock. Management of
eutrophication for lakes subject to potentially irreversible change. Ecological
applications, 9(3):751–771, 1999.

[21] Ryan J Urbanowicz and Will N Browne. Introduction to learning classifier systems.
Springer, 2017.

[22] Ryan J Urbanowicz and Jason H Moore. Learning classifier systems: a complete
introduction, review, and roadmap. Journal of Artificial Evolution and Applications,
2009, 2009.

[23] John H Holland. Complex adaptive systems. Daedalus, 121(1):17–30, 1992.
[24] Chunming Liu, Xin Xu, and Dewen Hu. Multiobjective reinforcement learning:

A comprehensive overview. IEEE Transactions on Systems, Man, and Cybernetics:
Systems, 45(3):385–398, 2015.

[25] Conor F Hayes, Roxana Rădulescu, Eugenio Bargiacchi, Johan Källström,Matthew
Macfarlane, Mathieu Reymond, Timothy Verstraeten, Luisa M Zintgraf, Richard
Dazeley, Fredrik Heintz, et al. A practical guide to multi-objective reinforcement
learning and planning. Autonomous Agents and Multi-Agent Systems, 36(1):26,
2022.

[26] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. A
fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE transactions on
evolutionary computation, 6(2):182–197, 2002.

[27] Félix-Antoine Fortin, François-Michel De Rainville, Marc-André Gardner, Marc
Parizeau, and Christian Gagné. DEAP: Evolutionary algorithms made easy.
Journal of Machine Learning Research, 13:2171–2175, jul 2012.

[28] Ester Bernadó-Mansilla, Xavier Llorà, and Ivan Traus. Multi-objective learning
classifier systems. Multi-Objective Machine Learning, pages 261–288, 2006.

[29] Ryan J Urbanowicz, Randal S Olson, and Jason H Moore. Pareto inspired multi-
objective rule fitness for noise-adaptive rule-based machine learning. In Parallel
Problem Solving from Nature–PPSN XIV: 14th International Conference, Edinburgh,
UK, September 17-21, 2016, Proceedings 14, pages 514–524. Springer, 2016.

1683

	Abstract
	1 Introduction
	2 THEORETICAL BACKGROUND
	2.1 Dynamic Alternate Airport Selection
	2.2 Multi-objective decision making
	2.3 Component problems
	2.4 Learning Classifier systems

	3 Benchmark problem requirements and challenges
	3.1 Requirements
	3.2 Difficulties

	4 Multi-objective multiplexer problem
	4.1 Description
	4.2 Problem construction
	4.3 Requirements satisfaction

	5 Multi-objective Learning Classifier System
	6 Results analysis
	7 Conclusion and future work
	7.1 Conclusions drawn
	7.2 Avenues for future work

	References

