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This contribution explores the potential of control theory for improving system resilience. It is essential that critical 
systems are able to withstand adversarial attacks and other forms of disruption. We discuss how this can be achieved 
through the use of control theory to allocate resources. In this work, control theory – as an established mathematical 
framework – is used to analyse the behaviour of a generic system in order to ensure resilience. Finally, this 
contribution provides an example of a resilient system design that uses control theory and we discuss the advantages 
and disadvantages of the approach, and how it may be implemented to achieve optimal system resilience. 
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1. Introduction 
In recent years, the concept of resilience has 
become increasingly important within the context 
of protecting critical infrastructures. To improve 
the resilience of a system, it is essential to develop 
methods to accurately quantify relevant resilience 
metrics (Häring et al., 2016). This will enable 
decision makers to identify resilience abilities, to 
assess and compare the various resilience 
enhancement options and decide on the best course 
of action. To this end, resilience can be be 
quantified through an evaluation of the system's 
performance during a disruption.  

In this work we want to view the resilience of a 
system from the control theory perspective. From 
that perspective the objective of resilience theory is 
to bring a time-variable system to a certain state, 
called a resilient state. Here, a challenge is the 

imprecise knowledge about the system and various 
influencing variables. A technical solution to this 
challenge is to control such system by feedback. 
This does not necessarily require an accurate model 
of a system, but the measurability of as many 
influencing parameters as possible. The system 
variables of interest are measured and fed back to 
report the current system state, thus creating a 
closed-loop control. To illustrate the application of 
our findings, we use a first order differential 
equation model, describing a generic public 
infrastructure framework (Muneepeerakul 2017). 
Using this model, we show the application of a 
PID-controller to enhance the resilience under 
different conditions. 

2. Background 
The basis of resilient design requires consideration 
of all threats and actions that may occur during 
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operation. At the core, critical infrastructure 
operation can be viewed as a large control system, 
where the objective is to make the infrastructures 
more resilient against a variety of stressors. 
O’Connor et al. (2006) states that “Resilient control 
systems are those that tolerate fluctuations via their 
structure, design parameters, control structure and 
control parameters”. 

Following this, a resilient control system is one that 
maintains state awareness and an accepted level of 
system operationality in response to disturbances. 
This includes threats of an unexpected and 
malicious nature. (Rieger et al., 2009) 

2.1. Resilience and its Terminology 
From a systemic viewpoint, the notions of 
adaptation, learning, and feedback are of interest. 
Though there is not a consensus in the resilience 
literature on tight definitions for these terms 
(Mottahedi et al., 2021). In general, there is still a 
lack of comprehensive, cross-disciplinary 
conceptual treatment of the resilience concept. A 
first approach to unify the terminology is done in 
Mentges et al. (2023). 

Resilience engineering uses many ideas that are 
also found in systems optimization literature. 
(Mayar et al. 2022) Especially in the calculus of 
extrema and nonlinear programming related to 
local and global optima and starting points for 
searches of resilient system states. But engineering 
resilience also borrows from the systems stability 
literature. (Wied, 2019) It concentrates on stability 
near an equilibrium steady state, where resistance 
to disturbance and speed of return to the 
equilibrium are used to measure resilience 
(Holling, 1996). 

Resilience may thus be visualized, analogous with 
global and local minima in systems optimization, 
in terms of a landscape with a single valley (local 
optimum, mostly in engineering resilience) or 
multiple valleys (global optimum, mostly in socio-
ecological resilience), and movement between 
states, equivalent to locations on the topography. 
Some publications describe a ball moving over the 
topography, where the ball location corresponds to 
the system state. (Walker et al., 2004) 

Resilient systems have a system inherent internal 
control and an external management, especially in 

systems with resilience-based design, for example 
described in Cimellaro et al. (2014). This is one of 
the first works to extend the performance-based 
design of systems with a resilience framework. 

2.2. Control Theory and its Terminology 
In control theory, all external factors influencing 
the system are introduced in the form of inputs 
which are classified under two categories—those 
that can be influenced by the engineer and those 
that are not controllable. Contrary to the system 
state, system output indicates the system’s external 
behavior, such as performance, and is normally a 
direct and observable measure of interest to the 
engineer. (Unbehauen, 2000) 

A basic differentiation is made between open-loop 
and closed-loop controls. Open-loop, also known 
as feedforward control or passive control is, where 
the control action is independent of the system 
state/output and is selected upfront. Closed-loop 
(see Fig. 1), also known as active feedback, is 
selected based on the monitoring of the system 
state or output and its subsequent comparison with 
a target (reference/ equilibrium/ steady-state) with 
the help of a control law or objective. 

 

w Reference variable 
e Control difference variable 
y Manipulated variable 
z Disturbance variable 
x Controlled variable 
r Feedback variable 

Fig. 1 Basic Principle of Closed-Loop Control (DIN 
IEC 60050-351). 

Closed-loop control can be further divided into the 
three broad categories of optimal, robust, and 
adaptive controls. Optimal control ensures a 
system optimization around a reference point or 
path. In robust control, the control law does not 
change over time for a certain range of parameter 
uncertainties of the model and is designed to 
optimize stability within a particular domain. With 
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adaptive control, the control law changes over time 
for the system parameter uncertainties of the model 
and is designed to optimize stability for a certain 
criterion (Åström et al., 1987). This is important for 
different resilience strategies. In this work, optimal 
control is used as it is mostly about the general idea 
of system control. The fundamental variable of the 
system which is related to the uncertainty in the 
system environment is the disturbance variable. 

2.3. Resilience and Control Theory 
We dare to integrate these different viewpoints and 
use system thinking, by applying control systems 
theory to enhance the inherent resilience of a 
system. While the two disciplines have different 
objectives, they both aim to ensure that a system is 
reliable and safe. Furthermore, both offer the 
ability to adapt. This means that the system has the 
ability to change itself or its state in accordance 
with defined objective functions. And this adaption 
is better to handle when involving direct feedback. 
A resilient system also needs the ability to return to 
its original state (or another suitable system state to 
be benefitial for the users). 

In resilience engineering, the system models are 
often continuous or discrete linear models 
(including locally linearized nonlinear models). 
Therefore, control theory can be implemented into 
these models. When focusing on resilience theory, 
the aim is to control the system, to return to its 
original state or another suitable state (e.g., 
maximum constant performance). This can be 
achieved by a passive feedback loop within the 
system or by active feedback, that is achieved in 
the form of a closed-loop control action. Here the 
control law does not change, and therefore it is in 
the field of optimal or robust control. 

Following Holling (1996), we define resilience in 
this work as an adaption process where the system 
has the ability to respond to various stressors and 
change through passive and active feedback 
structures. 

Thus, the system state is changed during a 
perturbation and returns to a starting position 
afterwards or transitions to another suitable (stable) 
state or form. 

 

3. Application 
To demonstrate the application of control theory, 
we use a model based on one first order differential 
equation, adapted from Muneepeerakul (2017). 
The original framework focuses on different 
classes of public infrastructure that affect how 
utilities interact with a natural resource. Here, the 
model is stripped down to an interplay between 
infrastructure providers and the state of public 
infrastructure, as visualized in Fig. 2. It should be 
noted, that the general perspective of this model is 
not restricted to any type of critical infrastructure 
or provider. 

 

Fig. 2 Schematic Diagram of the Infrastructure-
Provider-Model. 

In this abstraction, users pay the public 
infrastructure provider based on their revenue. The 
infrastructure provider has a maintenance budget 
based on the revenue and the state of the 
infrastructure depends on the invested money and 
leads to a productivity of the users. We extend this 
model with a varying natural deprecation rate to 
simulate stressors.  

To represent this behavior we use: 

 (1) 

With  

 (2) 

 

As in the original paper, I is the state of the 
infrastructure [Unit I], μ is the maintenance 
effectiveness [I/$], C is the fraction of user revenue 
contributed to maintenance [-], y is the fraction of 
C which infrastructure providers spend on 
maintenance [ - ] and δ is the deprecation rate of the 
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infrastructure [1/T]. Compared to the model in 
Muneepeerakul 2017, the following parameters 
had to be adapted: p as the revenue [$/Product] and 
H(I) maps I to the productivity [Product/T]. This 
adaption was necessary to satisfy the unit balance. 
δ is modelled for different values as 

 (3) 

Here L refers to the increment of the disruption, t1 
refers to the beginning of the disruption and t2 
refers to the end of the disruption. The authors 
assume there is a natural, permanent deprecation 
rate δ0 during normal operation, this might be due 
to wear and tear or natural processes. We further 
assume that various stressors that can affect the 
system lead to an increase in delta. Thus, while the 
disturbance continues, the deprecation rate is 
permanently at a higher level. All activities that can 
be summarized under the "restoration" of the 
system subsequently lead to the fact that the delta 
can be reduced to its original value δ0 again after a 
certain time. 

3.1. Initial Situation 
The system reacts differently to stress, here 
implemented by a changing amount of δ. Fig. 3 
shows the exemplary situation where we look at 
different reactions of the system to stress. The 
initial situation is: μ = 0.001; C = 0.6; y = 0.6, 
I = 3.5; p = 10 and δmax = 0.10 (same as in 
Muneepeerakul (2017)) We then model a stressor 
through the increase of the deprecation rate to 
δmax = 0.11. This small disruption leads to a 
reduced state of the infrastructure [I], while the 
system performance remains unchanged [H].  

This is important to know, because many systems 
are judged by their performance (H) and not by 
their state (I). In this work, in contrast to the 
majority of approaches to resilience assessment, 
we differentiate between performance and the 
system state.  

A slightly larger disruption with a further increased 
δmax = 0.12 leads to a system breakdown, if no 
action is taken quickly enough to lower the 
deprecation rate. A longer disturbance of this 
magnitude leads to system failure. This shows, that 
the resilience of the system likely depends on the 
reaction time of the system, i.e. for reinstating the 

steady state of the system, measures need to be 
implemented quickly. 

 

 

Fig. 3 System performance H(I) and system state I for 
selected disturbances modelled through an increasing δ. 

A further increase of δ leads to an immediate 
collapse of the system, without the possibility to 
take appropriate actions.  

3.2. Open-Loop Controller 
The solution proposed within safety related 
resilience theory is to increase the margin to failure. 
This perspective is close to an open-loop controller. 
Such a controller reacts to pre-defined conditions, 
but is not able to estimate the time or magnitude of 
a disturbance. This leads immediately to the 
question for the amount of margin and of course 
any invest into such resources can be seen as waste, 
as long as nothing happens. 

The situation where the infrastructure provider 
spend various fractions of their revenue on 
maintenance is visualized in Fig. 4, we assume 
y=1.0 is the absolute possible maximum and 
everything between 0.6 and 1.0 is one possible 
approach to the open-loop control. With a larger 
invest in maintenance, the system is safe to these 
disruptions. This seems to enhance the resilience, 
but is not economically smart and additionally a 
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bigger disruption would still lead to a system 
collapse. 

 

 

Fig. 4 System performance (H(I)) and system state I for 
δmax=0.13 with various fractions which infrastructure 
providers spend on maintenance (y). 

The behavior of this open-loop solution is 
visualized in Fig. 5. It represents dI/dt as a function 
of I. This representation is useful because stable 
and semi-stable states of the system, in which 
dI/dt=0 must hold, can be identified very easily. 
For the initial situation (δmax = 0.10, y = 0.6), there 
are three points where this applies to. The point at 
I≈1.7 is semi-stable, because any parameter 
variation will push system away from this state. I≈0 
and I≈3.6 are stable states, because even after a 
variation the system will bounce back to this state. 
Note that in the chart of H, there is nearly no 
difference between y=0.8 and y=0.9, such changes 
are only visible in the chart of I. 

The increase of y from 0.6 to 1.0 leads the system 
from I ≈ 3.6 (Fig. 3) to a new steady state at I ≈ 6, 
because at this point dI/dt = 0. At that point is the 
stable equilibrium between μyCpH(I) and Iδ. Now 
when the disturbance happens, the system only 
moves to I≈5, but there is still a steady state. 
Without this open-loop solution the system 
collapses, because the only steady state is at I = 0 
(δmax = 0.125, y = 0.6). Note that all of this action 
can only be seen when looking at the charts of I, 
the charts of H(I) remain at 100.  

  

Fig. 5 Visualization of dI/dt as a function of I (eq. (1) ) 
to identify stable and meta-stable states. 

It is important to keep the system in a state where 
dI/dt(I) = 0 exists not only for I = 0, because once 
the system state is zero, it is impossible to recover 
from such a stressor. The space of possible 
solutions is pictured in Fig. 6. The figure visualizes 
the highest stable state of the parameter 
combinations y and δ. This can be derived from 
picturing Fig. 5 for every parameter combination.  
From an economical perspective, it would be best 
to optimize the system along the red line, because 
the costs for the infrastructure providers would be 
as low as possible. Also, in such a system the 
smallest disruption would cause a collapse. To 
prevent this, implementing a margin to failure 
would lead to an increase of y in a distance to this 
line. 

 
Fig. 6 System behaviour for a selected range of y 
(fraction the infrastructure provider spends on 
maintenance) and δ (deprecation rate of the 
infrastructure). Below the red line the system collapses.  

3.3. Closed-Loop Controller 
The results of the Open-Loop Controller show , 
that more sophisticated methods and multiple 
criteria should be considered in order to find 
economically viable ways to stabilise the system 
behaviour in anticipation of larger disruptions. In 
reference to the introduced ability of adaptation of 
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a resilient system (see Sec. 2.3), we strive to adapt 
y only when necessary.  

To do that, we introduce a closed-loop controller. 
The most basic implementation is a PID-controller 
with the objective to keep the system performance 
H(I) (controlled variable) at 100 (reference For all 
disruptions. The controller adapts y (manipulated 
variable) depending on the error between H and 
100 (control difference). The controller uses the 
following equation for that: 

 (4) 

With 

 (5) 

Where e is the current error, esum the sum of errors 
and ∆e the change in error. KP is the proportional, 
KI the integral, and KD derivative term coefficient. 
KP, KI, and KD control how fast y is increased when 
a disruption happens and how fast it decreases in 
case of overshooting. This can be due to an 
overshoot in the control algorithm or due the end 
of a disruption. 

 

 

 

 

Fig. 7 System performance H(I) and system state I for 
disturbances δ of various severity. Performance control 
by a feedback PID-controller. 

Using this controller, the fraction which 
infrastructure providers spend on maintenance (y) 
is only increased during the incident. The system 
recovers after the disturbance and maintenance 
efforts can be reduced afterwards.  

A major drawback when looking at system 
performance in reality is the time delay between an 
incident and its consequence. We implemented 
exemplary a delay of 20 timesteps to the controller 
because in reality it is mostly not possible to make 
the system to immediately react to stressors. Due to 
this fact the charts in Fig. 7 are similar to the ones 
in Fig. 3 until the controller reacts. At this time the 
controller recognizes a change and adapts the 
system to the new conditions. This delay is another 
important aspect of the system resilience, as a 
higher delay makes it harder to control the system. 
This implies that a system with shorter dead time is 
more resilient than a system with slow reaction 
times. 

When looking at the system performance H, the 
controller has no deviation to the reference, apart 
from the initial drop in performance due to the 
implemented delay of the controller. The I chart 
(Fig. 7) shows a slightly different picture. The 
system overshoots and is above the desired state of 
~ 3.6 I. This happens at first because the controller 
has to correct the loss in performance and does not 
register the overshoot. The second overshoot 
happens when the stressor disappears. The system 
performance H is already at its maximum so the 
controller does not register the possibility to reduce 
y immediately. The workaround here is to set the 
reference value slightly below that threshold, so 
that an overperformance of the system can be 
detected. We used 99.9 as the reference value here, 
but this is completely up to the controller designer. 

To optimize the described reaction of the system, 
an important part in control-theory comes to the 
tuning of the PID-controller. In Fig. 7 the 
configuration is Kp = 1 10-3, Ki = 0 and 
Kd = 1 10-2. We applied a random number 
sampling method to tune the PID-controller. The 
tuning objective was to minimize the overall 
difference between the measured value for H(I) and 
the target state. 
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For this example of a first order differential 
equation, the only challenge is the deadtime. For 
this task Eq. (6). is sufficient. For a real system, a 
more sophisticated approach to tune the controller 
may be used. In the end, it is very system depended 
how a controller needs to behave. There are also 
many more sophisticated objective functions, but 
this is out of scope here. 

When tuning a controller it is important to respect 
system borders. A bad tuning can lead to an 
unwanted system behavior, for example 
overshooting, as visualized in Fig. 8. Such 
oscillation is in most industrial processes or 
organizational systems not desirable. The cause for 
this behavior here is that the selected Kd component 
is too large and the system starts oscillating even 
with no stressor. 

 

Fig. 8 Misconfigured Feedback Controller H with 
Kp=0.0001 and Kd=0.1. 

3.4. Multiple Stressors 
To improve the system behavior described in Fig. 
7, a feasible way is to control the infrastructure 
state I instead of the system performance H(I).  

Fig. 4 already showed that there are processes in 
this system, that are only visible in the chart of I, 
and this might be the same in reality: It is easier to 
measure the performance of a system than the state, 
but it gives much more insights and possibilities to 
control the system. 

Fig. 9 visualizes a scenario where two independent 
stressors affect the system subsequently. 
Additionally to the control of H(I), described in 
Section 3.3, the control of variable I is pictured in 
this figure. Again, the controller adapts y 
depending on the control difference between I and 
3.6. The main advantage is that a control of the 
infrastructure state has no dead time in this model, 
so it is possible to keep the system at a constant 
state and following that no drop in performance is 
visible. 

 

Fig. 9 Sequence of two Stressors. 

Finally it is to say that system performance is 
mostly a product of the system state and that 
different performance indicators may be more or 
less sensitive regarding the system state. Therefore 
it is very important to assess resilience not on 
system performance but on the system state (I). 
And it is very important, especially when no 
controller is used, to register every stressor. An 
example for that is given in Fig. 9. The first stressor 
increases δ by 0.02 but the system performance 
decreases only to 88. The second stressor increases 
δ by an additional 0.01 to 0.13, but this time the 
system collapses. 

4. Conclusion 
We began to look at resilience from a control 
theoretic point of view, because many terms that 
are used in the resilience literature are borrowed 
from system theoretic thinking and from a very 
top-level, infrastructures can be seen as controlled 
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systems with the objective to maintain a minimum 
productivity during disruptions.  

We presented an safety-related approach using an 
open-loop controller and a more resilience-related 
approach using a closed-loop control example at a 
first order differential equation model and 
evaluated its resilience enhancement. 

To enhance the resilience of a system, one 
approach is the implementation of feedback control 
loops. Relatively simple approaches may already 
lead to a more resilient system behaviour. Our 
initial results for such approaches show, that it is 
important to consider damping-effects and dead-
time of such feedback loops. However, it should be 
noted, that the implementation of control-loops is 
generally also feasible for more complex systems 
which are not described in differential-equation 
based models.It is to be discussed how sensitive 
such controllers need to be and this is very system 
dependent. For some systems it is necessary to act 
drastically (e.g. higher Kp or Kd) and other systems 
allow a more moderate (e.g. lower Kp or Kd) 
controller setting. A controller that is too sensitive 
tends to overshoot and oscillate, this is not 
desireable, but a more inert controller might be too 
slow to save the system from collapse. 

The presented procedure shows potential for a 
possible adaptive control to enhance the resilient 
capabilities. An important aspect in particular is the 
observation of the infrastructure state instead of 
indirectly observing the performance. Further work 
may consider other, more complex systems and 
investigate methods for optimizing the adaptive 
control. 
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