
TOWARDS A CLOSED-LOOP DATA COLLECTION AND PROCESSING
ECOSYSTEM

T. Haase∗, R. Glück∗, D. Görick∗, P. Kaufmann∗, F. Krebs∗, M. Mayer∗
∗ German Aerospace Center (DLR), Institute of Structures and Design, Am Technologiezentrum 4, 86159

Augsburg, Germany

Abstract
The German Aerospace Center (DLR) in Augsburg demonstrates the use of the shepard data management
system using the example of robot-controlled production of an aircraft upper-shell with thermoplastic tape-
laying processes. In the process, measured data from production and quality assurance is automatically gathered,
interconnected and stored centrally. The data can then be searched and evaluated in shepard or analyzed in
external applications.

Keywords
Research Data Management, Data Analysis, Quality Assurance, Automated Fiber Placement

NOMENCLATURE

API Application Programming Interfaces

CAD Computer-Aided Design

CI/CD Continuous Integration / Continuous De-
livery

CSV Comma-Separated Values

DRG Data Reference Generator

HTTP Hypertext Transfer Protocol

JSON JavaScript Object Notation

JWT JSON Web Token

KRC Kuka Robot Control

MFFD Multi Functional Fuselage Demonstrator

MTLH Multi-Tow Laying Head

OPC UA Open Platform Communications Unified
Architecture

PLC Programmable Logic Controller

REST Representational State Transfer

sTC shepard Timeseries Collector

T-AFP Thermoplastic in-situ Automated Fiber
Placement

TCP Tool Center Point

TIFF Tagged Image File Format

TPS Tape Placement Sensor

1. MOTIVATION

Modern industrial production processes as well as re-
search experiments consist of complex sub-processes
distributed over multiple systems and carried out by
different actors [1]. This results in a complex scenario
where it is difficult to know which data set belongs
to a particular produced part. These difficulties be-
come apparent when the data is to be analyzed to gain
knowledge about a part. Some data are in the form of
time series and can only be assigned over time, which
may be unknown for that part. Other data is in files,
but is attached to either a sub component or the entire
product, so the data must be extracted and collected
from one or more files. Sometimes the data is even
stored across different machines. All these aspects in-
crease the effort required to review and analyze the
data and also contradict the FAIR principles [2]. To
address these issues, we developed a centralized data
management solution called storage for heterogeneous
product and research data (shepard), formerly known
as integrated data management system (iDMS) [3].
Shepard is already used to collect, store, and manage
data in various scenarios [4–7]. With a central stor-
age solution in place it is now easy to collect data
across large projects. This paper describes different
approaches to analyzing the data stored in shepard,
illustrated by the example of automated production of
the upper shell of a single aisle aircraft. This allows
correlations to be revealed between events during the
process and variations in the quality of finished parts,
as well as estimations of part quality based on data
from production.

1

Deutscher Luft- und Raumfahrtkongress 2023
DocumentID: 610241

©2023 doi: 10.25967/610241

https://orcid.org/0000-0001-6285-3242
https://orcid.org/0000-0001-7909-1942
https://orcid.org/0009-0008-0806-0936
https://orcid.org/0000-0003-1181-7211
https://orcid.org/0000-0001-6033-801X
https://orcid.org/0000-0002-4448-9501
https://doi.org/10.25967/610241


FIG 1. 8 x 4 m thermoplastic skin for the upper shell
of a single aisle aircraft (top). Overview of the
Computer-Aided Design (CAD) design with no-
table features (bottom).

2. USE CASE

In the scope of the Multi Functional Fuselage Demon-
strator (MFFD) project funded by the EU and embed-
ded in the joint undertaking Clean Sky 2, the upper
shell of a single aisle aircraft was build at the Cen-
ter for Lightweight Production Technology in Augs-
burg. The gist was to manufacture the shell using
only thermoplastic materials to facilitate a dustless as-
sembly. Because thermoplastic materials are malleable
at certain high temperatures two components can be
joined by welding. Dust-sensitive subassemblies pre-
equipped with system and cabin elements can be in-
corporated in the dustless welding assembly line using
this thermoplastic approach [8].
The key advantage of using thermoplastic materials
in skin manufacturing is that no further process step
is needed after the tape has been applied. In the
traditional process, however, another process step is
required by means of covering the skin with a vac-
uum bagging and putting the skin into an autoclave.
The pressure and additional resin smooths minor de-
fects. Skipping the autoclave saves time and reduces
major costs. But to retain these advantages the tape
placement has to be precise and flawless. Therefore,
monitoring parameters and determining quality is a
key enabler for thermoplastic in-situ automated fiber
placement (T-AFP) [9].
There are four main steps involved to build the shell:
1. skin placement and steps 2.-4. which use different
welding technologies to integrate stringers (2.), frames
(3.) and cleats (4.) for stiffening the shell [10]. This
paper focuses on the skin placement production step
and its data collection and processing.
The skin was manufactured in full-scale with a length
of 8 m and a diameter of 4 m (Fig 1 top). The buildup

FIG 2. MTLH descriptions

FIG 3. Process camera during layup and highlighting of
one track and its tapes

of the skin comprises areas with different thicknesses
to reinforce the door corners, buttstrap and antenna
patch. The thickness varies from 1.6 mm to 12.5 mm
(Fig 1 bottom). The multi-tow laying head (MTLH)
(Fig 2) is capable of depositing three tapes in parallel
(Fig 3). A path planning software divides each layer
into tracks of 3 tapes and delivers the robot programs
which are then executed by a ceiling mounted KUKA
KR270 R2700 on a rail. The skin build up is divided
into 53 ply groups, each consisting of one up to ten
plies. The smallest unit is one track consisting of 3
tapes and can vary in length from about 0.3 m to 11.5
m. The tracks are adjacent to each other so that one
ply can comprise 10 to 244 tracks.
The data sources of this particular use case can be di-
vided into three categories: timeseries data, file based
data and key-value pairs. The Kuka Robot Control
(KRC), MTLH and tape placement sensor (TPS) pro-
vide timeseries data, whereas the TPS also supplies
files. In addition, notes of the machine operator are
available as well but have to be preprocessed to be-
come machine-readable in form of key-value pairs.
The measurement principle of the TPS (cf. Fig 2) is
based on laser triangulation. A line laser is deflected
by a mirror onto the surface/track and the reflection
is recorded by a camera. Every 2 mm a height profile
of the just placed track is triggered by the robot and
calculated by the camera. At the end of each track
all height profiles are stored in a 16 bit Tagged Image

2

Deutscher Luft- und Raumfahrtkongress 2023

©2023



FIG 4. Gaps between tracks of one ply

File Format (TIFF) file. The corresponding recording
positions with six degrees of freedom are retained in
a Comma-Separated Values (CSV) file. Both files are
essential to locate results in the part coordinate sys-
tem, which enables superposition of part design and
defects in CAD. To detect defects the 16 bit TIFF file
is evaluated with computer vision algorithms, for more
details refer to [11]. Defects are gaps and overlaps of
different sizes between tracks and tapes; this paper fo-
cuses on gaps between tracks. Fig 4 depicts the gap
results for the penultimate ply with full coverage of
the 4 x 8 m long mould.
One major objective is to find correlations between
different data sources which may lead to the ability to
identify causality. If two or more data sources show a
dependence on each other a selective parameter study
can be conducted to improve the tape laying process
and therefore the skin quality.

2.1. Setup

The system was set up so that most of the data can
be collected automatically. A more elaborate descrip-
tion than the present one, referring also to shepard
specific details, can be found in [4]. While the inter-
nal communication is mainly done via ProfiNet, the
MTLH, the KRC as well as the programmable logic
controller (PLC) of the robot cell provide data via
Open Platform Communications Unified Architecture
(OPC UA). These values are provided continuously
over time, hence they are called time series data. To
gather the data and send it to the local shepard in-
stance, the OPC Router software1 was used. A python
script scans all OPC UA servers available and exports
the discovered nodes into a CSV file. Concerning the
use case the servers are the MTLH with nodes for laser
power, tape temerature, tape cut, etc., the KRC with
nodes for speed, temperatures, movement state, po-
sition etc. and the TPS with nodes for defect size,
location, width, etc. Relevant nodes can be selected
by hand and imported into the OPC Router configura-
tion. In addition, the OPC Router was configured to
send incoming data directly to shepard to be stored in
a timeseries container. Contextualization in shepard

1https://www.opc-router.de/

via timeseries references can be done later on, thus no
further configuration is necessary. The final configu-
ration consists of 210 variables updated at up to 15
Hz. By default, the OPC Router forwards every sin-
gle incoming value, resulting in a maximum of 3150
values per second. This is enough to keep the mea-
surement computer that runs the OPC Router busy
and to overload the server on which shepard is run-
ning. It became apparent that InfluxDB as well as
the shepard backend together need more than 64 GB
of memory to handle this specific workload. The load
could be significantly reduced by combining the most
recent values into a bulk and sending them to shepard
once every few seconds.
When the machine operator starts the robot program,
one ply group is manufactured automatically. To keep
track of the overall process, a python script called Data
Reference Generator (DRG) is subscribed to the KRC
via OPC UA. Before each track is started, the robot
notifies the DRG about the actual ply and track to be
manufactured. The DRG knows the overall structure
as well as the current state of the process. Therefore,
it can create the necessary data objects in shepard ac-
cordingly. Also, the DRG knows when a process step
begins and ends, and can therefore create the respec-
tive timeseries references in shepard.
The data collection of the TPS is started at each track
beginning via the technology package EthernetKRL
from KUKA. The TPS software is also connected to
the DRG and receives the relevant data object and file
container identifier via OPC UA to upload the mea-
surement data to a file container linked to the track
specific data object in shepard at the end of each track.
The data comprises four CSV files and one 16 bit TIFF
file.
Besides the automated gathering and uploading of
data, there is another source of data that cannot
be automatically processed and attached to a data
object. This data source consists of manually written
notes of the machine operator. These notes contain
information about manual rework or maintenance
of the MTLH like material storage or consolidation
roller change. The information written in these notes
are transferred as key-value pairs to a CSV which can
be processed by a script to attach these attributes to
each corresponding data object respectively track in
shepard. This allows for fast filtering of data objects,
for example to identify all tracks with a specific
attribute of interest.

2.2. Resulting dataset

The resulting dataset contains everything that was col-
lected during the experiments. This dataset is entirely
stored in shepard and can be explored using the web
frontend.
A well designed structure of collections, data objects,
and references (see again [4] for details concerning
shepard’s data structure) is helpful when working
with any unknown data. Our approach to such a
structure is a hierarchical one. There is only one

3

Deutscher Luft- und Raumfahrtkongress 2023

©2023

https://www.opc-router.de/


Collection
Layup

Ply Group 1
Ply 1

Track 1
Track 2
...
Track n

...
...

FIG 5. Structure of the resulting dataset

container of each type, i.e. a file container, a time-
series container and a container for structured data.
Multiple containers per type would be necessary to be
able to set up different permissions for different data
sets, but for this use case one container per type was
sufficient. Furthermore, a single collection was created
which includes the entire part to be assembled. The
layup process is one step of several assembly steps.
Therefore, a root data object called Layup was created
which combines everything related to the experiments
described above. The Layup data object is a parent
object to other data objects representing different
ply groups. The ply groups themselves are parents
of the respective layers, which in turn are parents of
the various tracks. Each layer and track is connected
to its respective predecessors and successors via the
corresponding relationship in shepard. Fig 5 shows
the resulting structure.
Some data objects within this structure have relevant
information stored in the form of attributes. Tracks,
for example, are provided with the information if a
material storage change was conducted or in which
adjacent direction the predecessor track was placed,
left or right. Furthermore, each record (timeseries,
file, structured data) is linked to the corresponding
data objects via the associated reference type. This is
easy to do with atomic data such as files or structured
data. Timeseries, on the other hand, by definition do
not have a start or end time, so each timeseries refer-
ence has to define these timestamps. For example, all
tracks refer to the same tape temperature timeseries
but each timeseries reference is assigned a different
start and stop time. With this reference approach,
the payload data can be kept separate from the orga-
nizational data, and the need for duplicate data can
be reduced. It is possible to link all track data objects
to the same TPS calibration file stored in the file con-
tainer, because the calibration routine was done only
once prior to the tape laying start.
By using the TPS files stored in shepard, an evalu-
ation pipeline for each track can be executed result-
ing in a file with coordinates and corresponding gap
sizes. All files of one ply can be plotted as point cloud
as Fig 6 visualizes. The depicted ply 4 will serve as
concrete example to demonstrate some capabilities of
shepard. Fig 6 is plotted by the CAD programm Ca-
tia V5. The gaps can be investigated by rotating and

FIG 6. Gaps between tracks of ply 4 in plygroup 4

zooming in but the interpretation is limited because
additional information, like compaction roller change
has to be integrated manually. Shepard supports ef-
fective solutions to explore data in a more efficient way
as described in the following sections.

3. TOOLS FOR EXPLORATORY DATA ANALY-
SIS

When it comes to working with uploaded data it is
mandatory to have a tool for exploring data and get-
ting a first impression of its shape and dimensionality.
To fulfill this need of data exploration, shepard has its
own tools for visualizing all kinds of data types.
The exploration process often starts with gaining an
overview of the available data structures and payloads.
While the default view of the shepard frontend allows
for easy navigation and displays a lot of details in text
form, a graphical representation of the entire project
structure can be helpful in certain situations. There-
fore, we have developed an interactive graph view that
allows to get a quick overview of the data objects and
their relations to each other (see Fig 7).

FIG 7. Interactive graph representation of the entire pro-
cess structure with all plies and tracks.

This type of visualization was inspired by the graphi-
cal interface of the neo4j database. A graph shows the
data objects of a collection, starting with the top-level
objects without a parent. Each data object can be
expanded to show its child objects. For large projects
with many data objects, it may not be practical to dis-
play such a large number of data objects for detailed

4

Deutscher Luft- und Raumfahrtkongress 2023

©2023



FIG 8. Interactive graph of a collapsed project structure.
A single node (here ply 4) is shown in its expanded
shape for a more detailed view.

interaction. Hence, the nodes can be individually ex-
panded and collapsed so that separate branches of the
project graph can be explored. One example of how a
collapsed structure of a large project may look like can
be seen in Fig 8. While red arrows represent parent-
child relationships, blue arrows indicate predecessor-
successor relationships. The graph view is built using
the open source vis-network library2 and is rendered
entirely by the client’s web browser at runtime.
Another important part of exploring data in the shep-
ard frontend is the visualization of the referenced data.
Six different reference types are used for storing differ-
ent kinds of data. These reference types are called
structured data-, file-, timeseries-, URI-, data object-
and collection references. In addition to the aforemen-
tioned graph structure for visualizing data objects and
collection data relationships, shepard provides differ-
ent visualization options for the rest of the data types.
While URI data consist of a web link and do not need
complicated visualization, we developed a modal for
structured data. This special designed editor modal
uses the JSON format of the structured data to visu-
alize the data in a fast and efficient way. By integrating
an advanced JSON editor3 even lager JSON structures
can be explored easily.
Data of experiments are often recorded and uploaded
in the timeseries data format. Timeseries data have
the advantage to be already in an easy accessible for-
mat since time can be used as x-axis value and the
measured data can be used as y-axis value. The shep-
ard timeseries plotting modal makes use of this charac-
teristics and uploaded data can immediately be visual-
ized. The visualized data appear in an separate modal
which offers the option to save the plot to the local
system in order to use the visualization in presenta-
tions or in scientific work. An exemplary visualization

2https://github.com/visjs/vis-network
3https://github.com/josdejong/jsoneditor

of a tape temperature which was measured during a
production process in the MFFD project can be seen
in Fig 9.

FIG 9. Timeseries data visualization. Tape temperature
during a production process.

When it comes to file reference data, shepard is able
to differentiate between images, JSON, plain text and
CSV data. Text files and images are visualized by us-
ing a blank modal and simply displaying the content
of the data package in this modal. For JSON files,
the aforementioned JSON editor is reused. In contrast
to these, visualizing CSV data is a more complicated
task. For the investigation of CSV data, shepard pro-
vides the option to open the data packages as plane
text (similar to the visualization of figures and text
data), as a table or in a modal which enables the user
to create a visualization in form of a plot. CSV files
can have headers in different shapes, use different kinds
of delimiters and store values with decimal commas or
decimal points. Due to the huge range of possible CSV
data shapes the plotting modal in shepard is able to
query data-shape-related information from the user in
order to be able to parse the CSV data correctly (see
Fig 10). This modal allows to define a row in which to
start the parsing, to set a specific delimiter, to define
if there is a header in the data file and to define its
shape. The data is parsed accordingly to the informa-
tion provided by the user and shepard automatically
gives names to all identified columns (’Col1’, ’Col2’, ...
’Col n’) if the CSV file has no header.
The result of the parsing process is then displayed in a
table below the parsing options. As soon as different
columns are found, the user can select one column to
be used as x-axis values and one or multiple columns
for y-axis values. Finally the data can be visualized
in the previously mentioned visualization modal (see

FIG 10. Modal for parsing and visualizing CSV data.

5

Deutscher Luft- und Raumfahrtkongress 2023

©2023

https://github.com/visjs/vis-network
https://github.com/josdejong/jsoneditor


FIG 11. Visualization of exemplary CSV data.

Fig 11). In contrast to Fig 9 this figure shows a screen-
shot of the modal and not the exported visualization
plot. The modal has a save button on its lower left
side and a button to close the visualization on its lower
right side.

4. ADVANCED DATA ANALYSIS

The web frontend provides easy access to the available
data and allows exploration without any additional
tools or knowledge. However, a more detailed analysis
is not within the scope of the frontend, as more spe-
cific tools show a better performance for this kind of
task. This includes in-depth analysis of existing time-
series, evaluation of uploaded images or dashboarding
applications for a live preview of the available data.
Other tools can access the data either directly via
the REST API or more easily via provided software
libraries. The source code of the shepard backend is
automatically analyzed to create an precise OpenAPI
specification of the provided REST endpoints [12].
This specification can be used as documentation, but
also to automatically generate clients that are com-
patible with the specified server. We included a build
step into our Continuous Integration/Continuous
Delivery (CI/CD) pipeline that makes use of the
OpenAPI Generator4 to generate various clients for
Python, Java, Typescript, and C++. These client
libraries are automatically uploaded to Gitlab and
provided there as part of the shepard repository.
The shepard API is protected using OpenID Connect5
which builds on top of OAuth 2.06 [13]. Using modern
web techniques allows easy identification of the user.
For example, the shepard frontend uses OpenID Con-
nect to authenticate the user. While this works well in
a web browser environment, OpenID Connect cannot
be easily utilized by machines or scripts. Therefore,
shepard offers an alternative authentication function
with static API keys. These API keys are JSON Web
Tokens (JWT) signed by the shepard backend [14].
From the moment an API key is created up to its
deletion, the key can be used to authenticate the user.
This makes API keys the ideal solution for analytic
applications such as those described next.

4https://openapi-generator.tech/
5https://openid.net/developers/how-connect-works/
6https://oauth.net/2/

With these client libraries it is easy to develop small
analysis scripts or even large applications for individ-
ual processes. For example, Jupyter Notebooks7 can
be used to display and compare timeseries data.
The following example extends the previous setup to
display the measured temperature of the tape laying
head. First, the web frontend was used to identify
a ply of interest. For this example, a large ply was
chosen that covers much of the shell. After the se-
lection process a Jupyter notebook was set up to re-
trieve all tracks for that ply. The shepard API allows
selection of data objects by parent id so the data as-
sessing can easily be done with a single query. There
is only one timeseries reference per track which holds
all timeseries data. The timeseries payload data can
be filtered in a way that only selected timeseries are
included in the response. This helps to reduce the
memory footprint on the client side. The timeseries in
question were previously chosen via the frontend. In
this case, we select the coordinates of the Tool Center
Point (TCP) of the robot and the measured tempera-
ture of the MTLH. Since these values were measured
independently, resampling is required to get match-
ing values at a single point in time. The InfluxDB
already provides this functionality, which in turn is
also provided by the shepard API. The temperature
values can be plotted in relation to the TCP values
using the Plotly Express library8. The resulting plot
can be seen in Fig 12. In this plot it can be seen that
the temperature is relatively steady in the main area
of the measurement but also single errors are visible
where the process did not work properly (Fig 12, diag-
onal violet line of dots). In addition, the start-up and
shut-down phases of can be easily identified as their
temperature is lower than during the main phases.

FIG 12. Temperature graph showing the measured tem-
perature of the placed tape in relation to the cur-
rent TCP position.

A different approach builds upon Dash Open Source9.
Similar to Jupyter, Dash allows the creation of inter-
active plots. While Jupyter combines the source code
with the respective output in form of a notebook, Dash
creates an interactive web page and hides the source
code from the user. It is also possible to embed input
forms on the web page so that the user can interact
with the data and navigate through structures. Thus,

7https://jupyter.org/
8https://plotly.com/python/plotly-express/
9https://github.com/plotly/dash

6

Deutscher Luft- und Raumfahrtkongress 2023

©2023

https://openapi-generator.tech/
https://openid.net/developers/how-connect-works/
https://oauth.net/2/
https://jupyter.org/
https://plotly.com/python/plotly-express/
https://github.com/plotly/dash


FIG 13. Dash Application displaying gaps and roll changes

simple analysis tools can be built easily. The example
shown in Fig 13 displays the measured gaps between
different tracks. Because of differences in the tape lay-
ing quality, it was suspected that the change of the
compaction roller influenced the formation of gaps be-
tween tracks. What was previously difficult to visual-
ize can now be easily done in a dash app. The change
of the compaction roller is stored as an attribute of the
track. This information can be displayed in the form
of highlights in the point cloud.
In contrast to many CAD programs as depicted in
Fig 6, approaches such as Dash and Jupyter are gener-
ally considered more flexible and, at least for computer
and data scientists, more openly accessible. Thus, it
is easily possible to take various types of data into ac-
count. The Jupyter example (Fig 12) relies entirely on
time series data while the Dash example (Fig 13) uses
annotations to enrich the information in point clouds
from files.
Although shepard receives incoming data in batches
rather than instantaneously, the delay is still short
enough for dashboards to display live data. A
low-code option for creating such a dashboard is
Grafana10 in combination with the Infinity Data-
source plugin11. The Infinity Datasource plugin can
be configured to fetch data directly from shepard via
the provided REST API. Configured accordingly, the
HTTP requests contain both necessary headers such
as the API key, and query parameters for the filtering
of the timeseries. This way, only necessary data is
fetched and processed, which leads to an increase in
performance. The setup can be configured to fetch the
data at specific intervals so that sufficient up-to-date
data is always visible. An example of this setup can
be seen in Fig 14. It shows the most recent robot
movements as axis position in degrees.

5. CONCLUSION

This paper shows some approaches how data in shep-
ard can be analysed during and after the process. This
was done using a real-life application of an automated
production process. It was made clear how state-of-
the-art systems can be connected to shepard in order

10https://grafana.com/
11https://sriramajeyam.com/grafana-infinity-datasource/

FIG 14. Grafana Dashboard displaying robot movements

to efficiently collect data of all kinds. Data processing
was made as seamless and automated as possible in
order to be traceable and error resistant. It became
apparent how important it is to have a well-designed
data structure in shepard so that subsequent analy-
sis steps can easily and intuitively access data of all
scopes. The shepard frontend provides generic tools
for reviewing data, but sophisticated data science tools
are needed to address specific questions. Shepard pro-
vides a convenient way for these tools to access the
data in question through its API. This way we were
able to show the influence of the change of the com-
paction roller on the formation of gaps and overlaps
between the tracks and thus on the quality of the fin-
ished part.
We have also identified some aspects that can be im-
proved. First, there is the collection of time series
data. The more data that is to be written to shepard,
the more important it is to aggregate multiple data
points into one request to reduce the load on both
shepard and the network along the way. The OPC
Router works event based, therefore it is not impossi-
ble but cumbersome to configure that the data is sent
in batches. At the Center for Lightweight Production
Technology in Augsburg, we have developed an appli-
cation that is tailored exactly to this use case. The
shepard Timeseries Collector (sTC)12 can be used as
an edge device to collect data from different sources
and send it in batches to shepard. We plan to test
this software in a larger use case in the future. Fur-
thermore, the DRG can be improved. At the moment,
the DRG is a command line tool that runs in the back-
ground. In the future, this could be extended with a
graphical user interface so that the operator can di-
rectly see the current state as well as manually cre-
ate annotations or influence the process. This could
replace the handwritten notes including the resulting
parse and import process.

Contact address:

tobias.haase@dlr.de
12https://gitlab.com/dlr-shepard/shepard-timeseries-collect

or

7

Deutscher Luft- und Raumfahrtkongress 2023

©2023

https://grafana.com/
https://sriramajeyam.com/grafana-infinity-datasource/
mailto:tobias.haase@dlr.de
https://gitlab.com/dlr-shepard/shepard-timeseries-collector
https://gitlab.com/dlr-shepard/shepard-timeseries-collector


References

[1] C. Frommel, F. Krebs, T. Haase, M. Vis-
tein, A. Schuster, L. Larsen, M. Körber,
M. Malecha, and M. Kupke. Automated man-
ufacturing of large composites utilizing a pro-
cess orchestration system. Procedia Manu-
facturing, 51:470–477, 2020. ISSN: 23519789.
DOI: 10.1016/j.promfg.2020.10.066.

[2] Mark D. Wilkinson, Michel Dumontier, IJs-
brand Jan Aalbersberg, Gabrielle Appleton,
Myles Axton, Arie Baak, Niklas Blomberg, Jan-
Willem Boiten, Luiz Bonino da Silva Santos,
Philip E. Bourne, Jildau Bouwman, Anthony J.
Brookes, Tim Clark, Mercè Crosas, Ingrid Dillo,
Olivier Dumon, Scott Edmunds, Chris T. Evelo,
Richard Finkers, Alejandra Gonzalez-Beltran,
Alasdair J.G. Gray, Paul Groth, Carole Goble,
Jeffrey S. Grethe, Jaap Heringa, Peter A.C ’t
Hoen, Rob Hooft, Tobias Kuhn, Ruben Kok,
Joost Kok, Scott J. Lusher, Maryann E. Mar-
tone, Albert Mons, Abel L. Packer, Bengt
Persson, Philippe Rocca-Serra, Marco Roos,
Rene van Schaik, Susanna-Assunta Sansone, Erik
Schultes, Thierry Sengstag, Ted Slater, George
Strawn, Morris A. Swertz, Mark Thompson, Jo-
han van der Lei, Erik van Mulligen, Jan Vel-
terop, Andra Waagmeester, Peter Wittenburg,
Katherine Wolstencroft, Jun Zhao, and Barend
Mons. The FAIR Guiding Principles for scien-
tific data management and stewardship. Scientific
Data, 3(1):160018, Mar. 2016. ISSN: 2052-4463.
DOI: 10.1038/sdata.2016.18.

[3] Tobias Haase, Roland Dr. Glück, Patrick
Kaufmann, and Mark Willmeroth. shepard
- storage for heterogeneous product and re-
search data, July 2021. Language: en.
DOI: 10.5281/ZENODO.5091604, https://zenodo
.org/record/5091604.

[4] F. Krebs, M. Willmeroth, T. Haase, P. Kauf-
mann, R. Glück, D. Deden, L. Brandt, and
M. Mayer. Systematische Erfassung, Verwaltung
und Nutzung von Daten aus Experimenten. page
8 pages, 2021. Publisher: Deutsche Gesellschaft
für Luft- und Raumfahrt - Lilienthal-Oberth e.V.
DOI: 10.25967/550315.

[5] F. Dressel, M. Rädel, A. Weinert, M. Struck,
T. Haase, and M. Otten. Common Source &
Provenance at Virtual Product House: Integra-
tion with a Data Management System. page 7
pages, 2022. Publisher: Deutsche Gesellschaft
für Luft- und Raumfahrt - Lilienthal-Oberth e.V.
DOI: 10.25967/570066.

[6] A. Schuster, M. Mayer, M. Willmeroth,
L. Brandt, and M. Kupke. Inline Qual-
ity Control for Thermoplastic Automated
Fibre Placement. Procedia Manufactur-
ing, 51:505–511, 2020. ISSN: 23519789.
DOI: 10.1016/j.promfg.2020.10.071.

[7] Alfons Schuster, Monika Mayer, Lars Brandt, Do-
minik Deden, Florian Krebs, and Michael Kupke.
Inline Quality Control for Thermoplastic Auto-
mated Fiber Placement by 3D Profilometry. In
Proceedings SE Conference 21 Baden / Zürich,
Sept. 2021.

[8] Dominik Deden, Lars Brandt, Olivia Hellbach,
and Frederic Fischer. Upscaling of in-situ Au-
tomated Fiber Placement with LM-PAEK - From
Panel to Fuselage. In ECCM 2022 - Proceedings
of the 20th European Conference on Composite
Materials: Composites Meet Sustainability, June
2022.

[9] M. Mayer, A. Schuster, L. Brandt, D. Deden, and
F. Fischer. Integral quality assurance method for
a CFRP aircraft fuselage skin: Gap and over-
lap measurement for thermoplastic AFP. Lec-
ture Notes in Mechanical Engineering, accepted,
to appear. 32nd International Conference on Flex-
ible Automation and Intelligent Manufacturing
(FAIM2023).

[10] Frederic Fischer, Manuel Endraß, Dominik De-
den, Lars Brandt, Manuel Engelschall, Philipp
Gänswürger, Monika Mayer, Michael Vistein,
Manfred Schönheits, Alfons Schuster, Stefan
Jarka, Simon Bauer, Olivia Hellbach, Lars-
Christian Larsen, Michael Kupke, and Stefan Fer-
stl. How to Produce a Thermoplastic Fuselage. In
Axel Herrmann, editor, ITHEC 2022, 6th Interna-
tional Conference & Exhibition on Thermoplastic
Composites, volume 6 of International Conference
& Exhibition on Thermoplastic Composites. M3B
GmbH, Bremen, Germany, Oct. 2022.

[11] M. Mayer, A. Schuster, L. Brandt, D. Deden,
F. Fischer, D. Schmorell, and M. Vistein. Qual-
ity Assured Aircraft Fuselage Production: Data
Evaluation of a Quality Control Sensor for Ther-
moplastic Automated Fiber Placement. page 5
pages, 2022. Publisher: Deutsche Gesellschaft
für Luft- und Raumfahrt - Lilienthal-Oberth e.V.
DOI: 10.25967/570129.

[12] Darrel Miller, Jeremy Whitlock, Marsh Gardiner,
Mike Ralphson, Ron Ratovsky, and Uri Sarid.
OpenAPI Specification V3.1.0, Feb. 2021. Pub-
lication Title: OpenAPI Specification v3.1.0. ht
tps://spec.openapis.org/oas/v3.1.0.

[13] Dick Hardt. The OAuth 2.0 Authorization Frame-
work, Oct. 2012. Issue: 6749 Num Pages: 76
Series: Request for Comments Published: RFC
6749. DOI: 10.17487/RFC6749, https://www.rf
c-editor.org/info/rfc6749.

[14] Michael B. Jones, John Bradley, and Nat
Sakimura. JSON Web Token (JWT), May
2015. Issue: 7519 Num Pages: 30 Series:
Request for Comments Published: RFC 7519.
DOI: 10.17487/RFC7519, https://www.rfc-edito
r.org/info/rfc7519.

8

Deutscher Luft- und Raumfahrtkongress 2023

©2023

https://doi.org/10.1016/j.promfg.2020.10.066
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.5281/ZENODO.5091604
https://zenodo.org/record/5091604
https://zenodo.org/record/5091604
https://doi.org/10.25967/550315
https://doi.org/10.25967/570066
https://doi.org/10.1016/j.promfg.2020.10.071
https://doi.org/10.25967/570129
https://spec.openapis.org/oas/v3.1.0
https://spec.openapis.org/oas/v3.1.0
https://doi.org/10.17487/RFC6749
https://www.rfc-editor.org/info/rfc6749
https://www.rfc-editor.org/info/rfc6749
https://doi.org/10.17487/RFC7519
https://www.rfc-editor.org/info/rfc7519
https://www.rfc-editor.org/info/rfc7519

	Nomenclature
	Motivation
	Use Case
	Setup
	Resulting dataset

	Tools for Exploratory Data Analysis
	Advanced data analysis
	Conclusion



