Masters of Flow Visualization Short Course, 08-09 July 2023, TU-Delft (NL) https://www.isfv20.org/home/mfv

EVENT-BASED IMAGING VELOCIMETRY - AN INTRODUCTION

Christian E. Willert

DLR Institute of Propulsion Technology, Koeln, Germany

Outline - Event-based Imaging Flow Velocimetry

- Introduction to concepts of event-based imaging (EBI)
- Application to particle imaging \rightarrow Event-based imaging velocimetry (EBIV)
- EBIV Applications
 - flow visualization
 - global flow field measurements
 - velocity profile measurement
- Sample results
- Application to TU-Delft Jet Plume
- Summary & Outlook

Further Reading: Event-based Imaging Velocimetry (EBIV)

EBIV - Event-based Imaging Velocimetry

Exp.Fluids 63:101 (2022) https://doi.org/10.1007/s00348-022-03441-6 Event-based imaging velocimetry using pulsed illumination

Exp.Fluids 64:98 (2023) https://doi.org/10.1007/s00348-023-03641-8

What is Event-based Vision (EBV) ?

- also known as "Dynamic Vision Sensing" (DVS) or "Neuromorphic Imaging" also: "silicon retina", Carver Mead & Misha Mahowald, Caltech, 1990's
- fairly new technology, still under development (very active since ~2010, ETHZ/Uni Zurich)
- several commercial vendors
- records only contrast changes on the pixel level \rightarrow asynchronous data stream
- does not record image frames (completely different from frame-based imaging) → paradigm shift regarding data / "image" processing
- typical applications aimed at real-time processing
 - simultaneous localization and mapping (SLAM) vibration measurement visual-inertial odometry
 - autonomous navigation
 - vision and control for UAVs
 - 3-D sensing
 - object counting / machine vision / AI

- satellite navigation (star tracking)
- eye tracking
- . . .

Event-based imaging vs. frame-based imaging

- conventional camera provides individual image frames (for all pixels)
- event-camera produces asynchronous stream of contrast change events (only for affected pixels), time-stamping with 1µs resolution

The Active Pixel of an Event-Camera

•

My first recordings (Dec. 2021)

gloomy, rainy December afternoon

Event-camera with 640 x 480 pixel sensor

Rain & Insects in the Twilight (dynamic range >120 dB)

C. Willert, DLR Institute of Propulsion Technology, 09 July 2023

Passing bicycle

Blue = "On" - Events Black = "Off" - Events

Normal speed (30 fps)

Rain & wind

imaged with 300mm lens (~30m distance)

20ms, Normal speed (30 fps)

Bright LED flood light

C. Willert, DLR Institute of Propulsion Technology, 09 July 2023

ambient lighting

Normal speed (30 fps)

Now for some real champagne

Actual speed (25 fps, 10 ms samples)

Champagne bubbles

Actual speed (25 fps, sample time 10 ms)

Speed 0.2x (125 fps, sample time 10 ms)

Bubble Visualization as "Time Surface"

Speed 0.1x (250 fps, sample time 50 ms)

Speed 0.1x (250 fps, sample time 100 ms)

C. Willert, DLR Institute of Propulsion Technology, 09 July 2023

Champagne bubbles - Time-surface representation

Event cameras

640 x 480 pixel (VGA)

pixel size 15 x 15 µm_{s Mount Lens}

Prophesee.ai

Evaluation Kit EVK2-HD

- back-side illuminated (engineering sample)
- 1280 x 720 pixel (HD)
- pixel size 4.8 x 4.8 µm
- >110 dB dyn. range
- equiv. 10'000 fps
- USB3.1 interface (~150MB/s)
- power: ~7.5W

4x Camera fixing screw (

• 0.08 lx low-light cutoff

>120 dB dyn. range

Century Arks

SilkyCam

- equiv. 10'000 fps
- USB3.0 interface
- Iow power: ~1W

C. Willert, DLR Institute of Propulsion Technology, 09 July 2023

Camera fixing screw (M2)

Evaluation Kit EVK4-HD

(similar specs as EVK2-HD)

Iow power: ~0.5W

Components for Event-based Imaging Velocimetry (EBIV)

- Event camera (with lens)
- CW laser (1-5 Watts)
- Light sheet optics
- Particles
 - water: ~10 µm (Orgasol)
 - air: ~1 µm (glycerin droplets)
- Software (roll your own...)
- (no synchronizer, no pulsed laser, ...!)

KVANT laser 4W @ λ =520 nm (with OD1 (10%) ND-filter!)

C

Simple Water Flow

1ms of events 1/20 speed → 1000fps

resolution 1280x720

Wall —

Simple Water Flow

1ms of events 1/20 speed → 1000fps

zoomed portion (640x360)

Wall

EBIV Processing (sum-of-correlation method)

EBIV in air (cylinder wake)

76 x 76 mm² channel, bulk flow 1-2 m/s

seeding: 1µm aerosol droplets (paraffin oil) laser: ~4 watts

display: play back: 0.0075x (4000 frames/s) duration:

Measurements of Cylinder Wake Revisited

2 ms/frame

Playback slowed 0.015x (2000 fps)

Length 200 ms

Cylinder wake - velocity statistics

x/D

- multiple records of ~10 s duration
- velocity field estimation
 - pseudo-images from time slices of 400 µs
 → 25'000 images @ 2.5 kHz

y|D

y/D

0 -

0 -

- conventional cross-correlation (PIV) processing using 5 frame
- standard validation schemes (normalized median filter)

Another issue: Event rate depends on flow velocity

- stationary / slow moving particles become "invisible" by producing no or too few events (constant brightness)
 → loss of data
- fast moving particles trigger fewer events (not enough photons collected by pixel)
 → reduction / loss of data rate in fast flow (limit ~25,000 pixel/s)

Distribution of event rate

near wake of cylinder

uniform seeding throughout

EBIV using Pulsed Illumination

Assume events are triggered by preceding pulse

potentials

- should make both stationary as well as fast moving objects (= particles) visible
- removes the latency induced event uncertainty (pulse timing is precisely known / controllable)

risks

- immediate saturation of detector by flooding the scene with events
- unwanted artefacts (background, laser scatter, ...)

concept previously used for 3-D reconstruction of objects (laser line scanning) \rightarrow "structured light"

Events in response to pulsed illumination (actual data)

- Laser pulse rate: 5 kHz at 10 µs width (modulated CW laser)
- events: 70 µs (FWHM)
- black: "on" events
- red: "off" events

Pulsed EBIV on simple water flow

combined with PIV for comparison

PIV and EBIV on a small turbulent water jet

PIV recording (overlaid image pair) pulse delay: 500 μs, pulse width: 100 μs

(same laser/light-sheet, same seeding)

Event based imaging with pulsed illumination at 4 kHz (\rightarrow pulse delay: 250 µs), pulse width: 7.5 µs

Comparison PIV and EBIV on a small turbulent water jet

PIV

- double pulses at 4 Hz
- pulse delay: 500 µs
- pulse width: 100 µs
- Iens: 55mm Nikon Micro-Nikkor 55/2.8, f#2.8
- magnification: 28.7 pixel/mm
- 1000 recordings at 4 Hz (~4 min)
 → 1000 uncorrelated snap shots (12 bit)
 → 3.25 GB (compressed)
- correlation processing using 2 frames

EBIV

- laser pulses at 4 kHz
- (pulse delay 250 µs)
- pulse width: 7.5 µs
- Iens: 55mm Nikon Micro-Nikkor 55/2.8, f#4.0
- magnification: 27.0 pixel/mm
- 10 seconds of event data

 → 40,000 correlated "pseudo"-images (1 bit)
 → 0.95 GB (compressed) ~ 100 MB/s
- correlation processing using 5 frames / time step
 - \rightarrow low-pass filtering at 800 Hz (1/1250 μ s⁻¹)

same laser/light-sheet, same seeding

Result obtained from event data (5 kHz pulse rate)

Comparison PIV and EBIV - velocity statistics

Comparison PIV and EBIV - velocity statistics at reduced ROI

- region of interest (ROI) reduced to 320(W) x 720(H)
- event data rate increased proportionally (increased particle image density)
- Iaser pulse rate up to 10 kHz

Comparison PIV and EBIV - velocity statistics at reduced ROI

10

0

-5

-10

m²/S²

- region of interest (ROI) reduced to 320(W) x 720(H)
- event data rate increased proportionally (increased particle image density) 5
- laser pulse rate up to 10 kHz $_{\text{s}}$
- improved match with PIV result 5/2

Flow around a square rib

- Iaminar inflow at 2 m/s
- 5 kHz pulse rate
- *D* = 8.17 mm

Flow downstream of square rib

EBIV Setup in 1m Windtunnel of DLR Göttingen

Pulsed EBIV on turbulent boundary layer in air

- Laser pulsing rate: 5 kHz at 12 µs width
- eff. pulse width ~70 µs FWHM (events)
- Reduced field of view: 1280W x 320H (camera rotated)
- Data rate: 32.5 Mev/s (94 MB/s) or 6500 events / "frame" (200 µs)

Pulsed EBIV on turbulent boundary layer in air

Comparison: Profile-PIV vs Profile-EBIV

C. Willert, DLR Institute of Propulsion Technology, 09 July 2023

Event-based PTV (EB-PTV)

- laser pulse frequency: 10 kHz
- simple tracker scheme
- initial predictor required (Musker, 1979)
- processing rate: >200 frames/s
- density: ~2000 particles/frame

Extension to 3D Event-based PTV

Wall-parallel light sheet thickness < 0.5 mm grazing angle ~1 deg

Subject of ISFV 2023 contribution on Tuesday

C. Willert, DLR Institute of Propulsion Technology, 09 July 2023

3D-Event-based PTV System in Operation

Summarizing Remarks - Event-Based Imaging Velocimetry

- event-based imaging offers new approaches to flow visualization and measurement
 - real-time visualization of particle tracks (or anything that moves)
 - flow field measurements possible in both water and air using CW laser and standard PIV particles
 → time-resolved measurements at >1 kHz for <3T€
 - particle tracking velocimetry (PTV) \rightarrow on-going activity
 - variety of other applications yet to be explored
- paradigm shift on the acquisition and processing side

(e.g. new algorithms are necessary to extract particle track info)

- current limitations:
 - sensor-level limitations (arbiter) \rightarrow latency, bandwidth \rightarrow next generation sensors
 - reduced event generation for fast moving objects (particles)
- partially solved using pulsed illumination (\rightarrow pulsed EBIV)
- need for characterization of error sources (strongly dependent on hardware):
 - simulation of event-generation (probabilistic process)

EBIV Setup "Masters of Flow Visualization 2023" TU-Delft

EBIVview - Software

🔳 EBIVviewer-v1 - live camera 00050367

100%

EBIVview - Software

EBIVview - Display and Export

Export TIFF

49

What about those "biases" ?

- Diff ON / Diff OFF controls the positive / negative comparator thresholds. The further away the positive/negative threshold is from the reference level, the more noise can be tolerated on positive/negative events, the less sensitive the pixel becomes to detect ON / OFF events.
- High pass controls the pixel high-pass cut-off frequency. It is a trade-off between the change detection's sensitivity, noise reduction and low light sensitivity. Filters out slow events such as background rate. Decreased values worsen the contrast detection probability.
- FO controls the pixel low-pass cut-off frequency. It is a trade-off between pixel bandwidth (referring to pixel speed or pixel latency) and pixel background noise.
- PR controls the front-end part of the pixel, the photoreceptor (no longer accessible in new cameras)
- Refr controls the so-called refractory period, representing a dead time for which the pixel will be kept in reset mode after an event acknowledged. Pixel is not responsive during this time.

(Source: Prophesee technical documentation)

EBIVview - Time-record of events

Challenges for Masters of Flow Visualization Exercise

- Adjust biases to get good signal, minimal noise (adjust favoring positive or negative events)
- Adjust seeding density to suit visualization or velocity field measurement
- Prevent sensor overload (arbiter overload at >80 Mev/s)
- Capture vortex formation, steady flow vs. impulse
 visualize using AVI export or single images
- Velocity field measurement
 - \rightarrow export multi-frame TIFF sequence suitable for PIV processing
- Record reference length scale

Starting vortex - Visualization using "Time Surface"

