POTENTIAL AND LIMITATIONS WITHIN
CONCEPTUAL AIRCRAFT DESIGNFOR TH'E
OPTIMIZATION OF A FLEXIBLE WING WITH
AND WITHOUT LOAD ALLEVIATION
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Outlook

* Methodology of the Process

» Results for a Long Range Aircraft

= Summary and Outlook
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Overview Design Process
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Design Space and Load Cases

DLR
» 9 dimensional design space
» Target function: combined Block Fuel
= 3 different missions
= 16 maneuver load cases
AR = b% /S,
= 24 gust load cases TR = C.p /€ roor
= Dynamic 1-Cos cases with FCS
= Constant short-term oscillation behaviour
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Results of pre-study (wing span)

DLR

» Planform variation rational \ | | o

= Constant absolute kink position (= engine/VTP) g 30 E_ R\ 8:37 :z :E E E g

= Constant sweep of 50% line (= wave drag) . T r \ ? o i/ § I; S

= Constant outer taper ratio (“limited” tip chord) E 00 j_ P E :: % !: E’ :/ %
= Study provides additional validation % E / ‘ L s :ﬁ Lol

= Surrogate model fits simulation data well S 30F E I’ % '; E ':: E

= Estimated error increases towards the edge '_E E
= Limits consideration S 60F

» Landing gear limit constrains design space too much E ------------

= Neglecting this limit for further optimizations 9.0 :-
= Local Minimum 120k T N

= Expectation: Optimization yield more than 10 % 90 99 60 65 70 75

= Optimum should have higher span than the reference ¢ REF (noLA) Span [m]

® Validation points Surrogate model  ------- Estimated error
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Optimum with and without Load Alleviation

240 DLR
= Span study GMLA | .+ NOLA
= At first strong increase of L/D b
220} _ —oan
» Towards higher AR - dominating increase in rel. wing mass Baseline
o (aero optimum)
= Further increase of L/D is limited =] -
- 200
= Optima separate mainly in rel. wing mass , Reference
= GMLA cases have reduced wing mass but also lower L/D I Study noLA
180k Study LA
= Constraints reduce wing mass and L/D ' , : , : , : . :
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= Both planforms tend to a higher aspect ratio
» The optimization reduces kink position to cl-max dependent minimum

» Main difference between configurations is the taper ratio
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Optimum with and without Load Alleviation

DLR
= Potential of active load alleviation (hased on surrogate model analysis) < 00 [
» Additional benefit of active load alleviation -E 15 o
3 5 Reference
» Dependent on the AR/span 2 - |
£ 30
» For more flexible wings and higher spans the potential is reduced § S " —
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Span [m]
= Breakdown® of the up 20 % block fuel savings (REF)
. L A/IC Comb. To To
" Twist optimization ~3.0% Design Block Fuel Baseline noLA
= t/c optimization (no further BCs) ~4.1% [10~4km=1] %] (%)
= Synergetic combination (Baseline) ~9.0% Reference 2.0431
. o Baseline 1.8598 ©
= Active load alleviation span dependent ~1.6-45%
= Wing planform optimization up to 9.3 % NoLA 1.6703 -10.19 o’
GMLA 1.6438 -11.61 -1.59
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Discussion of Boundary Conditions (Limits)

NoLA DLR
_ _ _ Limit GMLA Limit
= GMLA increases the number of valid designs Span : Tank Capacity
= Total: 91.4 % compared to 84.7 % for noLA
= Span limit: 502 / 434 (+16 %) :
= Tank capacity limit: 411/ 402 (+2 %) :
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Summary A#y

» Successful, physics-based integration of LA in conceptual aircraft design
= Creation and validation of surrogate models
= Fundamental trends can be shown based on 1-D studies

= Active load alleviation has a span (flexibility) dependent influence

= Optimum with GMLA 11.6% Optimum noLA 10.2% - Why?

= Larger wing allows for more inboard kink position (condition: successful 2.5g case)

= OQOverall aircraft effects - Empennage sizing

= So why load alleviation in conceptual aircraft design?
» Keep the possible design space less restricted by more and more limits
= Keep the aircraft mass lighter > overall advantages including costs

» Handle transonic flow at the outer wing, in particular during pull-up
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Outlook: Clean Aviation Project UP Wing WP 1
Spaniml DLR

= Optimization of HAR-SMR wing (aseline: 45m) . —
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