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Intro: CFD and related simulations at DLR

▪ High Fidelity Computational Fluid Dynamics requires the use of large 

computational resources in parallel

▪ At least implicit methods require to (approximately) solve large linear 

equation systems

▪ There are different CFD codes (even within DLR) for different flow regimes, 

which can benefit from a shared development:

▪ Common library for (approximatively) solving a linear

equation system with characteristics from aeronautical CFD

▪ More focus on low-level performance and hardware technologies

▪ May adapt to specific technologies more easily due to its comparably limited functional

range
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Spliss



Key features of a linear solver for aeronautical CFD

Sparse block matrices

▪ Dense blocks with a fixed block size or variable block sizes

▪ Mixed data types: e.g. some entries are complex, others real, some 
multiscalars

Solver

▪ Different components should be combinable (as preconditioner)

▪ Robust methods for stiff CFD problems:

▪ Direct inversion of (generalized) diagonal blocks (LU/Thomas-Algorithm)

▪ Jacobi, Gauss-Seidel, GMRES, linear multigrid, …

Efficient parallelization for HPC

▪ Distributed memory (e.g. MPI)

▪ Shared memory (Threading)

▪ GPU support

▪ Vector instructions (SIMD)

▪ Reduced memory footprint
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ALGORITHMICAL FEATURES



Coloring & permutation

Coloring

▪ Used for (otherwise sequential) solver components like Gauss-Seidel or ILU

▪ Allows parallelism while keeping results independent from partitioning

Permutation

▪ For cache optimization, it can be

beneficial to permute the matrix entries

➔ Use a permutation according to colors,

when multi-colored algorithms are used
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TRACE matrix, results from Alexander Bleh



Comparison of different color selections
for multi-color algorithms

▪ Greedy minimal number of colors

11 colors

Per iteration:

▪ Few synchronization points

▪ Short information travel
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▪ Reverse marching front

159 colors

Per iteration:

▪ More synchronization points

▪ Long information travel



TRACE: Different colors for symmetrical Gauss-Seidel

Reverse marching front

Serial

• TRACE case of transsonic bump

• hybrid unstructured/structured mesh

• 13e3 hexahedrons, prisms & tetraeder

• Euler 2nd order FV

• „Serial“ implementation uses a huge

amount of colors

Greedy

Results from Jan Backhaus

BIsym GS
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TRACE VKI-LS89 Comparison to Legacy

▪ VKI-LS89 single blade configuration

▪ RANS-k𝜔, Ma=0.92, Re=2.1e6

▪ Grid with 2e6 elements, FV scheme

▪ Focus on replicating the algorithm from Legacy 

to get equal results

▪ Currently Spliss is 10% slower to TRACE Legacy

Computation & results from Alexander Bleh & Jan Backhaus

LUsym GS
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CFD SPECIFIC ALGORITHMS



Lines Inversion / Thomas Algorithm

▪ Jacobi-method uses a diagonal inversion:

𝑥(𝑖+1) ≔ 𝑥 𝑖 + 𝐷−1 𝑏 − 𝐴𝑥(𝑖)

where

▪ 𝐷 ∶= diag(𝐴) (point-implicit) or

▪ Especially favourable/needed when mesh has very

anisotropic cells, aspect ratios ≥5000:1
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▪ 𝐷 ∶= tridiag(𝐴) (lines-implicit)



CODA XRF1-V4 FV

▪ Airbus XRF1-V4 flow-through-nacelle (power 

off) configuration

▪ RANS-SAneg, Ma=0.86, Re=25e6

▪ Grid with 32e6 elements, FV scheme
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Computation & results from Ralf Hartmann



CODA High-Lift CRM DG

▪ Geometry from High Lift Prediction Workshop 3

▪ RANS-SAneg, Ma=0.2, Re=3.26e6

▪ Curved Grid with 5.4e6 quadratic tetrahedra,

DG scheme (3rd order: 54.1e6 DoFs/eqn)
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Computation & results from Ralf Hartmann



Algebraic agglomerations visualized

▪ Agglomerations are computed simply by inspecting

the matrix connectivity, not the values

▪ When the matrix blocks correspond to geometrical

elements/vertices, the agglomerates can be

visualized in the original mesh
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▪ First level agglomerates for

a vertex-based discretization



Algebraic agglomerations visualized

▪ First level agglomerates for a volume-based discretization (CODA FV)
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CODA integration and images by Wojciech Laskowski



FSMeshDeformation: Efficiency of the tailored solver
components

▪ Red solid curve is a „standard

linear solver“

▪ Multigrid gives speedup of 2-3 

(dashed)

▪ LinesInversion gives additional 

speedup of 3-4 (black/blue)
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PERFORMANCE, SCALING & 
ACCELERATORS



Mixed precision

▪ Idea: Reduce memory footprint of inner hot

loops since performance is memory bound
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CRM testcase on CARO: time to solution

inner mixed precision full double precision

LU 
Decomposition

LMG
GMRES

(matrix free)

iterative

direct line-block
solution

LMG
double -> float

Conversion

precond.preconditioned

Jacobi

converter iterative direct

double precision single precision

▪ User still provides matrix / input vectors

and receives solution vector in double 

precision

▪ Inner Spliss solver components operate

in float precision

Time to solution

reduced by factor 2.1



FSMeshDeformation: Strong scaling and multi-threading

▪ XRF1 test case, 31M nodes

▪ Linear elasticity mesh deformation

▪ CARO: 2xAMD EPYC 7702
(«Rome», 64 cores, 2,0 GHz)

▪ GMRES Multigrid GaussSeidel
configuration

▪ When using more than 2048 ranks, 
scaling becomes difficult (very much
communication during solving, 
initialization/partitioner takes very long)
▪ But: 2048 ranks can still employ more

cores when using threads
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Scalability

advantage

from

threads

Thanks to Marco Cristofaro for results



GPU Development
Next gen GPUs

Juwels Booster (Jülich)

▪ 4x Nvidia Tesla A100 per node

▪ Time to solution: speedup of 8-9 for same 

number of nodes on Juwels

▪ Rather unfair, since on Juwels every process 

uses a GPU in addition to the CPU

▪ Energy comparison (seconds per used Watt): 

speedup of 1.6-1.9 on Juwels

▪ Hypothetical Juwels Booster node with CARO 

CPU: 1.8-2.3 speedup (energy-wise)
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Runtime | CARO (AMD Rome) vs. Juwels (4x Nvidia A100)

M6 wing, 69.2M elements, implicit Euler, Jacobi + Block Inv.
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Results from Michael Wagner & Jasmin Mohnke



Conclusion

▪ Spliss in use in CODA, TRACE, HYDRA, FSMeshDeformation

▪ Demanded features are supported and successfully demonstrated

▪ Regular exchange with users in order to still develop further and improve
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QUESTIONS?


