
BIT Numerical Mathematics           (2023) 63:44 
https://doi.org/10.1007/s10543-023-00977-9

Parallel line identification for line-implicit-solvers

Arne Rempke1

Received: 28 September 2022 / Accepted: 5 May 2023
© The Author(s) 2023

Abstract
Line-implicit preconditioners are well known in computational fluid dynamics (CFD)
solvers and are an essential component to handle meshes with cells of very high
aspect ratio (>1000:1). Such anisotropic cells are commonly used to resolve steep
gradients in the boundary layer of a turbulent flow with high Reynolds number. To
date, this technique has rarely been used to solve other partial differential equations.
We show that the advantages of such preconditioners do not depend on the partial
differential equation or discretization used, but also apply to other problems like a
node-based mesh deformation with linear elasticity on such meshes. We show the
influence of the selection of these lines, and present a new algorithm for identifying
lines for line-implicit preconditioners. This new algorithmmakes better use of parallel
processors and leads to more homogeneous lines. Finally, we see that using the same
line-implicit preconditioner, but the new line identification algorithm, even leads to
faster convergence for the mesh deformation problem based on linear elasticity.

Keywords Linear algebra · Parallel preconditioner · Line-block preconditioner ·
Tridiagonal-matrix-algorithm (TDMA) · Block-Thomas-algorithm · Line
identification · CFD Solver · Viscous boundary layer mesh · Anisotropic cells · High
aspect ratio · Linear elasticity mesh deformation
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1 Introduction

When solving the linear equation system Ax = b for a sparse matrix A, a typical
ingredient as preconditioner is to apply iterative smoothers. These smoothers reduce
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the defect d(i) := b− Ax (i) in each iteration i by inverting an approximation P to the
matrix A: x (i+1) := x (i) + P−1d(i). When P is a part of A, A − P has less nonzero
entries, and we have the basic splitting operator iteration scheme

x (i+1) := P−1(b − (A − P)x (i)). (1)

E.g. for a Jacobi/Richardson scheme P is the diagonal part D, for a forward Gauss–
Seidel scheme P = L + D with the matrix A = D + L + U split to diagonal,
lower and upper triangular matrix parts. For simplicity, we skip any relaxation
parameters or Gauss–Seidel-scheme modifications and just concentrate on the basic
Jacobi/Richardson scheme in this overview. A simple point/block-implicit precondi-
tioner inverts the diagonal part of the matrix, P = diag(A).

In contrast to this, the tridiagonal or lines inversion chooses a different approxima-
tion P for A: here P is a tridiagonal matrix, which still can easily be inverted exactly
using the Thomas algorithm or tridiagonal matrix algorithm (TDMA). P is no longer
made up of just the diagonal entries of A, but of additionally up to two nonzero entries
more per row. This change from point-implicit to line-implicit solvers can be inter-
preted as moving up to two off-diagonal entries from the explicit defect evaluation on
the right-hand side (b − (A − P)x (i)) to the implicit inversion (P−1). Of course the
selection of which off-diagonal entries to be moved when splitting the operator A has
an influence on the convergence of the method. This choice of the tridiagonal entries
can geometrically be described as line identification and will be covered in this work.

Such line-implicit methods have successfully been applied in the context of implicit
computational fluid dynamics (CFD), see e.g. [2, 6, 7, 9, 13] for applications using the
finite volume methods (FVM), [4] using the Discontinuous Galerkin (DG) method or
[8] using the finite element method (FEM). These studies depict a slow convergence
or even divergence of the iterative solvers when using point-implicit methods instead
of the line-implicit method.

In this paper, we will apply different line identification algorithms to a FEM dis-
cretization for linear elasticity. This is of importance in the context of CFD mesh
deformation where, following the approach [10, 12], elasticity equations need to be
solved. Since themesh to be deformed is designed for CFD applications with a viscous
boundary layer and strongly anisotropic cells, similar numerical problems occur as in
CFD which indicate the use of line-implicit solvers may be beneficial. At the same
time, there are also some differences between CFD and linear elasticity resulting from
the different discretization approaches, whichmake the transfer not so straightforward.
For FEM, in contrast to CFD codes based on FVM or DG, the non-zero blocks of the
matrix to be solved are based on the vertices instead of the volumes of the mesh. This
leads to significantly more entries in the sparsity pattern, e.g. in a structured hexaeder
region each node has 26 neighbors instead of 6 neighbors in FVM, see Fig. 1. Also
in FEM in contrast to FVM, computing the quotient of longest by shortest neighbor’s
distance is no longer equivalent to the aspect ratio of the cell, it is already

√
3 for a

perfectly isotropic hexaeder cell.
Due to these differences, it turns out that a straightforward application of the line-

implicit approach used in [2, 4, 6, 7, 9, 13] is not possible for the FEM code. Also
the approach of [8] does not work for this application: there line-implicit solvers are
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Fig. 1 Direct neighbors (black vertices) of the central vertex (outlined in black) and their distances in an
isotropic structured 3d mesh (dashed): Finite Volume (left) vs. Finite Element (right) Method

applied to a FEM discretization, but the line identification is done using the solution
of a linear convection-diffusion equation which works well for CFD problems. The
linear elasticity problem however is not convection dominated, and therefore this
methodology is not applicable. Instead, we modify the methods to identify lines that
were already applied in [6, 7] and which are based on the geometric properties of
the mesh,1 and therefore independent of the partial differential equation to be solved.
This paper sketches how the transfer can be achieved and what is necessary to make
it work, including a new algorithm to identify the lines.

The outline of this paper is as follows: Sect. 2 gives an introduction on what lines
in the context of sparse linear equation systems are, and defines important properties
in order to operate on a clear vocabulary. In Sect. 3, we will then introduce two
algorithms in order to identify such lines. These algorithms are finally applied to the
linear elasticity problems for mesh deformation in Sect. 4, compared and the results
are discussed. We will end with some final remarks in Sect. 5.

2 Lines in a sparse linear equation system

For the sparse linear equation system Ax = b, wewill consider the graph2 G = (V , E)

with vertices V and edges E where each component of the solution vector represents a
vertex and the adjacency matrix has the same sparsity pattern as A−diag(A). We will
presume that the sparsity pattern of A is symmetrical—otherwise add explicit zeros—
so the graph is undirected. We skip the diagonal entries of A in the adjacency matrix
since they are already part of P (and therefore not relevant for line identification) and
they would just add debiliating loops at each vertex in the graph.

1 Note that although Fig. 1 illustrates the case for hexahedral cells, both the line-implicit method and the
identification algorithms work on unstructured meshes with many different cell types, including triangular
or tetrahedral cells. The illustration is given for hexahedral cells because for CFD meshes the viscous
boundary layer often consists of highly anisotropic hexahedral cells.
2 The terminology used here for graph theory will not be introduced in detail, see e.g. [1] for a general
introduction.
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Fig. 2 Example graph G. The
thickness of the edges indicates
the weights
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On such a graph associated to the linear equation system, we can now define lines,
which describe the off-diagonal entries that are additionally inverted in line-implicit
solvers.

Definition 1 For an undirected graph G = (V , E), the subset L ⊆ E is called lines
for G, when

|{e ∈ L : v ∈ e}| ≤ 2 ∀v ∈ V ,

i.e. the maximum degree of (V , L) is 2, and there is no cycle in (V , L).

As an example, consider the matrix

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6 −1 6
1 6 4
4 6 −1 3

2 1 5 −1 5
3 1 2 −1 6 1

5 1 3 2
6 7 4 4

−1 2 4 4 1
2 1 5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2)

The corresponding graph G is depicted in Fig. 2. One can easily see that {(1, 2)}
and {(3, 4), (4, 6), (6, 8)} are lines for G, but {(1, 4)}, {(3, 4), (3, 5), (4, 5)} and
{(5, 7), (7, 8), (7, 9)} are not because (1, 4) /∈ E , 3,4,5 form a cycle, and the degree
of 7 in the subgraph is 3.

For identifying lines that help to solve a given linear equation system, it is essential
to have some measure on how strong two vertices are coupled, their willingness to
form a line segment. We will formulate this as a weight function w : E → (0,∞) for
the edges of G. When such a weight function is given, we can compare different lines
for the same graph by comparing their weights. Generally it is preferred to achieve a
higher weight for a better approximation of the linear equation system by the lines-
implicit preconditioner.

Definition 2 For a weighted undirected graph G = (V , E, w) and lines L for the
graph (V , E), we define the weight of L as

w(L) :=
∑
e∈L

w(e).
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Fig. 3 Two possible line
selections for G (from (2)): L1,
above and L2, below
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Another important measure to qualify lines that work well for line-implicit solvers
is tridiagonality. This was already recognized in [8].

Definition 3 For an undirected graph G = (V , E) and lines L for G, the lines are
called tridiagonal, iff there is no e ∈ E\L such that (V , L ∪ {e}) has a cycle and a
maximum degree of ≥ 3.

In the example, {(1, 3), (3, 5)} and {(6, 8), (8, 7)} are tridiagonal, because there is
no edge that could be added to form a cycle, but {(4, 3), (3, 5), (5, 7)} is not tridiagonal
because adding (4, 5) ∈ E forms a cycle and leads to deg(5) = 3 in the subgraph.

If the lines are tridiagonal, any additional connection from E\L only connects
different lines, not two vertices of the same line. For the corresponding matrices,
this means when cropping the matrices to those entries of a single line, P and A are
identical, wheras A would contain additional entries connecting different parts of this
line, if the lines were not tridiagonal.

For our example (2), we may use w(vi , v j ) = |ai, j | + |a j,i | as a weight for each
edge. The edges in Fig. 2 represent the weights as thicknesses and Fig. 3 shows two
possible identifications of lines for the weighted graph:

L1 := {(5, 7), (7, 8), (8, 6), (6, 4), (4, 2), (2, 1), (1, 3)}

and

L2 := {(1, 3), (3, 5), (5, 7), (7, 9), (2, 4), (4, 6), (6, 8)}.

In the next section, we will see, that these lines are actual results from the line
identification algorithms introduced there: L1 is the result of Algorithm 1 and L2 that
of Algorithm 2 for (V , E, w) and α = 1.3 We postpone the detailed discussion on
how to determine these lines to Sect. 3, and close this section with a comparison of

3 This parameter for the line identification algorithms will be introduced in Sect. 3 and controls how
different the weights need to be in order to form a line.
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Table 1 Properties of different line choices and Eigenvalues of the iteration matrix for different splittings
of the example matrix A from (2)

Choice of L P w(L) Tridiagonal? |λmin| |λmax|
∅ P(A, ∅) = diag(A) 0 Yes 0.107 2.016

L1 P(A, L1) 52 No 0.0 1.001

L2 P(A, L2) 54 Yes 0.0 0.714

the effects of using these two different line selections in the iterative approach (1) of
(2).

Definition 4 For a quadratic matrix A = (ai, j )i, j=1,...,n , the associated graph G =
({1, . . . , n}, E) and lines L for G, the corresponding tridiagonal matrix P(A, L) :=
(pi, j )i, j=1,...,n is given as

pi j :=
{
ai j if i = j or (i, j) ∈ L or ( j, i) ∈ L

0 else.

When using the two choices L1 and L2 for lines in the lines-implicit solver, we get
a much more stable solver for the splitting scheme on A than using the point-implicit
approach: Inspecting the Eigenvalues of the iteration matrix P−1(A − P) for various
choices of P , we get the results in Table 1. Note that these Eigenvalues should be less
than 1 for a stable method. So we can see that for this example, the effect of using
lines or not is significant, and the choice L2 even gives a safe convergence without
introducing an additional relaxation parameter. In Sect. 4, wewill seemore verification
of these effects for more complex numerical examples.

3 Line identification

After we have seen the influence of line solvers and the choice of lines, we will
now compare different methods to identify lines. Several different proposals for line
identifications have been discussed (see [2, 4, 6–8]), and all are provided with an
edge-weighted undirected graph G = (V , E, w). The weights give a user-prescribed
strength of how strong the coupling between the involved nodes is. Such a coupling
can originate from the magnitude of the off-diagonal entry of a matrices (like in the
scalar-values example in section 2), or from a geometric information like the inverse
Euclidean distance (see [2, 6, 7]):

w(v1, v2) := 1

||coord(v1) − coord(v2)|| , (3)

with coord(vi ) the geometric coordinates of node vi within themesh.Other approaches
use weights from the expected fluxes (see [2]) or the solution of a simpler substitute
problem, e.g. the scalar linear convection problem (see [8]). Such weights do not seem
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helpful for our application of linear elasticity, and since we need to handle anisotropic
mesh properties, we employ the geometric weights (3). The line identification algo-
rithm is then applied to find the strongest differences in these weights per vertex, and
to form lines of vertices containing the strongest weighted edges.

Both algorithms presented in this paper employ the anisotropy criterion, which
means they compare how much larger than other weights the largest weight of a node
is, and if this differs bymore than a given ratio, the edge to this neighbor is considered to
be a continuation of a line. The minimum ratio of the weights of the edges required for
line continuation is the parameter α ≥ 1, which is used in both algorithms presented.
[6, 7] showed that using the smallest weight as denominator for this ratio works well
for finite volume-based schemes and inverse distances as weights. However, since
we want to apply the algorithms on a vertex-based finite-element setting, we have
significantly more neighbors, since e.g. also vertices on diagonally opposite sides of
an element are connected. In general, this leads to much higher differences in the
distances (and therefore also weights) even in an isotropic mesh region (factor

√
d in

d dimensions), see Fig. 1 for an illustration. In order to transfer this criterion for this
setting and removing the dependency of minimum aspect ratio from dimensionality,
we use the third largest weight instead of the smallest weight in order to compute the
aspect ratio: since the line is only able to connect at most two neighbors (probably
those with the two strongest weights), the third strongest coupling will still be not
part of a line. Expecting the largest two connections being part of the line, the third
largest weight indicates the distance to the next neighbor that is not part of the line, and
therefore works well for vertex and cell-based discretizations and varying dimensions.
See Fig. 4 for an illustrating example: although the mesh view is in a quite isotropic
region (quadrilaterals have aspect ratios of 1.25:1 or 1.33:1), the original check for
this topology would lead to a ratio of w(v,nv,1)

w(v,nv,7)
≈ 1.67. The improved check expects

line segment to be formed between the nodes nv,1, v and nv,2, and uses the ratio
of strongest expected in-line coupling to strongest expected not-in-line coupling as
w(v,nv,1)

w(v,nv,3)
≈ 1.25, which is a much better approximation to the aspect ratio of the cells.

3.1 The greedy line identification algorithm

As baseline algorithm and for comparison with the new algorithm, we will start with
a slightly modified version of the algorithm used in [6, 7]. The difference consists in
the change in the evaluation of the anisotropy criterion as explained in Sect. 3. Note
that this change can partly be interpreted as a scaling of the parameter α: scaling α by√
d for vertex-based discretizations instead of volume-based dicretizations.
Algorithm 1 gives the formal representation of the line identification algorithm.

The aforementioned modification was done in line 16.

Algorithm 1 Depth-first line identification
Input: A weighted undirected graph G = (V , E, w) with vertices V , edges E ⊆

V × V , weights w : E → (0,∞), and the parameter α ≥ 1.
Output: Lines L for G
1: for all v ∈ V do
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Fig. 4 Cells (dashed) and connections (solid) in the local neighborhoodof a vertexv fromFEMdiscretization
with edge weights proportional to inverse Euclidean distances. The ratio of highest to lowest weight is
w(v,nv,1)
w(v,nv,7)

≈ 1.67, although the mesh is quite isotropic in this area, where we would like to have a ratio of

≈ 1. The improved check ratio
w(v,nv,1)
w(v,nv,3)

≈ 1.25 is a much better approximation for the aspect ratio of the

quadrilateral cells

2: Set kv := deg(v)

3: Sort v’s neighbors {nv,i : (v, nv,i ) ∈ E} by w(v, nv,i ):

w(v, nv,1) ≥ w(v, nv,2) ≥ · · · ≥ w(v, nv,kv )

4: end for
5: Set M := V , L := ∅
6: while |M | > 0 do
7: Set v := argmaxv∈M w(v, nv,1)/(

1
kv

∑kv

j=1 w(v, nv, j ))

8: Set s := v

9: Update M := M\{v}
10: Set r = 0
11: repeat
12: Set u := nv,1, i := 1
13: while u /∈ M and i < kv do
14: Update i := i + 1, u := nv,i

15: end while
16: if u ∈ M and w(v, u) ≥ αw(v, nv,max(kv,3)) then
17: Update L := L ∪ {(v, u)}
18: Update M := M\{u}
19: Set v := u
20: else if r = 0 then
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Fig. 5 Order of the visited nodes
to identify lines by Algorithm 1
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21: Set r := 1
22: Set v := s
23: else
24: Set r := 2
25: end if
26: until r = 2
27: end while
28: return L

Figure 5 shows what happens when Algorithm 1 is applied to the example graph
with α = 1: node 5 is identified to contain the largest aspect ratio. A line is built from
there by following the strongest weights recursively. In this case this directly leads to
the full line, no continuation in the reverse direction or additional line identification
from a different seeding point is done.

This algorithm generally works well in situations where the decision which edge
should be selected for a line is easy: when we generate the same lines regardless of its
seeding point or which neighboring nodes are already taken. However, it has problems,
when there are conflicts, e.g. because more than 2 adjacent edges per vertex have a
large weight, and therefore different lines may be built, depending on which neighbor
the line is continued from. It also does not involve any checks for tridiagonality. Due to
its overall design, this algorithm can be described as a greedy, sequential or depth-first
line-identification.

3.2 The parallel line identification algorithm

This new algorithm allows to identify lines in parallel. Instead of being dependent
on the choice of a seed point, and sequentially constructing one line after another, it
independently builds small line segments within the whole mesh, potentially all at the
same time. With only local knowledge of the neighbors of a vertex, their preferences
for line participation and the weights on the edges within this neighborhood, it allows
an intrinsically parallel identification of lines. Even though the overall time spent in
the line identification at present is typically an insignificant part of solving a linear
equation system, achieving a good performance and scalability here still can become
more relevant for massively parallel computations.

The basic idea of this algorithm is to start with a greedy approach where each vertex
v is free to choose its favourite two neighbors for a line. In a second step, the choices
need to be consolidated to ensure just lines and no trees are formed. Afterwards, each
vertex knows whether it is part of a line, and if it is, the immediate neighbors within
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Fig. 6 Mappings p (solid) and q
(dashed) for the example graph
after greedy selection
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Fig. 7 Mappings p (solid) and q
(dashed) for the example graph
after consolidation
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the line are also known. From these local informations, the full lines just have to be
formed by following the already established connections.

The result of the first step can be visualized using two maps: p : V → V for the
primary choice for a line neighbor and q : V → V for the secondary choice. Each
vertex may also map to itself to indicate it does not want to use this connection. Since
this first greedy mapping does not necessarily fit the requirements for lines, it needs
to be updated in a second step. This step tries to solve conflicts where e.g. on a hub
more than two edges are indicated to be chosen for a line by their adjacent vertices
(e.g. 7 in Fig. 6).

After this consolidation, the two mappings exactly map to the two neighbors within
the lines. As seen in Fig. 7 this results in a double-linked list of nodes, and these lists
form the actual lines.

Since all the steps until now are done with a very decentral data knowledge (only
direct neighbors and possibly their neighbors are involved), there is a problem:we can’t
ensure that the line is not actually a cycle with no endpoints at all. Either the tridiagonal
solver needs to also support cycles (e.g. using the Sherman-Morrison formula), or the
cycle needs to be broken. We choose to break the cycle at its weakest coupling here.

Algorithm 2 Bottom-up line identification
Input: A weighted undirected graph G = (V , E, w) with vertices V , edges E ⊆

V × V , weights w : E → [0,∞), and the parameter α ≥ 1.
Output: Lines L for G
1: for all v ∈ V do
2: Set kv := deg(v)

3: Sort v’s neighbors {nv,i : (v, nv,i ) ∈ E} by w(v, nv,i ):

w(v, nv,1) ≥ w(v, nv,2) ≥ · · · ≥ w(v, nv,kv )

4: Set mv := w(v, nv,max(kv,3))

5: Set p(v) :=
{
nv,1 if w(v, nv,1) ≥ αmv,

v else
6: S := {i ∈ {2, . . . , kv} : w(v, nv,i ) ≥ αmv and (p(v), nv,i ) /∈ E}.
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7: Set q(v) :=
{
nv,min(S) if S 
= ∅,

v else
8: end for
9: for all v ∈ V do
10: Set u := q(v)

11: if (u 
= v and ((q(u) 
= v and p(u) 
= v) or (q(u) = v and (p(u), p(v)) ∈ E))
then

12: Update q(v) := v (Lose connection)
13: end if
14: if q(v) = v then
15: S := {i ∈ {2, . . . , kv} : p(nv,i ) = v and (p(v), nv,i ) /∈ E}.
16: Update q(v) :=

{
nv,min(S) if S 
= ∅,

v else
17: end if
18: end for
19: for all v ∈ V do
20: if p(v) 
= v and p(p(v)) 
= v and q(p(v)) 
= v then
21: Update p(v) := v (Lose connection)
22: end if
23: end for
24: Set L := {(u, v) ∈ E : (p(u) = v or q(u) = v) and (p(v) = u or q(v) = u)}
25: for all cycles C = {(v1, v2), (v2, v3), . . . , (vn, v1)} ⊂ L do
26: Set m := argmine∈C w(e)
27: Update L := L\{m}
28: end for
29: return L

Algorithm 2 shows the new algorithm. In lines 1–8, the initial preferences for each
vertex are computed. The consolidation of conflicts is done in lines 9–23. The gathering
of the double-linked lists to full lines is done in line 24. In lines 25–28 the detection
and breaking of cycles is done.

The greedy selection of the best neighbors for a vertex v in lines 2–7 is quite simple:
the strongest coupled neighbor is selected to be mapped to in p, if the anisotropy
criterion, ratio of the weights of at least α, is fulfilled. For the second choice in
q, additionally to this anisotropy criterion a local tridiagonality criterion needs to
be fulfilled: only those vetices are considered that are not connected to p(v). If no
matching vertex is found, the maps are set to point to v itself, which means that this
vertex is an ending position and the line does not continue in this direction.

The consolidation is more complex: we start from a vertex v and inspect its second
choice vertex u = q(v). In line 12 we remove this second choice in all those cases,
where something is wrong: Either because u does not point to v with neither p nor q,
or because the link (u, v) is only second choice from both perspectives and the first
choices have a direct connection (violate a slightly less local check for tridiagonality).
If now the second choice q(v) points back to v, we try to make it point to the strongest
coupled neighbor that points to v as primary choice and still fulfill the tridiagonality
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criterion (line 15–16). After all second choices have been updated (line 18), the first
choices are checked again and potentially updated: if the first choice is not reciprocally
answered, it is removed in line 21.

Afterwards we have a double-linked list of nodes for the lines, which is gathered
in line 24. If there are any cycles, the weakest connection is just removed in line 27.

Due to the conflict-solving phase of this algorithm, it identifies nice lines even
in situations where the lines to be selected are not that clear at the beginning. Note
that most parts of the algorithm do not need dynamic (re)allocation of arrays and
the “for all” loops can be executed in parallel, which enable performance advantages
with current hardware. Due to its overall design, this algorithm can be described
as a consolidating, parallel or bottom-up line-identification. Bottom-up here means
that initially only those line segments stand that are undisputed, while the conflicting
segments resolve themselves in later steps, forming longer or more lines if successful,
or isolated vertices if not.

4 Results

The line identification algorithms are applied to a mesh deformation method based on
linear elasticity analogy described in [10]. It numerically solves the partial differential
equation

∇ · (C∇u) = f (4)

for u : � → R
3 with C the 4th level strain–stress transformation tensor. The dis-

cretization employs a FEM method with 3 degrees of freedom for each vertex of the
mesh, thus the assembled matrix has a sparse block structure with blocks of 3 × 3
scalar entries. The non-zero pattern of these blocks is analyzed by the line identifi-
cation algorithm. Therefore the scalar entries in Sects. 2 and 3 become dense matrix
blocks in this application and the tridiagonal solver is in fact a block-tridiagonal solver.

Regarding the weights of the edges, we can’t use the trivial value-based weighting
as in the example. Since the differential equations to be solved are not convection
dominated, the approaches in [3, 4, 8] also do not seem beneficial. Instead, we use the
inverse distanceweights as done in [2, 6, 7], since the inspectedCFDmeshes do contain
a viscous boundary layer with cells of high aspect ratio. Also the artificial stiffening of
elements according to their volume (see [12]) leads to a very stiff boundary layer and
difficult to solve linear equation systems with increased condition number (see [10]).

We demonstrate the effects on 4 different meshes: the RAE2822 and DU210 cases
are 2d meshes of airfoils with approximately 65k nodes each and a very structured
approach with just quadrilateral elements, see Figs. 10 and 11. The other two test
cases are 3d meshes: the Onera M6 wing is meshed with hexahedron and prismatic
elements, 122k nodes in total, see Fig. 12. The CommonResearchModel (CRM)wing
has 3.7M nodes and consists of hexahedrons only, see Fig. 13.

The implementation of the line identification as well as the other involved linear
solver components are done in Spliss, described in [5].
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Fig. 8 Comparison of the run times for identification of lines using both algorithmswith different parameters
on several meshes. Algorithm 2 is faster and scales better with increasing mesh size

Table 2 Iteration counts when applying GMRES(100) preconditioned by a line-based Gauss–Seidel for
different choices of lines

Choice of lines RAE2822 DU210 M6 CRM

∅ >3000 >3000 >2000 >20,000

Algorithm 1 with α = 1 237 718 >2000 >20,000

Algorithm 1 with α = 1.25 85 243 1130 88

Algorithm 1 with α = 1.33 86 282 1365 83

Algorithm 1 with α = 2 100 297 1561 88

Algorithm 1 with α = 4 169 440 >2000 77

Algorithm 2 with α = 1 89 259 541 60

Algorithm 2 with α = 1.25 88 249 799 86

Algorithm 2 with α = 1.33 78 241 1076 85

Algorithm 2 with α = 2 100 292 1764 81

Algorithm 2 with α = 4 168 430 1740 88

Comparing the run times of the different line identification algorithms gives us
Fig. 8.4 Here you can see that the influence from the parameter α is much smaller
than that of the mesh structure and the chosen algorithm. The measurements for these
meshes also indicate that both algorithms scale in O(nγ ), with γ ≈ 1.25 for Algo-
rithm 1 and γ ≈ 1.05 for Algorithm 2. So both the absolute run time as well as the
scaling behaviour is better for Algorithm 2 compared to Algorithm 1.

4 The additional measurement points here come from coarser variants of the M6 mesh and are added to
provide a larger range of mesh sizes.
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Fig. 9 Distribution of the vertices to lines of different lengths when applying the different line identification
algorithms to the M6 case. For large α the portion of vertices in trivial lines of length 0 is large, this portion
decreases when decreasing α. Major differences between Algorithms 1 and 2 occur for α = 1

In Table 2 the influence of different line identification algorithms and parameter
choices on the effectiveness of the line inversion preconditioner is shown. It shows the
number of linear iterations when using a GMRES Krylov solver, left-preconditioned
by a line-implicit multi-color Gauss–Seidel smoother (see e.g. chapter 12.4.3 in [11]),
lowest iteration counts per case highlighted in bold. This smoother applies twoGauss–
Seidel sweeps using the iterative line-implicit approach (1) discussed in the previous
sections. Except for the CRM case, we request a relative reduction of the residual
by 1e−16 for the GMRES outer linear solver. Note that for the CRM case, we only
request a reduction by 1e−8 for this solver configuration without utilizing a multigrid
solver for better comparison with the smaller meshes. Since the work per iteration
is approximately the same for all inspected preconditioners, the number of iterations
behaves proportional to the wall clock time.

It is obvious that the point-implicit methods (using empty set of lines) does not work
well at all for thesemeshes. For α > 1 the results for the two different line identfication
algorithms are quite similar. The new bottom-up algorithm often is slightly better, but
is not a game changer in these cases. However, we can also note that typically it is
beneficial to decrease α. And for α = 1, there are very large differences between the
two inspected algorithms: while the greedy algorithm has massive problems, we get
very smooth extension of the values for larger α for the bottom-up algorithm. For the
3d cases, Algorithm 2with α = 1 turned out the best, and it also produced good results
for the 2d cases.

In Fig. 9 the share of nodes in the mesh that are agglomerated to lines of different
lengths are shown. A line of length 0 means the vertices are not part of a line at all
and this part of the mesh is handled point-implicit. Both algorithms produce almost
identical characteristics with only 30% of the nodes actually handled line-implicit for
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Fig. 10 Line identification for the RAE2822 airfoil using Algorithm 1 (left) and 2 (right) with α = 1. Note
the line selections that don’t follow the meshes edges but crosses cells diagonally

α = 4. For α = 1.33, approximately 80% of the mesh is part of a line (slightly less for
the greedy algorithm), and the bottom-up algorithmwas able to identify slightly longer
lines. For α = 1, the characteristics of the lines from both algorithms massively differ:
while both algorithms are able to connect almost all vertices to lines, the lines from
Algorithm 1 are much longer. The longest identified line contains 726 edges, while
for Algorithm 2 much more lines of lengths 10–29 were identified, and the longest
line still was shorter than 100 edges.

Note that apart from the algorithmic effects of a better or worse convergence,
shorter lines have a better potential for more parallelization, since each line needs to
be traversed sequentially when applying the Thomas algorithm. This also means that
very inhomogenous line lengths can lead to load imbalances. So also from the point
of view of parallel efficiency and scalability, the results from Algorithm 2 look more
favourable.

In Figs. 10, 11, 12 and 13 some detailed comparison of the line identifaction in the
mesh is shown: both algorithms select lines that cross cells diagonally in the RAE2822
case, which seems to be no problem at all. However, Algorithm 1 connected many
line segments that Algorithm 2 left split in separate parts.
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Fig. 11 Line identification in the DU210 case using Algorithm 1 (left) and 2 (right) with α = 1. Note the
artifacts from the greedy line continuation of Algorithm 1

Since the used weight is the same for all algorithms, the lines (region and direction)
look quite similar on a global level. However, we can see that the details like simple
connections of two line segments or slight modifications at one end can have a huge
impact on convergence properties as seen in Table 2. Especially connections around a
corner or even connecting two parallel lines at their ends seems to be disadvantageous.
These properties correspond to the tridiagonality property introduced in Definition 3.

Algorithm 1 with α = 1 behaves particularly unfavorably, because it selects few
very long lines which violate the tridiagonality property in at least a few points.
However, α = 1 is a desirable parameter for two reasons: first, we have seen in Table 2
that this can give the fastest convergence, especially for the 3d test cases. And second,
α = 1 is a canonical choice and does not cause any dependency from properties of
a specific mesh, e.g. the growth rate of the inflation layer or the scaling of different
axes. That means that the algorithm could be used parameter-free, which significantly
simplifies its usage. In this regard, only Algorithm 2 is able to give reasonable results
and should highly be preferred to Algorithm 1.
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Fig. 12 Line identification for the Onera M6 wing using Algorithm 1 (left) and 2 (right) with α = 1 (top)
and α = 1.33 (bottom)

5 Conclusion

We demonstrated that line solvers are a helpful ingredient when solving FEM based
elasticity equations. They are essential for meshes with high anisotropy, regardless of
a cell-based or vertex-based discretization. When comparing different line selections
for the same equation system, it seems beneficial for convergence to connect more
nodes to lines. However, absurdly long lines revisiting already contained neighbors
have a negative influence on convergence. Tridiagonality is an important criterion to
ensure this property. We introduced a new parallel line identification algorithm that
employs local tridiagonal checks. It identifies lines according to the above mentioned
criteria for good convergence. Its line detection runs faster and scales better in parallel
than a baseline algorithm, and it allows to connect most vertices to lines which can
result in a reduction of iteration counts of 50% until convergence.
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Fig. 13 Line identification for the CRM mesh using Algorithm 1 (left) and 2 (right) with α = 1 (top) and
α = 1.33 (bottom). Although it is hard to spot differences between the two algorithms in these plots, the
convergence rate for α = 1 changes dramatically, see Table 2
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