MATERIALS PHYSICS IN THE QUANTUM REALM

Challenges in the NISQ Era

Matthias Sperl, Erik Schultheis, Projekt/QuantiCoM, 27.09.2023

Advanced mechanical testing

Data Generation

High-Throughput

High-Fidelity

Digital Backbone

Ab-Initio Electronic Structure on NISQ Devices

- Electronic structure of lattice structures
- Currrent challenges with VQE
 - Basis set
 - Error mitigation
 - Measuring expectation values ($\mathcal{O}(N^4)$ for \widehat{H}_{elec})
 - VQE ansatz circuits
 - Fermion-to-qubit mapping

Excited States with VQE

- Excited states are important for
 - Photochemistry
 - Chemical reactions
 - Defects
 - Quantum applications
- Quantum Subspace Expansion²
- Subspace-Search VQE³

Ground state gives information about equilibrium geometries

¹ Yalouz et al. 2021 "A state-averaged orbital-optimized hybrid quantum–classical algorithm for a democratic description of ground and excited states"

Matthias Sperl, Erik Schultheis, Projekt QuantiCoM, 27.09.2023

² McClean et al., 2017, "Hybrid quantum-classical hierarchy for mitigation of decoherence and determination of excited states" ³ Nakanishi et al., 2019, "Subspace-search variational quantum eigensolver for excited states"

Basis Sets and Chemical Accuracy

Basis set is first approximation we make

VQE State Preparation on NISQ Devices

- Prepare electronic ground state with parameterized quantum circuit
- Chemically inspired ansätze:
 - Unitary coupled cluster with single and double excitations (UCCSD)
- Numerous CNOT layers and deep ansatz circuit
- Small hardware connectivity and coherence times

VQE State Preparation on NISQ Devices

q₁

 q_2

2

Prepare ground/excited state with shallow circuit

¹ Grimsley et al. 2019 "An adaptive variational algorithm for exact molecular simulations on a quantum computer"
² Anastasiou et al. 2022 "TETRIS-ADAPT-VQE: An adaptive algorithm that yields shallower, denser circuit ansätze"
³ Meitei et al. 2020 "Gate-free state preparation for fast variational quantum eigensolver simulations: ctrl-VQE"

q₁

 q_2

Matthias Sperl, Erik Schultheis, Projekt QuantiCoM, 27.09.2023

Fermion-to-Qubit Mappings

BK

- Jordan-Wigner $\mathcal{O}(N)$
 - Store occupations in qubits, large Pauli Z strings

JW

- Parity O(N)
 - Store parity in qubits, large Pauli X strings
- Bravyi-Kitaev $O(\log_2 N)$
 - Store partial sums of occupations in qubits
- Bonsai $\mathcal{O}(\sqrt{N})$
 - Hardware-specific mappings with lower SWAP overhead

¹ Miller et al. 2023 "Bonsai Algorithm: Grow Your Own Fermion-to-Qubit Mappings"

Bonsai

Defects and Embedding

- Defects are critical for material properties
- Rare defects require large supercells
 - Quantum computing
 - Embedding theories
- Concentrate on localized sub-space (active space)
 - Spatially or energetically localized around defect
- Describe environment with mean-field approach

