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Abstract. Shadow detection is the first step in the process of shadow
removal, which improves the understanding of complex urban scenes in
aerial imagery for applications such as autonomous driving, infrastruc-
ture monitoring, and mapping. However, the limited annotation in exist-
ing datasets hinders the effectiveness of semantic segmentation and the
ability of shadow removal algorithms to meet the fine-grained require-
ments of real-world applications. To address this problem, we present
Airborne-Shadow (ASD), a meticulously annotated dataset for shadow
detection in aerial imagery. Unlike existing datasets, ASD includes an-
notations for both heavy and light shadows, covering various structures
ranging from buildings and bridges to smaller details such as poles and
fences. Therefore, we define shadow detection tasks for multi-class, sin-
gle class, and merging two classes. Extensive experiments show the chal-
lenges that state-of-the-art semantic segmentation and shadow detection
algorithms face in handling different shadow sizes, scales, and fine de-
tails, while still achieving comparable results to conventional methods.
We make the ASD dataset publicly available to encourage progress in
shadow detection.

Keywords: Shadow detection · Aerial imagery · Benchmark dataset.

1 Introduction

Shadows are common in natural images taken from ground, aerial, and satellite
imagery. When a light source is blocked by an object, as a result a shadow
is created, causing colors to appear darker and textures to be less detailed.
Therefore, shadow influences almost every Artificial Intelligence (AI) algorithms
in the processing of image features. Since shadow can add information to images,
such as the geometrical properties of the objects within the images, most of the
existing AI-based computer vision and image processing algorithms work more
effectively on shadow-free images. For example, detecting an object is certainly
easier if the illumination conditions remain constant over the object surface and
within different images.

In this paper, we focus on shadow detection in high-resolution aerial images,
which can lead to the development of more shadow-adapted AI algorithms that
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Fig. 1. A cropped section of an aerial image from the ASD dataset with ■■■■■■■■■■■■■■■■■ heavy and
■■■■■■■■■■■■■■■■■ light shadow annotations, covering 5.7 km2 of Munich, Germany.

effectively handle shadowed areas for various applications such as semantic seg-
mentation and object detection, where the existing methods often fail in the
areas covered by the shadows of objects such as buildings and trees [1,15]. In
the past few years, various data-driven methods have been proposed for shadow
detection in ground imagery owing to the various shadow detection datasets.
Although the authors tried to cover various scenes and object classes, these
datasets mostly contain images from ground perspective. Apart from the Wide
Area Motion Imagery (WAMI) [31] dataset introduced recently, existing shadow
detection datasets offer only a limited number of aerial images, which inade-
quately represent the real-world challenges of aerial imagery. As a result, the
number of data-driven shadow detection methods for aerial imagery is limited.

To address this shortage, we present ASD, a novel and meticulously anno-
tated aerial shadow detection dataset. To the best of our knowledge, it is the
first dataset of its kind to include extensive and thorough manual annotation
of natural shadows and to include two distinct shadow classes, heavy and light,
providing a new level of detail. Figure 1 shows a section of a large aerial image
with its shadow annotations overlaid. The large number of objects as well as their
diverse sizes and shapes introduce significant challenge to the shadow annotation
in aerial images. In order to assure the quality and validity of the annotations,
a rigorous three-step review process involving remote sensing experts was con-
ducted. The annotations were refined based on their feedback. To evaluate the
impact of our dataset on the performance of data-driven shadow detection meth-
ods, we perform extensive evaluations by training and testing various semantic
segmentation and dedicated shadow detection methods. The results highlight
the persistent challenges that existing approaches face in accurately detecting
and extracting the edges of very small shadows. Furthermore, we assess the
generalizability of the trained models on our dataset to other shadow detection
datasets. The results show that the model trained on ASD performs well on the
aerial part of the other shadow detection datasets, while it has difficulties when
applied to ground images, indicating the presence of different challenges in the
two domains.
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2 Shadow Detection Datasets

Over the past decade, numerous shadow detection and removal datasets have
been introduced. In this paper, we present an overview of various shadow detec-
tion datasets, with a focus on the publicly available ones with aerial images.

The first shadow detection dataset is the dataset of the University of Cen-
tral Florida (UCF) introduced by Zhu et al. [44]. It has 245 images and their
shadow masks of size 257×257 pixels, selected from Overhead Imagery Research
Dataset (OIRDS) [29]. The authors created the shadow masks through a man-
ual image annotation. Most of the images in UCF are scenes with dark shadows
and dark albedo objects. Guo et al. [9] introduced the University of Illinois at
Urbana-Champaign (UIUC) shadow detection and removal dataset. This dataset
is composed of 108 RGB natural scene shadow images as well as their corre-
sponding shadow-free images and shadow masks. The authors took two images
of a scene after manipulating the shadows by blocking the direct light source
(to have shadow in the whole scene) or by putting a shadow into the scene. In
this dataset, the shadow masks were generated automatically by thresholding
the ratio between the shadow and shadow-free images. The authors claim that
this approach is more accurate than manual annotation. In this dataset, a large
number of images contain close shots of objects. Vicente et al. [33] introduced
Stony Brook University (SBU) shadow detection dataset with 4,727 images. The
authors collected a quarter of the images from the MS COCO dataset [20] and
the rest from the web. The images include aerial, landscape, close range, and
selfie images. The annotations were performed through a lazy-labeling procedure
in which shadows were segmented by a geodesic convexity image segmentation
and then were refined manually.

Wang et al. [35] generated Image Shadow Triplets Dataset (ISTD), the
first benchmark dataset for simultaneous evaluations of shadow detection and
removal. This dataset contains 1,870 image triplets including shadow image,
shadow mask, and shadow-free image. Each shadow and shadow-free image pair
was generated in a fixed exposure setup by inserting and removing an object in
the scene. In order to have diverse scenes and shadow shapes, the authors consid-
ered 135 different ground materials and objects with various shapes. Hu et al. [12]
introduced Chinese University of Hong Kong (CUHK) dataset for shadow detec-
tion in complex real-world scenarios with 10,500 shadow images and their manu-
ally labeled ground-truth masks. The shadow images were collected from a web-
search, Google MAP, and three different datasets including the ADE20K [43],
KITTI [6], and USR [11] datasets. Therefore, CUHK contains shadows in diverse
scenes such as cities, buildings, satellite images, and roads with shadows cast by
objects on themselves and the other objects. To leverage instance shadow de-
tection, Wang et al. [36] generated Shadow-OBject Association (SOBA) dataset
which include 3,623 pairs of shadow and object instances in 1,000 images col-
lected through a web search and from the ADE20K, SBU, ISTD, and MS COCO
datasets. Yücel et al. [40] presented the Patch Isolation Triplets with Shadow
Augmentations (PITSA) dataset, which contains 172k triplets derived from 20k
unique shadow-free ground images. The dataset was created using a pipeline
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Table 1. Statistics of the shadow detection datasets.

Datasets # Imgs Img Type Shadow Casting Aerial Imgs
# Imgs Avg. Size Shadow Quantity (px) # Shadow Instances Year

Total Mean Std. Total Mean Std.

UCF [44] 245 Ground, Aerial Natural 74 433×594 0.6M 2.1k 4.2k 275 3.72 1.86 2010

UIUC [9] 108 Ground Artificial 0 - - - - - - - 2012

SBU [33] 4,727 Ground, Aerial Natural 153 447×557 3.1M 2.7k 7.1k 1,088 7.11 5.21 2016

ISTD [35] 1,870 Ground Artificial 0 640×480 - - - - - - 2018

SOBA [36] 1,000 Ground Natural, Artificial 0 - - - - - - - 2020

CUHK [12] 10,500 Ground, Aerial Natural 311 455×767 23.8M 5.6k 17.7k 4,242 13.64 7.51 2021

WAMI [31] 137,180 Aerial Artificial 137,180 660×440 - - - - - - 2021

PITSA [40] 172,539 Ground Artificial 0 - - - - - - - 2023

ASD 1,408 Aerial Natural 1,408 512×512 72.7M 51.6k 26.1k 67,781 48.14 25.36 2023

designed for generating large shadow detection and removal datasets, focusing
on shadow removal. Shadows were superimposed using a shadow library.

Table 1 shows statistics of the reviewed shadow detection datasets. Among
these datasets, UCF, SBU, and CUHK contain a few aerial shadow images; how-
ever, the number of samples and their diversity are very limited. Due to their cov-
erage, aerial images usually contain large number of objects with diverse shapes
and sizes which makes them different from the terrestrial images. Therefore, in
order to develop efficient aerial shadow detection algorithms for real-world appli-
cations, large aerial image shadow datasets are crucial. The existing datasets are
not appropriate for training Deep Learning (DL)-based algorithms for real-world
aerial shadow detection applications. Dealing with this shortcoming, Ufuktepe et
al. [31] introduced WAMI dataset containing 137k aerial images, which is the
largest shadow detection dataset for aerial imagery. The shadows in the dataset
were generated and superimposed using a 3D scene model approach, eliminating
the need for tedious manual annotation. However, the generated shadows may
contain imperfections due to inaccuracies in the 3D model and the superposition
process. In addition, this dataset is currently not publicly available.

3 Airborne-Shadow Dataset

To address the limitations of existing datasets for shadow detection in aerial
imagery and to promote the development of efficient and effective data-driven
shadow detection and removal algorithms, we present the ASD dataset. It con-
sists of 1,408 non-overlapping RGB images with dimensions of 512× 512 pixels.
These images were derived by splitting the 16 large aerial images (5616 × 3744
pixels) from the publicly available SkyScapes dataset1[1]. The images were cap-
tured using the German Aerospace Center (DLR)’s 3K camera system (three
DSLR cameras mounted on an airborne platform) during a helicopter flight over
Munich, Germany in 2012. The images are nadir looking and have been taken
from an altitude of 1000 m where their average Ground Sampling Distance (GSD)
is 13 cm/pixel. We split the dataset into training and test sets according to the
train-test split of the SkyScapes dataset, where ten large images are assigned to
train and six images to the test set.

1 https://eoc-datasets.dlr.de
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(a) (b) (c) (d)

Fig. 2. Example of imperfection in shadow annotation at the shadow borders. Original
image (a), binary shadow mask (b), shadow-free region (c), shadowed region in which
some non-shadowed pixels are still present (d).

Fig. 3. A scene from the ASD dataset with its overlaid annotation for ■■■■■■■■■■■■■■■■■ heavy and
■■■■■■■■■■■■■■■■■ light classes and sample zoomed areas.

3.1 Shadow Annotation

We manually annotated the shadowed areas by 2D polygons and classified them
into light and heavy shadows. According to our annotation guidelines, shadows
caused by objects that allow sunlight to pass through (such as tree crowns)
are classified as light shadows. On the other hand, shadows caused by objects
that completely block sunlight are classified as heavy shadows. Furthermore, if
an area is partially illuminated by direct sunlight, it is called a light shadow,
while if the entire area is illuminated by indirect sunlight reflected from other
objects, it is called a heavy shadow. The annotation resulted in 67,781 instances
with 72,658,346 annotated pixels, of which about 17.5% are assigned to the light
shadow class and the rest to the heavy shadow class. Table 1 represents the
statistics of the ASD and the other shadow detection datasets.

Annotating shadows in aerial imagery is challenging due to the large number
of objects in each image and the wide range of shadow sizes and shapes. In our
dataset, we aimed to provide shadow annotations with exceptional precision,
which posed additional challenges, particularly when delineating shadow bound-
aries and shadows cast by small objects from an aerial perspective (e.g., lamps
and poles). In addition, distinguishing between shadowed and non-shadowed pix-
els, especially along shadow edges, can be a complex task. Figure 2 illustrates
an imperfection in the annotation of shadow borders. As another example, for
objects such as trees, it is usually difficult to decide for shadow pixels in their
border with the tree branches and leaves. In addition, it is not always easy to
separate the shadows of densely packed objects, such as trees in a forest. Also,
the heavy shadows are annotated more precisely than the light shadows because
their boundaries were much clearer. For the light shadows, the annotations are
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made by drawing a polygon around the approximate boundary of the shad-
ows. Our annotation process overcomes the challenges of shadow annotation,
enabling high accuracy and consistency while reducing potential annotation er-
rors. Validation by remote sensing experts at multiple levels ensures the quality
and validity of annotations, resulting in refined annotations. Figure 3 shows an
example scene from the ASD dataset along with its corresponding annotation.
Zoomed areas highlight the precision of the annotations in capturing fine details.

3.2 Comparison to the Other Datasets

Except for the WAMI dataset, existing shadow detection datasets are primarily
general-purpose and thus contain either no or only a limited number of aerial
images. In addition, these datasets typically consist of images obtained through
web searches or from publicly available sources such as OIRDS and Google Maps.
Figure 4 shows some examples from the UCF, SBU and CUHK datasets. As can
be seen in the examples, the GSDs, viewing angles, illumination conditions, and
scene types of the images in SBU are very diverse. Given the limited number of
samples in this dataset, this sample heterogeneity may prevent the algorithms
from learning different features correctly. Regarding the CUHK dataset, since
the images are taken from Google Maps as snapshots of the 3D reconstruction
of the environment, they do not represent the true structures and reconstruction
distortions are evident in the images. As a consequence, the shadows are also
not real shadows. Therefore, a model trained only on these images may not be
applicable to real-world scenarios.

In contrast, the images in the ASD dataset were acquired during an aerial
campaign specifically designed for urban monitoring, which closely resemble real-
world scenarios. In addition, the high quality and resolution of the images in our
dataset allow algorithms to learn shadow features from objects of different sizes.
The ASD dataset was developed to demonstrate practical applications of aerial
image shadow datasets. Careful selection of images from the same flight cam-
paign ensures a diverse range of shadow samples while maintaining consistency
in parameters such as illumination, weather conditions, viewing angle, and GSD.
Compared to the WAMI dataset, the manual annotation in ASD ensures precise
annotation of small objects and shadow edges, which may be prone to errors
in the automatic annotation of WAMI due to imperfections in 3D reconstruc-
tion and overlay techniques. In addition, ASD includes two shadow classes, which
improves fine-grained shadow detection in aerial imagery. Furthermore, by build-
ing ASD on top of the SkyScapes fine-grained semantic segmentation dataset,
it provides opportunities to explore shadow detection and removal on different
objects and surfaces, as well as to investigate the impact of shadow removal
on the segmentation of different semantic categories. In contrast to the WAMI
dataset, our dataset will be made publicly available, fostering advancements in
the development of shadow detection algorithms.

We compare the statistics of our dataset with publicly available shadow
datasets containing aerial imagery. As shown in Table 1, the total number of an-
notated shadow instances in ASD is about 16 times higher than that of CUHK.
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UCF SBU CUHK

Fig. 4. Sample aerial images with their corresponding masks from the UCF, SBU, and
CUHK shadow datasets.
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Fig. 5. Statistical properties of the aerial set of the UCF, SBU, CUHK, and ASD
datasets. The number of annotated shadow instances per image (a), shadowed fraction
of images (b), and the size of annotated shadow instances relative to image sizes (c).

Also, according to the diagrams in Figure 5, ASD contains a larger number of
shadow instances, especially at smaller sizes, than the other datasets. Accord-
ing to Figure 5-(a) most of the images in our dataset contains more than 25
instances in contrast to the other datsets which rarely have such images. More-
over, Figure 5-(c) indicates that most of the annotations in our dataset are tiny
shadows which could be caused by the fine looking objects in aerial images. This
also shows the high quality and resolution of our images so that even such fine
annotations could be provided. In addition, similar to the other shadow detec-
tion datasets, the number of shadowed and non-shadowed pixels is not balanced
in our dataset. However, according to Figure 5-(b) about half of the images in
ASD are covered by 20% to 40% shadow pixels.

4 Shadow Detection Methods

Previous works in the field of shadow detection have primarily focused on the
extraction of shadows using engineered feature descriptors, illumination models
and physical properties of shadows [24,44,17,14,8,9,34,30]. The classification of
shadowed pixels was often performed using algorithms such as Support Vector
Machine (SVM) and decision tree. In the field of remote sensing, threshold-based
methods have been proposed with promising results in [7], using Gram-Schmidt
orthogonalization in the LAB color space. In addition, an image index has been
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developed in [22] that incorporates all available bands of multispectral images.
Furthermore, the use of Principal Component Analysis (PCA) to detect shad-
ows in multispectral satellite images was introduced in [5]. These methods are
not specifically designed for shadow detection. Therefore, their results are not
directly comparable with state-of-the-art shadow detection methods.
Inspired by the successful applications of Deep Neural Network (DNN)s in vari-
ous image processing and computer vision tasks, a number of recent works have
proposed to exploit the ability of DNNs to automatically learn relevant fea-
tures for shadow detection. A structured Convolutional Neural Network (CNN)
framework was used in [18] to predict the local structure of shadow edges, which
improves the accuracy and local consistency of pixel classification. A CNN struc-
ture was proposed in [33] for patch-level shadow detection, which refines the de-
tected shadow patches based on image-level semantics. A method called scGAN
was proposed in [23], which uses a stacked Conditional Generative Adversarial
Networks (CGAN) with a sensitivity parameter to both control the sensitivity
of the generator and weight the relative importance of the shadow and non-
shadow classes. The BDRAR method, introduced in [45], utilizes a bidirectional
Feature Pyramid Network (FPN) with Recurrent Attention Residual (RAR)
modules. It extracts feature maps at different resolutions using a CNN, enabling
the capture of both shadow details and shadow semantics. Another method,
called Direction-aware Spatial Context (DSC), proposed in [13], incorporates
an attention mechanism in a spatial Recurrent Neural Network (RNN) with a
newly introduced DSC module to learn spatial contexts of images and shadows.
Despite its performance, DSC is unable to outperform BDRAR. The FDRNet
method proposed in [46] uses a feature decomposition and reweighting scheme to
mitigate intensity bias. It separates features into intensity-variant and -invariant
components and reweights these two types of features to redistribute attention
and balance their evaluation. The Stacked Conditional Generative Adversarial
Network (ST-CGAN) method, introduced in [35], enables joint detection and re-
moval of shadows in an end-to-end manner. It utilizes two stacked CGANs, with
the first generator producing shadow detection masks and the second genera-
tor removing shadows based on the generated masks. A context preserver CNN
called CPAdv-Net was proposed in [21], which is based on the U-Net [27] struc-
ture and trained by adversarial images. In [12], a fast shadow detection method
called FSDNet was proposed. It utilizes the MobileNet-V2 [28] architecture and
a novel detail enhancement module. FSDNet achieves competitive results with
state-of-the-art methods in a shorter time.

5 Evaluation Metrics

For the evaluations, we use commonly used metrics including mean Intersection
over Union (IoU), Dice similarity coefficient, and Balanced Error Rate (BER).
In the following equations, nij is the number of pixels of class i predicted as
class j and ncl is the number of classes, with ti =

∑
j nij representing the total

number of pixels of class i. TP, TN, FP, and FN denote the number of true
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Table 2. Benchmark on our dataset for multiple semantic segmentation and dedicated
shadow detection methods for different class setups evaluated by IoU↑, Dice↑, BER↓,
and Class IoU↑. B, H, L, and M denote background, heavy shadow, light shadow, and
merged classes. The values are given in percent. In red and blue are the best and second
best results. IoU is in %.
Method

Heavy and Light Heavy Merged
IoU Dice Class IoU [B,H,L] IoU BER Dice Class IoU [B,H] IoU BER Dice Class IoU [B,M]

AdapNet-Incep.V4 [32] 66.59 78.17 [89.36, 69.30, 41.12] 80.27 11.64 88.65 [91.23, 69.32] 79.02 12.91 87.91 [89.23, 68.80]
BiSeNet-Res.152 [39] 69.15 80.51 [89.70, 70.16, 47.60] 80.80 11.43 88.99 [91.52, 70.08] 80.02 12.24 88.58 [89.78, 70.27]
DeepLabv3 - Res.152 [2] 65.28 77.43 [88.24, 64.99, 42.62] 78.26 13.43 87.28 [90.38, 66.15] 77.20 14.24 86.69 [88.26, 66.13]
DeepLabv3+ - Res.152 [3] 68.45 79.81 [89.80, 70.62, 44.94] 81.22 11.19 89.27 [91.73, 70.71] 80.30 11.89 88.76 [89.87, 70.72]
DeepLabv3+ - Xcep.65 [3] 71.00 81.88 [90.67, 72.59, 49.72] 82.57 10.48 90.13 [92.41, 72.73] 81.84 10.75 89.76 [90.67, 73.02]
DenseASPP-Res.50 [38] 65.36 77.03 [88.76, 69.10, 38.23] 79.85 10.65 88.39 [90.67, 69.04] 78.68 12.89 87.70 [88.95, 68.41]
Encoder-Decoder-Skip 69.76 80.86 [90.23, 71.95, 47.10] 81.70 10.98 89.57 [91.98, 71.41] 80.37 11.78 88.81 [89.89, 70.85]
FC-DenseNet65 70.02 80.99 [90.62, 72.77, 46.67] 82.02 12.04 89.76 [92.45, 71.59] 81.88 10.75 89.78 [90.70, 73.06]
FRRN-A-Incep.V4 [26] 68.98 80.15 [90.24, 71.70, 45.00] 81.81 11.37 89.64 [92.15, 71.47] 80.92 11.47 89.16 [90.21, 71.63]
FRRN-B [26] 69.17 80.31 [90.25, 71.88, 45.37] 81.72 11.07 89.59 [92.02, 71.42] 80.78 11.85 89.07 [90.23, 71.33]
GCN-Res101 [25] 69.47 80.60 [90.31, 71.76, 46.34] 81.57 11.08 89.49 [91.93, 71.21] 80.84 11.89 89.10 [90.29, 71.40]
InternImage [37] 71.39 82.16 [91.00, 73.37, 49.79] 82.75 10.15 90.35 [92.45, 73.04] 82.51 9.95 90.02 [91.00, 74.03]
MobileUNet-Skip-Incep.V4 [10] 68.14 79.46 [89.87, 70.98, 43.56] 81.35 11.64 89.34 [91.93, 70.77] 80.38 11.55 88.82 [89.82, 70.95]
PSPNet-Res.152 [42] 68.13 79.50 [89.70, 70.77, 43.94] 81.12 11.65 89.19 [91.78, 70.45] 80.17 11.76 88.68 [89.72, 70.61]
RefineNet-Res.152 [19] 69.05 80.32 [89.85, 71.11, 46.21] 81.46 10.92 89.42 [91.82, 71.10] 80.51 11.20 88.91 [89.80, 71.22]

BDRAR [45] 68.01 79.33 [89.91, 71.05, 43.09] 81.84 10.99 89.69 [92.08, 71.60] 80.63 12.02 88.91 [90.05, 71.21]
FDRNet [46] 69.87 80.88 [90.69, 72.61, 46.33] 82.46 11.09 90.08 [92.42, 72.49] 81.68 10.95 90.14 [90.74, 72.98]

positives, true negatives, false positives, and false negatives, respectively. P and
T refer to prediction and ground truth, respectively. For IoU and Dice, higher
values indicate better results, while for BER, lower values show better results.

MeanIoU =
1

ncl

∑
i

ni,i

ti +
∑

j nj,i − ni,i
,

Dice =
2 | P ∩ T |
| P | + | T |

,

BER = 1− 1

2

(
TP

TP + FN
+

TN

TN + FP

)
.

6 Results and Discussion

In this section, we evaluate the performance of several DL-based semantic seg-
mentation and shadow detection methods on the ASD dataset. We train and
test them on the training and test sets of the dataset for three tasks: heavy and
light shadow classes, heavy shadow class only, and merging the two classes.

Among the existing methods, we select methods with publicly available
training source code, including the state-of-the-art InternImage [37] together
with AdaptNet [32], BiSeNet [39], DeepLab [2], DeepLabv3+ [3], DenseA-
SPP [38], Context-Encoding [41], FC-DenseNet [16], FRRN [26], GCN [25], Mo-
bileUNet [27,10], PSPNet [42], and RefineNet [19] for semantic segmentation,
and BDRAR [45] and FDRNet [46] for dedicated shadow detection methods.
Moreover, for semantic segmentation, we conduct experiments with multiple
available variants and different backbones of each method. The best result for
each method is listed in Table 2. We refer the reader to the supplementary
material for the full set of experimental results.
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Fig. 6. Shadow segmentation results by six different methods for two class (first row),
only heavy (2nd row), and the merged classes (3rd row). ■■■■■■■■■■■■■■■■■ heavy and ■■■■■■■■■■■■■■■■■ light shadows.

For our experiments, we crop the images into 512×512px patches. The reason
is the original size of images is 21 MP which does not fit into the GPU memory.
We use Titan XP and Quadro P6000 GPUs for training of the semantic seg-
mentation algorithms and A100 GPU for training the InternImage and shadow
detection algorithms. Regarding data augmentation, we apply both horizontal
and vertical flipping, as well as 50% overlap between neighboring crops. During
inference, we apply 10% overlap to alleviate the lower performance at bound-
ary regions. The learning rate is 0.0001 with the batch size of 1. We train the
algorithms for 60 epochs to make the comparison fair with all algorithms con-
verged until this step instead of using early stopping and learning-rate schedul-
ing techniques. In total, there are 8820 training crops. For training InernImage2,
BDRAR3 and FDRNet4, we use the original implementations.

As shown in Table 2, InternImage achieves the highest performance of 71.29
IoU and 10.15, 9.95 BER in ASD-two-classes, heavy(H) and -merged(M) re-
spectively, closely followed by DeepLabv3+-Xcep.65 as the second best method
for most of the evaluations. Notably, the results of InternImage, currently the
state-of-the-art semantic segmentation method on the CityScapes dataset [4], are
not significantly better than many of the earlier methods, indicating that the
challenges in ASD are still affecting newer methods. Figure 6 demonstrates the

2 https://github.com/OpenGVLab/InternImage (accessed June 5 2023)
3 https://github.com/zijundeng/BDRAR (accessed June 5 2023)
4 https://github.com/rayleizhu/FDRNet (accessed June 5 2023)
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qualitative performance of selected algorithms. InternImage and DeepLabv3+-
Xcep.65 excel at extracting large shadow instances, while FC-DenseNet and GCN
perform better on small shadow instances such as poles. In addition, FDRNet
and BDRAR have comparable performance. Overall, the methods perform better
with heavy shadows and face more challenges with light shadows. Light shadows
often have lower contrast and can be more difficult to accurately detect than
heavy shadows, which tend to have more distinct boundaries and higher con-
trast. Therefore, methods that focus on edge refinement and enhancing contrast
in light shadow regions could potentially improve the overall performance of
shadow detection algorithms in real-world scenarios. Still almost all algorithms
have a major difficulty in extracting shadows of tiny objects e.g., poles which is
important in pole detection algorithms as poles normally appear as one point
in ortho aerial images. With further investigation, as expected we notice that
algorithms are under performing in edge areas. We contemplate that one of the
reasons for the slight better performance of InternImage is due to the more
extended extracted shadowed areas leading to higher quantitative performance
especially in IoU. Overall, ASD shows that there is a significant challenge still
remaining in the shadow detection task in aerial imagery which we hope this
dataset could support further developments to shorten this gap.

Cross Validation To assess the generalizability of the models trained on our
dataset, we trained DeepLabv3+-Xcep.65 on ASD and tested it on SBU, CUHK,
and ISTD datasets. Similarly, we tested models trained on these three datasets on
ASD. The quantitative results are presented in Table 3, and Figure 7 illustrates
some qualitative results. The models trained on the heavy and merged classes of
ASD performs significantly better on the aerial images of the SBU and CUHK
datasets than on the entire dataset, which includes both aerial and ground im-
ages. Furthermore, the results on the ISTD dataset clearly show that the model
trained on the aerial images does not generalize well to the ground images.
This highlights the different challenges in different domains of shadow detection.
BDRAR and FDRNet achieve 3.64 and 3.04 in BER on SBU dataset respec-
tively while the trained algorithms on ASD-H and -M achieve 8.04. The reason
is the significant change in aerial images of SBU such as oblique ones shown in
Figure 7. This justification is confirmed on CUHK dataset in which trained algo-
rithms on ASD-H and -M achieve 11.79 versus the trained one on CUHK yielding
13.34 while tested on the aerial images in CUHK dataset i.e., CUHK-aerial(A).
Interestingly, DeepLabv3+-Xcep.65 achieves 4.90 in BER when trained on SBU.
We will further investigate the lower performance of BDRAR and FDRNet com-
pared to DeepLabv3+-Xcep.65 when tested on ASD in the future. ISDT dataset
has no aerial images, however, we can see that trained algorithm on ASD-H or
-M can achieve better BER on ISDT with 25.49 and 24.67 than trained ones
on ISDT, tested on ASD-H and -M with 27.16 and 26.50. The same phenomena
occurs in the SBU and CUHK datasets. Therefore, ASD has a better general-
ization capability than the aerial images contained in SBU and CUHK dataset.
Furthermore, the model trained on ASD performs significantly better on the
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Table 3. Evaluation of the generalizability of models trained on ASD and tested
on SBU, ISTD, and CUHK datasets, and vice versa, using the DeepLabv3+-Xcep.65
network. H and M refer to the heavy shadow and merged classes in ASD, and A denotes
the aerial parts of the SBU and CUHK dataset. The results are in percent, with the
best and second best results marked in red and blue, respectively. IoU is in %.

ASD vs. SBU ASD vs. CUHK ASD vs. ISTD
Train Test IoU↑ BER↓ Dice↑ Train Test IoU↑ BER↓ Dice↑ Train Test IoU↑ BER↓ Dice↑
ASD-H SBU 65.95 13.70 77.56 ASD-H CUHK 44.22 22.56 59.07 ASD-H ISTD 53.09 25.49 63.39
ASD-M SBU 67.06 14.26 78.57 ASD-M CUHK 45.25 22.82 60.27 ASD-M ISTD 54.43 24.67 65.58
ASD-H SBU-A 85.03 8.04 91.52 ASD-H CUHK-A 70.27 11.79 81.80 ISTD ISTD 91.47 6.62 95.46
ASD-M SBU-A 85.29 8.72 91.69 ASD-M CUHK-A 75.57 12.68 82.82 ISTD ASD-H 61.21 27.16 74.46
SBU SBU 90.17 4.90 94.73 CUHK CUHK 83.55 9.07 91.03 ISTD ASD-M 60.44 26.50 74.03
SBU SBU-A 84.09 7.17 90.90 CUHK CUHK-A 78.61 13.34 87.84
SBU ASD-H 69.77 15.55 80.96 CUHK ASD-H 64.01 24.72 77.25
SBU ASD-M 64.41 17.29 76.80 CUHK ASD-M 64.81 23.63 78.02

Fig. 7. Shadow segmentation results for DeepLabv3+-Xcep.65 trained on ASD (merged
classes) and tested on SBU, CUHK, and ISTD test sets.

SBU and CUHK aerial sets than the model trained on these two datasets and
tested on ASD. This indicates that ASD generalizes better than the airborne
parts of SBU and CUHK.

7 Conclusion and future works

In this paper, we present ASD, the first and largest publicly available dataset
dedicated to fine-grained shadow detection in aerial imagery, including both
heavy and light shadow classes. By evaluating and benchmarking state-of-the-
art methods, we found that current algorithms struggle to achieve high accuracy
on this dataset, highlighting the intricate details and complexity of ASD. In
addition, the cross-dataset evaluation results show that the model trained on
ASD performs well on the aerial set of the other shadow detection datasets,
indicating the potential transferability of models trained on ASD to other similar
aerial image datasets. Altogether, ASD will advance the development of efficient
and effective shadow detection methods, ultimately improving shadow removal
and feature extraction for various applications such as HD map creation and
autonomous driving.
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This document presents the comprehensive benchmarking results of sev-
eral image segmentation networks on the Airborne-Shadow (ASD) dataset.
These methods include: Auto-Deeplab [1], DenseASPP [2], BiSeNet [3], Context-
Encoding [4], and OcNet [5], PSPNet [6], or stacks of convolutional layers
with different dilation rates, as in DeepLab [7], FRRN [8], MobileNet [9],
RefineNet [10], Deeplabv3+ [11], AdapNet [12], and FC-DenseNet [13], as
well as a custom U-Net-like MobileNet and custom Decoder-Encoder with
skip-connections. We also considered shadow detection algorithms such as
BDRAR [14] and FDRNET [15].

The segmentation performance is evaluated for two shadow classes: heavy
and light shadows (Table 1). Additionally, we analyze the results specifically
for the heavy shadow class (Table 2), as well as when both shadow classes are
merged (Table 3). Evaluation metrics include IoU, f.w. IoU, Class IoU, BER, f.w.
BER, Precision, Recall, and Dice scores. Higher values indicate better algorithm
performance, except for the BER and f.w. BER metrics. For the IoU and BER
metrics, we also considered their frequency weighted (f.w.) values.

We also provide visualizations of example segmentations for the three tasks
in Figure 1, Figure 2, and Figure 3. Each figure shows the results of the best
performing variant of the main segmentation network for the respective task.

Figure 4 shows the performance of InternImage on one original test images
from the ASD dataset in the heavy class benchmark.

When applied in the real-world scenarios, the Figure 5 and Figure 6 shows
the generalization capability of the best performing algorithm trained on ASD
when tested on other aerial images, acquired at a different time with different
resolution over the city of Karlsruhe as a different area for heavy and merged
benchmarks. Figure 7 shows the same performance, but over the city of Wolfrat-
shausen for the two-class shadow benchmark.
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Table 1. Benchmark on Airborne-Shadow dataset for the heavy and light shadow
classes. B, H, and L denote Background, Heavy shadow, and Light shadow classes. In
blue and red are the best and second best results. IoU is in %.

Method IoU f.w. IoU Recall Precision Dice Class IoU [B,H,L]

AdapNet 66.53 83.34 93.79 83.25 78.10 [89.30, 69.45, 40.84]
AdapNet - Incep.V4 66.59 83.37 93.81 83.32 78.17 [89.36, 69.30, 41.12]

BiSeNet - Res.50 68.29 83.71 93.92 83.19 79.78 [89.49, 69.59, 45.80]
BiSeNet - Res.101 68.76 83.97 94.00 83.56 80.14 [89.60, 70.36, 46.31]
BiSeNet - Res.152 69.15 84.06 94.03 83.07 80.51 [89.70, 70.16, 47.60]

DeepLabv3 - Res.50 65.13 81.38 92.95 80.58 77.36 [87.88, 64.70, 42.81]
DeepLabv3 - Res.101 64.72 81.21 92.92 81.49 77.01 [87.85, 64.11, 42.21]
DeepLabv3 - Res.152 65.28 81.70 93.13 81.89 77.43 [88.24, 64.99, 42.62]
DeepLabV3 - Incep.V4 25.40 57.36 83.80 78.81 29.06 [75.68, 00.51, 00.00]

DeepLabv3+ - Res.50 67.96 83.89 93.97 82.49 79.39 [89.62, 70.31, 43.96]
DeepLabv3+ - Res.101 67.92 83.84 93.92 81.70 79.36 [89.57, 70.28, 43.92]
DeepLabv3+ - Res.152 68.45 84.12 94.06 82.32 79.81 [89.80, 70.62, 44.94]
DeepLabv3+ - Xcep.65 71.00 85.38 94.58 84.66 81.88 [90.67, 72.59, 49.72]

DenseASPP - MobileNetV2 25.41 55.44 81.55 31.98 30.53 [72.23, 03.83, 00.16]
DenseASPP - Res.50 65.36 82.76 93.50 81.58 77.03 [88.76, 69.10, 38.23]
DenseASPP - Res.101 64.72 82.71 93.52 82.14 76.35 [88.83, 68.96, 36.38]
DenseASPP - Res.152 65.31 82.72 93.49 81.11 77.02 [88.81, 68.63, 38.49]

Encoder-Decoder 67.96 83.79 93.94 82.51 79.43 [89.59, 69.88, 44.43]
Encoder-Decoder - Incep.V4 67.53 83.62 93.86 82.20 79.05 [89.47, 69.64, 43.48]
Encoder-Decoder-Skip 69.76 84.81 94.34 83.43 80.86 [90.23, 71.95, 47.10]
Encoder-Decoder-Skip - Incep.V4 69.46 84.75 94.32 83.38 80.61 [90.29, 71.58, 46.50]

FC-DenseNet56 70.02 85.25 94.51 83.01 80.99 [90.62, 72.77, 46.67]
FC-DenseNet56 - Incep.V4 69.49 85.14 94.49 83.62 80.51 [90.62, 72.48, 45.37]
FC-DenseNet67 69.20 85.16 94.50 84.37 80.19 [90.58, 73.00, 44.02]
FC-DenseNet67 - Incep.V4 69.83 85.22 94.55 84.62 80.82 [90.66, 72.55, 46.27]
FC-DenseNet103 69.63 85.13 94.51 84.55 80.66 [90.60, 72.37, 45.91]
FC-DenseNet103 - Incep.V4 69.59 85.21 94.54 84.96 80.59 [90.64, 72.72, 45.43]

FRRN-A 68.89 84.76 94.36 84.66 80.04 [90.30, 71.98, 44.40]
FRRN-A - Incep.V4 68.98 84.68 94.33 84.75 80.15 [90.24, 71.70, 45.00]

FRRN-B 69.17 84.74 94.34 84.31 80.31 [90.25, 71.88, 45.37]
FRRN-B - Incep.V4 68.63 84.54 94.27 84.40 79.85 [90.15, 71.49, 44.26]

GCN - Res.50 69.29 84.75 94.34 84.36 80.43 [90.24, 71.87, 45.77]
GCN - Res.101 69.47 84.80 94.36 84.39 80.60 [90.31, 71.76, 46.34]
GCN - Res.152 68.70 84.25 94.11 82.88 80.00 [89.86, 70.94, 45.30]

InternImage 71.39 85.43 94.61 85.44 82.16 [91.00, 73.37, 49.79]

MobileUNet 65.21 82.31 93.32 80.77 77.07 [88.51, 67.57, 39.54]
MobileUNet-Skip 67.95 84.17 94.10 83.01 79.28 [89.88, 70.96, 43.03]
MobileUNet-Skip - Incep.V4 68.14 84.20 94.11 83.20 79.46 [89.87, 70.98, 43.56]

PSPNet - Res.50 67.80 84.00 94.00 81.92 79.19 [89.72, 70.67, 43.02]
PSPNet - Res.101 67.66 83.89 93.95 81.79 79.06 [89.62, 70.58, 42.77]
PSPNet - Res.152 68.13 84.04 94.02 82.37 79.50 [89.70, 70.77, 43.94]

RefineNet - Res.50 68.86 84.27 94.12 82.82 80.15 [89.85, 71.00, 45.72]
RefineNet - Res.101 68.89 84.34 94.16 83.46 80.16 [89.93, 71.07, 45.66]
RefineNet - Res.152 69.05 84.31 94.12 82.49 80.32 [89.85, 71.11, 46.21]

BDRAR 68.01 84.25 94.19 83.08 79.33 [89.91, 71.05, 43.09]
FDRNet 69.87 85.28 94.62 84.67 80.88 [90.69, 72.61, 46.33]
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Table 2. Benchmark on Airborne-Shadow dataset with only the heavy shadow class.
B and H denote Background and Heavy shadow classes. In blue and red are the best
and second best results. IoU is in %.

Method IoU f.w. IoU BER f.w. BER Recall Precision Dice Class IoU [B,H]

AdapNet 80.34 86.93 12.38 9.85 92.84 89.85 88.67 [91.47, 69.20]
AdapNet-Incep.V4 80.27 86.75 11.64 9.26 92.68 88.94 88.65 [91.23, 69.32]

BiSeNet - Res.50 79.96 86.66 12.60 10.03 92.68 89.58 88.42 [91.29, 68.63]
BiSeNet - Res.101 80.26 86.90 12.55 9.99 92.84 89.96 88.62 [91.47, 69.05]
BiSeNet - Res.152 80.80 87.14 11.43 9.10 92.92 89.43 88.99 [91.52, 70.08]

DeepLabv3 - Res.50 77.60 85.05 14.33 11.40 91.71 88.13 86.82 [90.20, 65.00]
DeepLabv3 - Res.101 77.64 85.04 14.06 11.19 91.67 87.87 86.85 [90.14, 65.14]
DeepLabv3 - Res.152 78.26 85.43 13.43 10.69 91.90 88.06 87.28 [90.38, 66.15]
DeepLabV3 - Incep.V4 52.92 66.09 33.20 26.43 77.63 66.03 66.38 [75.18, 30.66]

DeepLabv3+ - Res50 81.07 87.34 11.27 8.97 93.04 89.64 89.17 [91.66, 70.49]
DeepLabv3+ - Res101 81.13 87.36 11.11 8.84 93.05 89.54 89.21 [91.65, 70.61]
DeepLabv3+ - Res152 81.22 87.44 11.19 8.91 93.11 89.75 89.27 [91.73, 70.71]
DeepLabv3+ - Xcep.65 82.57 88.39 10.48 8.34 93.69 90.79 90.13 [92.41, 72.73]

DenseASPP - MobileNetV2 39.80 63.35 50.00 39.79 79.59 46.30 44.32 [79.59, 00.00]
DenseASPP - Res.50 79.85 86.25 10.65 8.47 92.27 87.53 88.39 [90.67, 69.04]
DenseASPP - Res.101 79.97 86.52 11.66 9.28 92.52 88.57 88.45 [91.03, 68.91]
DenseASPP - Res.152 79.96 86.52 11.73 9.34 92.52 88.62 88.44 [91.04, 68.88]

Encoder-Decoder 80.69 87.08 11.55 9.19 92.89 89.41 88.92 [91.48, 69.90]
Encoder-Decoder - Incep.V4 80.49 86.98 11.96 9.52 92.85 89.58 88.78 [91.46, 69.52]
Encoder-Decoder-Skip 81.70 87.79 10.98 8.74 93.32 90.16 89.57 [91.98, 71.41]
Encoder-Decoder-Skip - Incep.V4 81.80 87.86 10.94 8.71 93.37 90.25 89.64 [92.04, 71.56]

FC-DenseNet56 82.02 88.20 12.04 9.59 93.66 91.96 89.76 [92.45, 71.59]
FC-DenseNet56 - Incep.V4 82.41 88.35 11.03 8.78 93.69 91.21 90.02 [92.44, 72.37]
FC-DenseNet67 81.87 87.92 10.98 8.74 93.41 90.40 89.68 [92.10, 71.65]
FC-DenseNet67 - Incep.V4 82.65 88.42 10.24 8.15 93.69 90.64 90.19 [92.41, 72.89]
FC-DenseNet103 82.36 88.28 10.82 8.61 93.63 90.89 89.99 [92.36, 72.36]
FC-DenseNet103 - Incep.V4 82.57 88.36 10.21 8.12 93.65 90.51 90.14 [92.35, 72.80]

FRRN-A 81.81 87.93 11.34 9.02 93.44 90.73 89.64 [92.15, 71.48]
FRRN-A - Incep.V4 81.81 87.93 11.37 9.05 93.44 90.77 89.64 [92.15, 71.47]

FRRN-B 81.72 87.82 11.07 8.81 93.35 90.29 89.59 [92.02, 71.42]
FRRN-B - Incep.V4 81.84 87.90 11.01 8.76 93.40 90.39 89.66 [92.08, 71.59]

GCN - Res.50 81.91 87.95 10.95 8.71 93.43 90.42 89.71 [92.11, 71.71]
GCN - Res.101 81.57 87.70 11.08 8.82 93.27 90.10 89.49 [91.93, 71.21]
GCN - Res.152 81.55 87.74 11.43 9.10 93.32 90.47 89.47 [92.00, 71.09]

InternImage 82.75 88.46 10.15 8.05 93.75 90.75 90.35 [92.45, 73.04]

MobileUNet 79.08 85.90 12.32 9.80 92.14 88.03 87.85 [90.61, 67.55]
MobileUNet-Skip 81.17 87.46 11.59 9.22 93.15 90.12 89.22 [91.80, 70.54]
MobileUNet-Skip - Incep.V4 81.35 87.61 11.64 9.27 93.25 90.43 89.34 [91.93, 70.77]

PSPNet - Res.50 81.05 87.36 11.52 9.17 93.07 89.87 89.15 [91.71, 70.40]
PSPNet - Res.101 81.08 87.34 11.25 8.95 93.04 89.61 89.17 [91.65, 70.50]
PSPNet - Res.152 81.12 87.43 11.65 9.27 93.13 90.12 89.19 [91.78, 70.45]

RefineNet - Res.50 39.80 63.35 50.00 39.79 79.59 89.80 44.32 [79.59, 00.00]
RefineNet - Res.101 81.54 87.64 10.85 8.63 93.22 89.82 89.47 [91.85, 71.23]
RefineNet - Res.152 81.46 87.59 10.92 8.69 93.19 89.79 89.42 [91.82, 71.10]

BDRAR 81.84 87.91 10.99 8.77 93.44 90.28 89.69 [92.08, 71.60]
FDRNet 82.46 88.41 11.09 8.83 93.74 91.26 90.08 [92.42, 72.49]
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Table 3. Benchmark on Airborne-Shadow dataset with the merged, heavy and light
shadow classes. B and M denote Background and Merged classes. In blue and red are
the best and second best results. IoU is in %.

Method IoU f.w. IoU BER f.w. BER Recall Precision Dice Class IoU [B,M]

AdapNet 79.01 84.25 12.90 9.76 91.29 88.83 87.91 [89.22, 68.81]
AdapNet - Incep.V4 79.02 84.26 12.91 9.77 91.30 88.85 87.91 [89.23, 68.80]

BiSeNet - Res.50 79.54 84.65 12.50 9.46 91.53 89.12 88.26 [89.49, 69.59]
BiSeNet - Res.101 79.71 84.77 12.35 9.34 91.60 89.18 88.37 [89.57, 69.85]
BiSeNet - Res.152 80.02 85.03 12.24 9.26 91.77 89.49 88.58 [89.78, 70.27]

DeepLabv3 - Res.50 76.79 82.54 14.39 10.89 90.22 87.34 86.42 [87.98, 65.60]
DeepLabv3 - Res.101 76.71 82.45 14.35 10.86 90.16 87.16 86.36 [87.89, 65.52]
DeepLabv3 - Res.152 77.20 82.88 14.24 10.77 90.45 87.76 86.69 [88.26, 66.13]
DeepLabV3 - Incep.V4 37.83 57.25 50.00 37.83 75.66 87.83 43.07 [75.66, 00.00]

DeepLabv3+ - Res.50 79.96 84.91 11.91 9.01 91.66 89.03 88.54 [89.61, 70.30]
DeepLabv3+ - Res.101 79.99 84.94 11.94 9.03 91.68 89.09 88.56 [89.64, 70.33]
DeepLabv3+ - Res.152 80.30 85.21 11.89 8.99 91.86 89.47 88.76 [89.87, 70.72]
DeepLabv3+ - Xcep.65 81.84 86.38 10.75 8.13 92.55 90.30 89.76 [90.67, 73.02]

DenseASPP - MobileNetV2 37.84 57.14 50.05 37.87 75.45 47.01 43.25 [75.44, 00.25]
DenseASPP - Res.50 78.68 83.95 12.89 9.75 91.08 88.34 87.70 [88.95, 68.41]
DenseASPP - Res.101 78.32 83.63 12.93 9.78 90.86 87.88 87.46 [88.66, 67.97]
DenseASPP - Res.152 78.77 83.91 12.28 9.29 91.00 87.83 87.77 [88.79, 68.75]

Encoder-Decoder 79.72 84.76 12.22 9.25 91.58 89.05 88.39 [89.54, 69.91]
Encoder-Decoder - Incep.V4 79.77 84.81 12.22 9.24 91.61 89.12 88.42 [89.58, 69.97]
Encoder-Decoder-Skip 80.37 85.25 11.78 8.91 91.88 89.45 88.81 [89.89, 70.85]
Encoder-Decoder-Skip - Incep.V4 81.12 85.82 11.21 8.48 92.22 89.85 89.30 [90.28, 71.97]

FC-DenseNet56 81.88 86.40 10.75 8.13 92.57 90.34 89.78 [90.70, 73.06]
FC-DenseNet56 - Incep.V4 81.82 86.37 10.87 8.22 92.56 90.40 89.74 [90.69, 72.95]
FC-DenseNet67 81.54 86.22 11.43 8.64 92.50 90.68 89.55 [90.66, 72.42]
FC-DenseNet67 - Incep.V4 81.69 86.28 11.01 8.33 92.51 90.39 89.66 [90.64, 72.74]
FC-DenseNet103 81.51 86.18 11.37 8.60 92.47 90.56 89.53 [90.62, 72.40]
FC-DenseNet103 - Incep.V4 81.43 86.11 11.32 8.56 92.42 90.39 89.49 [90.55, 72.32]

FRRN-A 80.85 85.66 11.65 8.82 92.14 89.97 89.12 [90.22, 71.49]
FRRN-A - Incep.V4 80.92 85.68 11.47 8.68 92.15 89.85 89.16 [90.21, 71.63]

FRRN-B 80.78 85.63 11.85 8.97 92.14 90.11 89.07 [90.23, 71.33]
FRRN-B - Incep.V4 80.86 85.68 11.74 8.88 92.17 90.09 89.12 [90.25, 71.47]

GCN - Res.50 81.03 85.78 11.46 8.67 92.21 90.00 89.23 [90.29, 71.77]
GCN - Res.101 80.84 85.69 11.89 8.99 92.18 90.24 89.10 [90.29, 71.40]
GCN - Res.152 80.44 85.31 11.74 8.88 91.92 89.50 88.85 [89.93, 70.95]

InternImage 82.51 87.34 9.95 7.53 92.78 90.49 90.02 [91.00, 74.03]

MobileUNet 77.77 83.28 13.67 10.34 90.68 87.93 87.08 [88.51, 67.03]
MobileUNet-Skip 80.13 85.10 12.09 9.15 91.80 89.47 88.65 [89.81, 70.45]
MobileUNet-Skip - Incep.V4 80.38 85.23 11.55 8.74 91.85 89.22 88.82 [89.82, 70.95]

PSPNet - Res.50 80.10 84.99 11.65 8.81 91.69 88.94 88.64 [89.63, 70.57]
PSPNet - Res.101 80.24 85.13 11.75 8.89 91.80 89.24 88.72 [89.78, 70.70]
PSPNet - Res.152 80.17 85.07 11.76 8.90 91.76 89.15 88.68 [89.72, 70.61]

RefineNet - Res.50 80.10 85.11 12.32 9.32 91.83 89.70 88.62 [89.87, 70.33]
RefineNet - Res.101 80.49 85.31 11.49 8.69 91.90 89.29 88.89 [89.88, 71.10]
RefineNet - Res.152 80.51 85.28 11.20 8.48 91.85 89.03 88.91 [89.80, 71.22]

BDRAR 80.63 84.98 12.02 8.98 92.08 89.85 88.91 [90.05, 71.21]
FDRNet 81.86 86.45 10.95 8.32 92.65 90.51 90.14 [90.74, 72.98]
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Fig. 1. Three example shadow detections for the ■■■■■■■■■■■■■■■■■ heavy and ■■■■■■■■■■■■■■■■■ light shadow classes.
Each example includes the original and ground truth images, as well as the results
obtained using the best performing variant of the main segmentation networks.
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Fig. 2. Three example shadow detections for the heavy shadow class. Each example
includes the original and ground truth images, as well as the results obtained using the
best performing variant of the main segmentation networks.
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Fig. 3. Three example shadow detections for the merged heavy and light shadow
classes. Each example includes the original and ground truth images, as well as the
results obtained using the best performing variant of the main segmentation networks.
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Fig. 4. Performance of the trained InternImage algorithm on ASD dataset (merged) on
one sample aerial image from the test set. Top: image, middle: label, bottom: output.
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Fig. 5. Generalization capability of the trained InternImage algorithm on ASD dataset
(merged) on aerial images over the city of Karlsruhe with different resolution, GSD,
acquired over a different city at a different time and altitude.
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Fig. 6. Generalization capability of the trained InternImage algorithm on ASD dataset
(strong) on aerial images over the city of Karlsruhe with different resolution, GSD,
acquired over a different city at a different time and altitude.
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Fig. 7. Generalization capability of the trained InternImage algorithm on ASD dataset
(two-classes) on aerial images over the city of Wolfratshausen with different resolution,
GSD, acquired over a different city at a different time and altitude.
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