
cba

Giuliano Scollo (Hrsg.): SKILL 2023,
0 Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023

Performance Comparison Analysis of Data-Exchange
Efficiency in Middleware Systems with UDP and Shared
Memory

Giuliano Scollo1

Abstract: This work aims at creating a systematic comparison of the data transmission throughput
using UDP or Shared Memory. Since there is no empirical comparison of these two methods this
research aims to fill that gap. For testing, a middleware as well as a communication test tool were used
that transferred data packets at a given frequency. By controlling the frequency and the size of the
data packet a maximum possible data throughput was deducted.

Keywords: Performance; Analysis; UDP; Shared Memory; Middleware; Data transmissions; Com-
parison

1 Technische Universität Braunschweig, Informatik, Universitätspl. 2, 38106 Braunschweig, Deutschland; German
Aerospace Center, Institute of Transportation Systems, Lilienthalplatz 7, 38108 Braunschweig, Germany
giuliano.scollo@tu-bs.de

https://creativecommons.org/licenses/by-sa/4.0/
giuliano.scollo@tu-bs.de


UDP and Shared Memory Comparison 1

1 Introduction

There is a lot of research regarding data handling and transmissions. This does not only
include user-generated data, but also machine-readable data sets and telegrams that are
exchanged on Machine2Machine (M2M) level to ensure certain vehicle functionalities.

Data-exchange middleware systems are commonly used to marshal the data transmission
between the respective data sources and destinations. Middlewares commonly use the
User Datagram Protocol (UDP) or Shared Memory (SHM) to transfer the data. This paper
compares these data-transmission techniques.

UDP was developed as part of network communication to send data with a minimum of
protocol overhead [7], as opposed to for example the Transmission Control Protocol which
has to recover from data that is damaged, lost, duplicated, or delivered out of order by the
internet communication system [6]. UDP is a protocol that is transaction-oriented, delivery
and duplication protection are not guaranteed. UDP assumes that the Internet Protocol (IP)
is used as the underlying protocol [7]. Using the localhost interface UDP can also be used
to exchange data between processes on the same host. Some middlewares apply UDP to
exchange data between clients on the same host.

SHM is a technology to achieve interprocess communication (IPC) between processes on
the same host by giving multiple processes access to the same memory space [3]. The
processes have to synchronize their SHM access by using a so-called semaphore. Prior to
accessing the SHM a process has to acquire the semaphore and to release it afterwards.
Other processes can wait at the semaphore until it is released to gain access to the SHM.
SHM has the reputation of being a fast way of IPC on a host [1], so middlewares tend to
apply it as an alternative to UDP although it is more difficult to implement.

However, no literature could be found about a systematic comparison. This paper aims
at filling that gap. To achieve that, this research investigates the data throughput of each
communication method and its reliability for local data transmissions.

Two parameters determine the data throughput: the frequency at which data packets are
transferred and the size of the packets. A test tool was developed to measure the maximum
packet sizes at different frequencies sent via UDP and SHM. Since the design of UDP
and SHM is completely different a variety of possible influential factors come at play. To
estimate their effects, the test environment measures the influential factors step by step.



2 Giuliano Scollo

2 Methods

2.1 Software

To conduct the research two independent softwares were applied:

• Dominion – A middleware developed at the German Aerospace Center, Institute for
Transportation Systems.

• A communication data transmission tool specifically developed for this research.

Dominion is a middleware to exchange data in soft realtime between so-called Dominion
applications (apps for short). To test the data throughput the set up consisted of a writing
app (writer) and a reading app (reader). Dominion tranfsers data between apps on a local
host using SHM and uses UDP to synchronize the SHMs of different hosts. Dominion
calls the central working method of each app (called run function) regularly at fixed time
intervals of 10 ms by default. The run function reads the data the app consumes from SHM,
processes it, and writes the data to share with other apps back into data structures located in
SHM. In case a consuming app is on another host the producing app sends its data also
via UDP. The special transmission tool mimics this behavior by creating a writing and a
reading subprocess. Since all our tests are performed locally the decision which method to
use is not deducted by the host location but by the user. The transmissions happen at a cycle
time similar to the execution of dominions run function.

To reach the limits of UDP and SHM communication both tools were deployed in Docker
containers, which allows to easily limit the allocated CPU performance by a Docker
parameter. In case of Dominion, the Docker containers could also be set up to enable or
disable a common SHM to enforce UDP communication.

2.2 Data Transmission — Model View

Fig. 1: Test environment with Dominion

Fig. 1 shows the test environment setup, used for testing data throughput with Dominion.
For data exchange a WriterApp and a ReaderApp are created using Dominion. In every test
the apps are configured according to the used method.



UDP and Shared Memory Comparison 3

For UDP the apps are both in a dedicated Docker network that allows UDP broadcast between
them. Testing the apps using a SHM space to allow interprocess communication (IPC). In this
case the IPC happens between the Docker containers that run the applications. Encapsulation
of the applications in containers enables controlled restrictions of the communication of
the processes. The WriterApp sends data arrays to the ReaderApp, which in turn reads the
content of the array. In this scenario Dominion as a middleware connects the applications.
Dominion’s architecture is such that the data is sent directly from the WriterApp to the
ReaderApp without a data broker or routing instance in between2.

2.3 Hardware

As primary test hardware a Dell Latitude 5501 notebook was used (NB). In addition, tests
were conducted on a Raspberry Pi 4 (RPI) as alternative more limited hardware with a
different chip architecture. Tab. 1 gives an overview over the main properties of the hardware
platforms.

Name CPU OS Kernel RAM
NB Intel(R) Core(TM) i7-

9850H CPU @ 2.60GHz
Ubuntu 18.04 5.4.0-65-generic x86_64 32 GB

RPI Broadcom BCM2711 quad-
core Cortex-A72 (ARM v8)
64-bit SoC @ 1.8GHz

Raspberry Pi OS
(Raspbian)

5.4.83-v7+ armv7l 4 GB

Tab. 1: Test hardware

The most important differences are the available RAM and the chip architecture with x86_64
on the NB opposed to the armv7l on the RPI.

2.4 Pseudo code

Algorithm 1 describes how the general data exchange of the Communication Tool works.
This algorithm is resembling the behaviour of the real code and does not include every
subroutine.
2 On initialization Dominion apps register at the so-called DominionServer, which tells the apps who are their data

consumers.



4 Giuliano Scollo

Algorithm 1 Send/Receive data (Communication Tool)
input int multiplicity (how big is the data array)
input int cycle_time (in wich frequency shall the data be transmitted)
input int max_cycles (how many transmissions shall happen idealy)

1: for 0→ maxcycles do
2: prepare_packets(multiplicity)
3: int start_time = now
4: for all packets do
5: transmit_packet(i)
6: int send_duration = now - start_time
7: callback()
8: sleep(cycle_time - send_duration)
1: for 0→ maxcycles do
2: for all packets do
3: receive_packet(i)
4: callback()

For sending and receiving data a similar sequence of actions were used. Before each test the
multiplicity and cycle_time are set and given. They describe how big the data array is
that will be sent and how often the transmission occurs. Also given is a limit how often this
transmission is executed until a test run finishes. The main difference of both is that the
sending process is scheduled by the cycle_time. Every execution starts by preparing all
packets that will be sent. Here the data array is split according to the maximum transmission
unit of either SHM or UDP. Then the first timestamp is saved for later reference. Next, all
packets are transmitted. Now the second timestamp is set to get the time spent transmitting
all packets. Since sending data should always happen in the same time interval no matter
how big the data array gets, the raw sending time gets substracted from the cycle_time to
get the remaining interval that this thread needs to wait before another execution. Before the
thread sleeps the callback function is called wich will be explained in Algorithm 3. For our
reading process this timing is not neccessary since all data that was sent will be processed.

Algorithms 2 and 3 show the subroutines detecting failed transmissions. Dominion’s aproach
of using a single semaphore was extended by the tool to react based on timer calls, because
this job is handled by an event handler thread in Dominion.

Algorithm 2 Timer thread (timer increases counting semaphore after each cycle)
1: if semaphore_count > 100 then
2: print(timer_error_message)
3: reset_semaphore(10)

The main job of Dominions timer thread is to keep track of a counting semaphore that
indicates the state of the current interaction. If it has reached a value of 100, the thread
signals a timer error and resets the semaphore value to 10. This error message is our main



UDP and Shared Memory Comparison 5

indicator for a failed data transmission, since it represents asynchronous behaviour that had
to be corrected by Dominion.

Algorithm 3 Callback check
input int cycle_time (in wich frequency shall the data be transmitted)
input int last_callback_call (timestamp of last callback call)

1: wait cb_semaphore
2: if last_callback_call > now - cycle_time then
3: print(timer_error_message)
4: last_callback_call = now
5: release cb_semaphore

This process is executed when the callback function is called. To know what the set cycle
time was and to keep track of execution a timestamp of the last time this function was
executed is saved. Guarded by a semaphore this method checks how long ago the last
callback call was. If the time that passed is longer than the set cycle time an error message
is printed. Either way the last callback-call timestamp is set to the current time for the next
check. This mechanism is a criterion for the success of a test. The callback check mimics
the thread timer error Dominion uses but registers every failed test and does not only reacts
if 100 violations happened.

2.5 Testing procedure

The success of a test using Dominion is determined by the timer thread error. If this
message is contained in the output the given multiplicity is considered too high to reliably
be transmitted at this cycle time. Given this information the resulting maximum was
approximated by first testing with a multiplicity equal to half of the limit. This limit was
set based on the results produced by Dominion’s UDP transmissions and corrected up to
1 000 000 since SHMs results were way higher than Dominion’s average UDP results.

If the test was successful the multiplicity was increased by half of the last multiplicity. Else
the multiplicity is decrased by half of the last multiplicity. If the last used multiplicity and
the new one are at a difference of 2 the test is finished and the highest multiplicity resulting
in a test is passed as the maximum. The success of a test using the communication tool
is determined by the callback timer error as well as how many cycles were completed. A
cycle stands for one transmission of the full multiplicity. If the writer sent the multiplicity
1000 times and the reader catched 99.95 % of those transmissions the test was considered as
successfull. As representative enough without producing too much data 1000 transmissions
per test were sent. Reducing the success rate from 100 % to 99.95 % did not significantly
change the test results for cycle times above 5 ms but improved the success rate for lower
cycle times especially for UDP. Testing without any fault tolerance is reserved for future
research. The callback error message is used to determine how often a cycle was completed
too late. This is an approximation on how reliable the respective methods are.



6 Giuliano Scollo

3 Tests and output description

Creating an environment that allows to compare the two methods is quite difficult, because
Linux kernel developers put a lot of effort into perfomance optimization such that there
are many parameters to adapt it to special requirements[4]. In the assumption that most
middleware users are not aware of such settings the Linux kernel configuration were left at
the default.

All plots show how much data can be transmitted at most for each cycle time. All tests
conducted compare communication using UDP and SHM. For all diagrams the x-axis
contains the cycle time in Milliseconds. The y-axis contains the maximum size of UInt32
data arrays that could be transmitted as data packets on a test run.

3.1 Test with Dominion

(a) (b)

Fig. 2: Results using dominion at 0.05 CPU and 0.1 CPU

In figure 2(a) the data cycle time is in the range of 1 ms to 7 ms. To estimate the range of the
y-axis scale low cycle times at a low CPU usage of 0.989 % were tested. This corresponds to
0.05 CPU for any hardware using 6 cores, since 0.0989 % of 6 is 0.05. All resulting values
seem to have a rather low deviance and end up to inherit a steady growth.

In figure 2(b) the resulting values for testing at higher cycle times and CPU usages are
plotted. The cycle times range from 8 ms up to 14 ms on the x-axis, while the multiplicity
on the y-axis is significantly higher than in the previous test. Using about 1.978 % of the
overall available CPU usage this was expected behaviour.



UDP and Shared Memory Comparison 7

3.2 Test with transmission tool

To create a new environment that allows to test the data throughput without further
optimization a communication tool was implemented in C++. With this tool, similar
experiments were conducted as with the Dominion middleware, having the tests’ sucess-
condition deducted from Dominion’s internal mechanics. Further detail into this is given by
Algorithm 3.

To get an overview Fig. 3 shows the median values of all data points in this scenario. The
test results in figure 3(a) show that UDP’s maximum possible data throughput is increasing
as the cycle time along the x-axis increases. SHM’s values do not deviate as much but are
all significantly higher than the ones using the UDP results. In figure 3(b) the distribution
of each resulting data point is shown. All values above 200 000 multiplicity are results
produced using SHM, while thoose below belong to UDP’s tests.

(a) (b)

Fig. 3: Results tested with transmission tool at 0.3 CPU

The distribution of SHM’s values is shown in figure 4(a) and differs in a range of about
40 000. UDP’s value distribution is shown in figure 4(b) and behaves in a similar matter
except for higher cycle times. At 10 ms the deviance is consistently 100 000. For all values
below, the deviance is as small or smaller than the respective deviance of SHM’s values.

To ensure that this is not caused by the CPU restrictions, further tests were conducted with
1.5 CPU, which is the maximum capability of a Docker container.

In Fig. 5, the CPU usage restriction mainly affected the data throughput while using SHM.
Here, the highest possible multiplicity is more than double the size as before, while UDP’s
data throughput has not changed significantly. Another aspect to notice is that at cycle times
above 6 ms SHM is nearly always fast enough to reach the limit set for this experiment.

With a higher CPU usage SHM’s results follow a similar distribution to UDP. The deviances
are both in a range of about 200 000 although SHM has overall higher data throughput.



8 Giuliano Scollo

(a) (b)

Fig. 4: All data points gathered for each method at 0.3 CPU

(a) (b)

Fig. 5: Results tested with transmission tool at 0.3 CPU



UDP and Shared Memory Comparison 9

(a) (b)

Fig. 6: All data points gathered for each method at 0.3 CPU

To further ensure the results were not mainly caused by kernel optimization or the chip
architecture, the same tests were conducted on different hardware.

3.3 Test with Raspberry Pi

Because the RPI only has 4 cores and in general is less performant than the NB, maximum
CPU usage was used for all tests done on RPI.

The data throughput of the RPI was almost similar for both methods. Although SHM has
generally a higher throughput than UDP. This shows that the results gathered are replicable
even on another chip architecture.



10 Giuliano Scollo

(a) (b)

Fig. 7: Results tested on RPI at 1.5 CPU

(a) (b)

Fig. 8: All data points gathered for each method at 1.5 CPU



UDP and Shared Memory Comparison 11

4 Discussion

4.1 Discussion of the test results

The hypothesis of this paper is that SHM communication is way more efficient and reliable
than using UDP for data transmission in a middleware. Testing with Dominion showed
that UDP’s data throughput capacities for low cycle times are significantly lower than for
higher cycle times. Given this behavior the first tests with the communication tool were
conducted with a lower CPU usage. The results using UDP were similar to those seen in the
tests using Dominion. The results with SHM approved the initial hypothesis and exceeded
the maximum possible data throughput of UDP consistently. An interesting aspect to notice
is that at cycle times around 10 ms the deviance in performance between the two was rather
small, which indicates that there are cases in which the data throughput of SHM is nearly
identical to the maximum capabilities using UDP. Looking at the general deviance of the
test results for UDP and SHM at low CPU usage showed that the average deviance for
SHM was higher than for UDP except for tests at 10 ms cycle time. This implies that the
general reliability of transmissions using UDP is higher than using SHM for most cases,
which falsifies our initial hypothesis. Ensuring this is not just an edge case a new set of tests
were conducted without the CPU limitation to see the influence on reliability and quality of
transmissions.

Comparing both communication methods with the highest available CPU usage supported
the initial hypothesis by showing a clear difference in the maximum possible data throughput.
In terms of reliability the distribution pattern of both methods look similar. The deviance in
values of SHM’s results are higher than the deviance of UDP’s. The cases in which the result
deviated for SHM always ended up at a higher maximum data throughput than the average
result. For UDP the results show that especially for higher cycle times deviances more often
are smaller than the other data points at this cycle time, which leads to a saturation in the
median graph.

The final set of tests conducted on the RPI verified that SHM is capable of achieving
consistently higher data throughput. On different hardware the deviance of SHM’s test results
significantly decreased, while UDP’s deviance behavior is similar to the tests conducted on
the NB at low CPU usage. Although the deviance in results is higher with increasing cycle
time while using UDP, the resulting values were higher than the average data throughput.

This shows that for low performance environments the advantage of using SHM instead
of UDP gets smaller as the cycle time gets higher. For environments with higher CPU
capabilities SHM outperforms UDP.



12 Giuliano Scollo

4.2 Conclusions

The data gathered suggests that there might be a break even point where the data throughput
of SHM and UDP are consistently the same or—in low performance environments—UDP’s
throughput is even higher than SHM’s, which requires further research.

Given that the general data throughput of SHM is consistently higher than UDP’s the imple-
mentation of SHM communication can be beneficial. Having both options for transmissions
ensures to get the most reliable and most efficient data throughput possible, particularly for
low transmission cycle times.

Other research [2] supports this new hypothesis by showing the same behaviour in data loss
and data throughput capabilities over IP. This indicates that the way UDP is build defines
it’s use case for the most part. Furthermore different implementations of SHM Algorithms
can change the data throughput and performance of data transmissions. [5] Another aspect
to notice is that parallelization of the network stack showed influence on TCP’s performance
[8], which could also be an influence on UDP’s performance.

All those factors leave space for more research on which aspect have a measurable impact
and if so how big is the impact on performance.



UDP and Shared Memory Comparison 13

5 References
[1] A Venkataraman and KK Jagadeesha. Evaluation of inter-process communication

mechanisms. 2015. url: http://pages.cs.wisc.edu/~adityav/Evaluation_of_
Inter_Process_Communication_Mechanisms.pdf (cit. on p. 1).

[2] D. I. Axiotis and D. Xenikos. “UDP Performance Measurements Over TETRA IP”.
In: 2007 IEEE 65th Vehicular Technology Conference - VTC2007-Spring. Apr. 2007,
pp. 1331–1335. doi: 10.1109/VETECS.2007.279 (cit. on p. 12).

[3] Leslie Lamport. “On interprocess communication”. In: Distributed Computing 1.2
(June 1986), pp. 77–85. issn: 1432-0452. doi: 10.1007/BF01786227. url: https:
//doi.org/10.1007/BF01786227 (cit. on p. 1).

[4] Michael Smith and Steve Bishop. Flow control in the Linux network stack. 2005 (cit. on
p. 6).

[5] M. Stumm and S. Zhou. “Algorithms implementing distributed shared memory”. In:
Computer 23.5 (1990), pp. 54–64. doi: 10.1109/2.53355 (cit. on p. 12).

[6] Transmission Control Protocol. RFC 793. Sept. 1981. doi: 10.17487/RFC0793. url:
https://www.rfc-editor.org/info/rfc793 (cit. on p. 1).

[7] User Datagram Protocol. RFC 768. Aug. 1980. doi: 10.17487/RFC0768. url:
https://rfc-editor.org/rfc/rfc768.txt (cit. on p. 1).

[8] Paul Willmann, Scott Rixner, and Alan L Cox. “An Evaluation of Network Stack
Parallelization Strategies in Modern Operating Systems.” In: USENIX Annual Technical
Conference, General Track. 2006, pp. 91–96 (cit. on p. 12).

http://pages.cs.wisc.edu/~adityav/Evaluation_of_Inter_Process_Communication_Mechanisms.pdf
http://pages.cs.wisc.edu/~adityav/Evaluation_of_Inter_Process_Communication_Mechanisms.pdf
https://doi.org/10.1109/VETECS.2007.279
https://doi.org/10.1007/BF01786227
https://doi.org/10.1007/BF01786227
https://doi.org/10.1007/BF01786227
https://doi.org/10.1109/2.53355
https://doi.org/10.17487/RFC0793
https://www.rfc-editor.org/info/rfc793
https://doi.org/10.17487/RFC0768
https://rfc-editor.org/rfc/rfc768.txt

	Introduction
	Methods
	Software
	Data Transmission — Model View
	Hardware
	Pseudo code
	Testing procedure

	Tests and output description
	Test with Dominion
	Test with transmission tool
	Test with Raspberry Pi

	Discussion
	Discussion of the test results
	Conclusions

	References

