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Abstract—We examine the age of information (AoI) of a status
update system that incorporates energy harvesting and uses the
slotted ALOHA protocol. We derive analytically the average AoI
and the probability that the AoI exceeds a given threshold. Via
numerical results, we investigate two strategies to minimize the
age of information (AoI): transmitting a new update whenever
possible to exploit every chance to reduce the AoI, and transmitting
only when sufficient energy is available to increase the chance of
successful delivery. The two strategies are beneficial for low and
high update generation rates, respectively. However, an optimized
approach that balances the two strategies outperforms them
significantly in terms of both AoI and throughput.

I. INTRODUCTION

In delay-sensitive Internet of Things (IoT) applications,
devices need to deliver timely status updates to a central gateway.
To measure the freshness of status updates, the AoI metric
has been introduced (see, e.g., [1] and references therein). It
captures the time elapsed since the generation of the last update
available at the gateway. Recent studies have characterized the
AoI for random-access medium sharing protocols, such as slotted
ALOHA [2], [3] and its modern variations [4]–[6].

IoT devices are designed for low-power, long-term operation
and can be placed in remote or hard-to-reach locations, hindering
battery replacement. A solution to these challenges is energy
harvesting, which allows IoT devices to capture and convert
energy from the environment into electrical energy [7]. The AoI
of energy-harvesting devices has been analyzed mainly for the
single-source scenario [8], [9]. Existing analyses of ALOHA-
based random-access protocols with energy harvesting focused
on stability [10] and throughput [11], [12]. Compared to the
setting in [2]–[6], energy harvesting introduces new factors that
significantly affect information freshness, such as the level of
available energy at the devices at the time of update generation,
and the need for the devices to spend time harvesting energy.
However, the impact of energy harvesting on the AoI in random-
access protocols remains widely unexplored.

This paper characterizes the behavior of the AoI in a slotted-
ALOHA status update system with energy harvesting. We
model energy hervesting as independent Bernoulli processes.
We assume that each device receives readings from a sensor,
and thus cannot generate fresh updates at will. Upon receiving a
new reading, the device transmits the update with a probability
adapted to its battery level. A transmitted update is correctly
decoded with a probability that depends on the transmit
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power and the level of interference from other devices. By
means of a Markovian analysis, we derive the average AoI
analytically for a given transmission probability. We further
provide an approximate analysis that results in easy-to-compute
and accurate approximations of both the average AoI and the
age-violation probability (AVP), which is the probability that
the AoI exceeds a given threshold.

In our numerical experiments, we assume that each slot
comprises multiple uses of an additive white Gaussian noise
(AWGN) channel. We consider both decoding without capture,
where the receiver performs decoding only in slots containing
a single update, and decoding with capture, where the receiver
attempts decoding in each slot using successive interference
cancellation (SIC) to recover colliding packets. We investigate
the importance of optimally adapting the transmission probability
to the available energy. On the one hand, transmitting a new
update whenever possible (a.k.a. best-effort uniform policy [8],
[9]) exploits every opportunity to reduce the AoI, but increases
channel traffic and the risk of losing the update if the transmit
power is insufficient. On the other hand, transmitting only
with high power increases the chance of successful delivery,
but requires devices to ignore some updates while harvesting
enough energy. Taking these two strategies as baselines, we
compare them with the optimized transmission probability that
minimizes the average AoI, minimizes the AVP, or maximizes
the throughput. Numerical results show that significant gains
in all three metrics are achieved with the optimized strategy
for both decoding with and without capture. Transmitting an
update whenever possible is close to optimal for low update
generation rates but performs poorly for high update generation
rates. As the update generation rate increases, transmitting only
when the battery is full has a decreasing gap to the optimal
performance without capture. However, this strategy does not
benefit from decoding with capture. Furthermore, the strategy
optimized for throughput entails a loss in average AoI and AVP,
especially for high update generation rates. Finally, decoding
with capture outperforms significantly decoding without capture
for the optimized strategy.

Notation: We let [m : n] = {m,m+1, . . . , n}, [n] = [1 : n],
and x+ = max{0, x}. We denote by IIIm the m × m identity
matrix, 0m the m × 1 all-zero vector, 1m the m × 1 all-one
vector, [xxx]1 the first entry of xxx, and 1{·} the indicator function.

Reproducible Research: The Matlab code used
to generate our numerical results is available at:
github.com/khachoang1412/AoI_slottedALOHA_energyHarvesting.
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Fig. 1: Example of the AoI process.

II. SYSTEM MODEL

We consider a system with U devices attempting to deliver
time-stamped status updates (also called packets) to a gateway
through a wireless channel. We assume that the updates are
generated independently across devices. Time is slotted and the
devices are slot-synchronous. Each update transmission spans a
slot. A device receives a new sensor reading at the beginning
of each slot with probability (w.p.) α.

1) Energy Harvesting: Each device is equipped with a
rechargeable battery with capacity E energy units. The devices
harvest energy from the environment to recharge their batteries.
In each slot, one energy unit is harvested by a device w.p. η,
independently of the other slots and other devices. If the battery
is full, the device pauses harvesting. We denote by νb (computed
in Section III) the steady-state probability that the battery level
of an arbitrary device is b ∈ [0 : E].

2) Medium Access Protocol: The devices access the medium
following the slotted ALOHA protocol. Specifically, if a device
has a new update in a slot, it transmits the update w.p. πb if its
battery level is b. Obviously, π0 = 0, while πππ = (π1, . . . , πE) is
a design parameter. We assume that the devices always spend all
available energy to transmit a packet.1 Furthermore, as in [10],
[11], we assume that the devices can either transmit or harvest
energy in a slot. No feedback is provided by the receiver.

Consider a device that transmits with b energy units in a slot
and assume that the battery profile of the remaining devices
is LLL = (L0, . . . , LE), i.e., Li out of the remaining U − 1
devices have battery level i ∈ [0 : E]. We denote by wb,LLL the
probability that an update transmitted with b energy units is
correctly decoded when the battery profile of the other devices
is LLL. The dependency of wb,LLL on b and LLL captures the impact
of the transmit power and of the interference from the other
devices. All analytical results in the paper hold for general wb,LLL,
while in Section VI, we shall instantiate wb,LLL by considering an
AWGN channel. At steady state, the average successful delivery
probability of a device that transmits with b energy units is

w̄b = ELLL[wb,LLL] (1)

where LLL follows the multinomial distribution with number of
trials U − 1, number of events E + 1, and event probabilities
{νi}Ei=0. The average throughput, i.e., the average number of
packets decoded per slot, is given by S = αU

∑E
b=0 νbπbw̄b.

3) Age of Information: We define the AoI of a generic device
at slot t as δ(t) = t− τ(t), where τ(t) denotes the timestamp

1We shall address the general case where the devices transmit using only
part of the available energy in an extension of this paper.
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Fig. 2: Markov chain M1 describing the battery level of a device.

of the last received update from this device as of slot t. The
corresponding stochastic process is denoted as ∆(t). The AoI
grows linearly with time and is reset to 1 when a new update
is successfully decoded. It has a saw-tooth shape as illustrated
in Fig. 1. We are interested in the average AoI ∆̄ = E[∆(t)]
and the AVP ζ(θ) = P[∆(t) > θ] .

III. BATTERY EVOLUTION

1) Battery Level of a Generic Device: The evolution of the
battery level of a generic device is captured by the Markov
chain M1 shown in Fig. 2. Each state represents a battery level.
The transition probabilities between the states can be readily
computed. Specifically, a device in state 0 cannot transmit, thus
it either remains in this state if it does not harvest energy (w.p.
1 − η) or jumps to state 1 if an energy unit arrives (w.p. η).
A device in state i ∈ [E] moves to state 0 if it generates and
transmits a new update (w.p. απi). Otherwise, if i < E, the
device either remains in state i if no energy is harvested (w.p.
(1− η)(1− απi)) or jumps to state i+ 1 if an energy unit is
harvested (w.p. η(1−απi)). If the battery is full, i.e., i = E, the
device remains in state E if it does not transmit (w.p. 1−απi).
From these transition probabilities, we compute the steady-state
distribution {νb}Eb=0 by solving the balance equations.

2) Battery Profile of U − 1 Devices: The battery profile
LLL of the other U − 1 devices can take values in L ={
(ℓ0, ℓ1, . . . , ℓE) :

∑E
i=0 ℓi = U−1, ℓi ∈ [0 : U−1], i ∈ [0 :

E]
}
. We now describe the evolution of LLL within a slot. Let

ℓℓℓ′ = (ℓ′0, ℓ
′
1, . . . , ℓ

′
E) and ℓℓℓ = (ℓ0, ℓ1, . . . , ℓE) denote the states

at the beginning and the end of a slot, respectively. Let also
uj,k be the number of devices whose battery goes from level j
to level k. We have that

uj,k ∈ [0 : min{ℓ′j , ℓk}], j, k ∈ [0 : E], (2)

ℓ′0 = u0,0 + u0,1, (3)
ℓ′i = ui,i + ui,0 + ui,i+1, i ∈ [1 : E − 1], (4)
ℓ′E = uE,E + uE,0, (5)

ℓ0 = u0,0 +
∑E

i=1 ui,0, (6)
ℓi = ui,i + ui−1,i, i ∈ [E]. (7)

hence, the transition probability P
[
ℓℓℓ′ → ℓℓℓ

]
is

P
[
ℓℓℓ′ → ℓℓℓ

]
=

∑
{uj,k} : (2)–(7)

( ∏
j,k∈[0:E]

p
uj,k

j,k

)

·
(

ℓ′0
u0,0

)(
ℓ′E
uE,0

)E−1∏
j=1

(
ℓ′j
uj,0

)(
ℓ′j − uj,0

uj,j

)
, (8)



where pj,k is the transition probability from state j to state k
of the Markov chain M1 in Fig. 2.

IV. AOI ANALYSIS

We now derive the average AoI of a generic device.
1) Preliminaries: We denote by B(s) the battery level of

the device of interest at the end of slot s. We let X(s) = S
(standing for “success”) if the device successfully delivers an
update in the slot, and X(s) = F (standing for “fail”) otherwise.
Furthermore, we denote the battery profile of the remaining
U−1 devices at the end of slot s by LLL(s) = (L

(s)
0 , . . . , L

(s)
E ).

Consider an ancillary Markov chain Z(s) = (X(s), B(s),LLL(s)).
We next derive the transition probability from state (x′, b′, ℓℓℓ′) to
state (x, b, ℓℓℓ). If X(s−1) = S, the device of interest depletes its
battery and thus cannot transmit an update in slot s. Therefore,

P
[
(S, 0, ℓℓℓ′) → (x, b, ℓℓℓ)

]
= 1{x = S}

· ((1− η)1{b=0}+ η1{b=1})P
[
ℓℓℓ′ → ℓℓℓ

]
, (9)

where P
[
ℓℓℓ′ → ℓℓℓ

]
is given in (8). If X(s−1) =F, we separate

the cases X(s)=S and X(s)=F. First, X(s)=S if in slot s the
device generates and transmits a new update (w.p. απb′), and
the update is successfully decoded (w.p. wb′,ℓℓℓ′). In this case,
the device depletes its battery after slot s. Therefore,

P
[
(F, b′, ℓℓℓ′)→(S, b, ℓℓℓ)

]
= απb′wb′,ℓℓℓ′1{b=0}P

[
ℓℓℓ′→ℓℓℓ

]
. (10)

Second, X(s)=F if in slot s the device either does not transmit
or transmits but fails to deliver the packet. It follows that

P
[
(S, b′, ℓℓℓ′) → (F, b, ℓℓℓ)

]
=

[
(1− απb′1{b′ > 0})

(
(1− η)1{b′ = b < E}

+ η1{b = b′ + 1}+ 1{b = b′ = E}
)

+ απb′(1− wb′,ℓℓℓ′)1{b = 0}
]
P
[
ℓℓℓ′ → ℓℓℓ

]
. (11)

2) Average AoI: As shown in Fig. 1, we denote by Y the
inter-refresh time, i.e., the number of slots that elapse between
two successive status updates for the device of interest. Right
after a refresh, the current AoI is set to 1. By proceeding as in
[1, Sec. II-A] or [3, Sec. III], we observe that the average AoI
can be expressed in terms of the moments of Y as

∆̄ = 1 +
E
[
Y 2

]
2E[Y ]

. (12)

We next derive the moments of Y . Without loss of generality,
we assign index 1 to the first slot contributing to the current
inter-refresh time. We expand E[Y ] as

E[Y ] =
∑

x∈{F,S}

∑
b∈[0:E]

∑
ℓℓℓ∈L

E
[
Y |Z(1) = (x, b, ℓℓℓ)

]
· P

[
Z(1) = (x, b, ℓℓℓ)

]
. (13)

To compute P
[
Z(1) = (x, b, ℓℓℓ)

]
, we note that the state at the end

of a slot with AoI refresh is of the form (S, 0, ℓℓℓ), and the state
at the end of slot 1 can only be (F, 0, ℓℓℓ) or (F, 1, ℓℓℓ). Therefore,

P
[
Z(1) = (x, b, ℓℓℓ)

]
= 1{x = F, b ∈ {0, 1}}

·
∑

ℓℓℓ′∈L P
[
(S, 0, ℓℓℓ′) → (F, b, ℓℓℓ)

]∑
b∈{0,1},ℓℓℓ∈L

∑
ℓℓℓ′∈L P

[
(S, 0, ℓℓℓ′) → (F, b, ℓℓℓ)

] . (14)

The conditional expectation E
[
Y |Z(1) = (x, b, ℓℓℓ)

]
can be de-

rived via a first-step analysis [13, Sec. III-4]. If the packet from
the device of interest is decoded in slot 1, i.e., X(s) = 1, the
inter-refresh time is 1. It follows that

E
[
Y |Z(1) = (S, b, ℓℓℓ)

]
= 1, b ∈ [0 : E], ℓℓℓ ∈ L. (15)

If Z(1) = (F, b, ℓℓℓ), the inter-refresh time can be computed as
the sum of the number of slots until a transmitted packet is
successfully decoded. This can be conveniently computed by
conditioning on the outcome of the first transition. Specifically,
we define r(b, ℓℓℓ) =

∑
b′′∈[0:E],ℓℓℓ′′∈L P

[
(F, b, ℓℓℓ) → (S, b′′, ℓℓℓ′′)

]
,

q((b, ℓℓℓ)→(b′′, ℓℓℓ′′))=P
[
(F, b, ℓℓℓ)→(F, b′′, ℓℓℓ′′)

]
, and proceed as

E
[
Y |Z(1) = (F, b, ℓℓℓ)

]
=

1 +
∑

z∈{F,S}×[0:E]×L

E
[
Y |Z(1) = z

]
P[(F, b, ℓℓℓ) → z] (16)

= 1 + r(b, ℓℓℓ)

+
∑

b′′∈[0:E],ℓℓℓ′′∈L

E
[
Y |Z(1)=(F, b′′, ℓℓℓ′′)

]
· q((b, ℓℓℓ) → (b′′, ℓℓℓ′′)). (17)

In (16), the Markov property ensures that the average duration,
once the transition to state z has occurred, is equal to the
one that we would have by starting from such state. Let eee
and rrr be vectors that contain E

[
Y |Z(1) = (F, b, ℓℓℓ)

]
and r(b, ℓℓℓ),

respectively, for all values of (b, ℓℓℓ). Let QQQ be a matrix that
contains q((b, ℓℓℓ) → (b′′, ℓℓℓ′′)) for all (b, ℓℓℓ) and (b′′, ℓℓℓ′′). The full-
rank system of equations obtained from (17) can be expressed
compactly as (III−QQQ)eee = 1+rrr. Therefore, eee = (III−QQQ)−1(1+rrr).
Substituting this, (14), and (15) into (13), we obtain E[Y ].

The second-order moment E
[
Y 2

]
can also be computed via

a first-step analysis. This yields

E
[
Y 2|Z(1) = (S, b, ℓℓℓ)

]
= 1, b∈ [0 : E], ℓℓℓ∈L, (18)

E
[
Y 2|Z(1) = (F, b, ℓℓℓ)

]
= 1 + 2

∑
z∈{F,S}×[0:E]×L

E
[
Y |Z(1) = z

]
P[(F, b, ℓℓℓ) → z]

+
∑

z∈{F,S}×[0:E]×L

E
[
Y 2|Z(1)=z

]
P[(F, b, ℓℓℓ) → z] (19)

= −1 + 2E
[
Y |Z(1) = (Fb, ℓℓℓ)

]
+ r(b, ℓℓℓ)

+
∑

b′′∈[0:E],ℓℓℓ′′∈L

E
[
Y 2|Z(1) = (F, b′′, ℓℓℓ′′)

]
· q((b, ℓℓℓ)→(b′′, ℓℓℓ′′)). (20)

Let eee2 be a vector that contains E
[
Y 2|Z(1) = (F, b, ℓℓℓ)

]
for all

values of (b, ℓℓℓ). We can express (20) compactly as (III−QQQ)eee2 =
−1 + 2eee + rrr. It follows that eee2 = (III − QQQ)−1(−1 + 2eee + rrr).
Using this, (14), and (19), we compute E

[
Y 2

]
via an expansion

analogous to (13). Finally, we obtain the average AoI ∆̄ by
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Fig. 3: Markov chain M2 to track the AoI refresh of a device.

inserting the computed moments of Y into (12).
The above exact computation becomes infeasible when U and

E are large. Specifically, computing the transition probabilities
between all 2(E+1)

(
U+E−1

E

)
states of the chain Z is prohibitive

for large U and E. This motivates us to propose an approximate
analysis in the next section.

V. APPROXIMATE AOI ANALYSIS

To simplify the analysis, we ignore the time dependency of
the battery profile of the devices whose performance is not
tracked. Specifically, we assume the following.

Simplification 1: given a device of interest, the battery profile
LLL of the remaining U − 1 devices is independent across slots.

This simplification allows us to analyze the behavior of the
system, and, as we shall see, results in tight approximations on
the average AoI and AVP for all scenarios explored. Under this
simplification, the successful delivery probability of a device
that transmits with b energy units is the average of wb,LLL over
LLL, i.e., w̄b in (1). This allows us to derive the distribution of
the inter-refresh time Y in closed form.

1) Distribution of the Inter-Refresh Time Y : To track the
behavior of the device of interest, we consider the Markov
chain M2 in Fig. 3, which is obtained from M1 in Fig. 2 as
follows. We split the battery state 0 into two states: AoI refresh
(S, 0) and no AoI refresh (F, 0). The state b ∈ [E] in M1

is called (F, b) in M2. The device visits this state if its AoI
value is not refreshed and its battery level is b. After some
manipulations, we obtain the transition probabilities between
these states under Simplification 1 as depicted in Fig. 3. We
can also interpret the chain M2 as obtained by grouping the
states {(x, b, ℓℓℓ) : ℓℓℓ ∈ L} of Z(s) into a single state (x, b), and
computing the transition probabilities as P[(x′, b′) → (x, b)] =
E
[∑

ℓℓℓ∈L P
[
(x′, b′,LLL′) → (x, b, ℓℓℓ)

]]
where the expectation is

over the steady state distribution of LLL′. Next, we further split
state (S, 0) into two states: (S, 0′) (with only outgoing transitions
from (S, 0)) and (S′′, 0) (with only incoming transitions to
(S, 0)). The chain M2 is a terminating Markov chain with one
absorbing state (S′′, 0) and E+1 transient (i.e., non-absorbing)
states {(S′, 0), (F, 0), (F, 1), . . . , (F, E)}. Observe that the inter-
refresh time Y is the absorption time into (S′′, 0) when starting
from (S′, 0). The distribution of the time until absorption of
a terminating Markov chain is called the discrete phase-type
distribution and has been analyzed in [14, Sec. 2.2]. Leaning
on this result, we characterize the distribution of Y in the next
lemma, whose proof is omitted due to the space limitations.

Lemma 1 (Distribution of the inter-refresh time): Under
Assumption 1, it holds that

P[Y = y] = [TTTy−1ttt0]1, y = 1, 2, . . . , (21)

P[Y ≥ y] = [TTTy−11E+1]1, y = 1, 2, . . . , (22)

where ttt0 = [0 απ1w̄1 . . . απEw̄E ]
T and TTT is given in (23).

Furthermore,

E[Y ] = [(IIIE+1 −TTT)−11E+1]1, (24)

E
[
Y 2

]
= 2[(IIIE+1 −TTT)−21E+1]1 − E[Y ] . (25)

2) Approximate Average AoI: By inserting the moments of
Y given in (24) and (25) into (12), we obtain the average AoI
under Simplification 1 as

∆̄ =
1

2
+

[(IIIE+1 −TTT)−21E+1]1
[(IIIE+1 −TTT)−11E+1]1

. (26)

3) Approximate AVP: Without loss of generality, we start
tracking the process (i.e., we set t=0) right after the first AoI
refresh, which is indexed as the 0th refresh. Let ti be the time
instant of the ith AoI refresh and yi = ti − ti−1 the duration
of the ith inter-refresh period. Using [1, Eq. (15)], we compute
the AVP under Simplification 1 as

ζ(θ) = lim
T→∞

1

T

∫ T

0

1{∆(t) > θ}dt (27)

= lim
m→∞

1∑m
i=1 yi

m∑
i=1

∫ ti

ti−1

1{∆(t) > θ}dt (28)

= lim
m→∞

1∑m
i=1 yi

m∑
i=1

(yi − θ + 1)+ (29)

= lim
m→∞

1
1
m

∑m
i=1 yi

∞∑
y=0

|{i ∈ [m] : yi = y}|
m

(y−θ+1)+

=
1

E[Y ]

∞∑
y=0

P[Y = y] (y − θ + 1)+ (30)

=
1

E[Y ]

( ∞∑
y=θ

yP[Y = y]− (θ−1)

∞∑
y=θ

P[Y = y]

)
(31)

= 1− 1

E[Y ]

( θ−1∑
y=1

yP[Y = y]− (θ−1)P[Y ≥ θ]

)
(32)

= 1−
∑θ−1

y=1 y[TTT
y−1ttt0]1 − (θ − 1)[TTTθ−11E+1]1

[(IIIE+1 −TTT)−11E+1]1
, (33)

where (29) holds because within the ith inter-refresh period,
the AoI exceeds θ in the last (yi − θ + 1)+ slots (see Fig. 1);
(30) holds because 1

m

∑m
i=1 yi → E[Y ] and |{i∈[m] : yi=y}|

m →
P[Y = y] as m → ∞.

VI. NUMERICAL EXPERIMENT

A. Channel Model and Successful Delivery Probability

We assume that a slot comprises n uses of a real-valued
AWGN channel. In a slot, active device i with battery level
bi transmits a signal

√
bi
nxxxi∈Rn (∥xxxi∥=1) with power bi/n.



The received signal is yyy =
∑K

i=1

√
bi/n xxxi + zzz, where K is

the number of active devices and zzz ∼ N (0, σ2) is the AWGN.
The devices transmit at rate R bits/channel use, i.e., xxxi belongs
to a codebook containing 2nR codewords. We consider shell
codes for which the codewords are uniformly distributed on the
unit sphere. We analyze two decoding scenarios.

1) Without Capture: In this scenario, all collided packets
are lost. Decoding is attempted only on packets transmitted in
singleton slots. This model allows us to revisit the collision
channel model commonly used in modern random-access
analyses, and further account for single-user decoding errors
due to finite-blocklength effects. Consider an active device that
transmits with b energy units and assume that the battery profile
of the remaining U − 1 devices is LLL. The successful delivery
probability of the device of interest is

wb,LLL = (1− ϵb)
∏E

i=0(1− πi)
Li , (34)

where ϵb is the error probability of decoding the device of
interest in a singleton slot. To compute ϵb, we use that the
maximum achievable rate is [15, Th. 54]

R∗ = C(b)−
√

V (b)
n Q−1(ϵb) +O

(
lnn
n

)
(35)

where C(b) = 1
2 log2

(
1 + b

nσ2

)
, Q−1(·) is the inverse of the

Gaussian Q-function Q(z) = 1
2π

∫∞
z

e−t2/2dt, and V (b) =
b2

n2σ4 +2 b
nσ2

2( b
nσ2 +1)2

log22(e) is the channel dispersion. For a fixed rate R,

we use (35) to approximate ϵb as ϵb ≈ Q
(√

n
V (b) (C(b)−R)

)
,

where we omitted O( lnn
n ), which is negligible for large n.

2) With Capture: In this case, the receiver attempts to
decode every packet transmitted in a slot by treating all other
colliding packets as noise. Consider an active device with battery
level b and let the battery profile of the remaining U − 1
devices be LLL. Furthermore, assume that out of the other Li

devices with battery level i, L̄i devices transmit. Then the
interference-to-noise power ratio is P̃ = 1

nσ2

∑E
i=0 iL̄i, and the

signal-to-interference-plus-noise ratio is P̄ = b/(nσ2)

P̃+1
. In this

setup, an achievable rate for the device of interest is given
as in (35) with C(b) and V (b) replaced by 1

2 log2(1 + P̄ )

and V ′(b, {L̄i}) =
b2

n2σ4 (1+2P̃+P̃ 2−P̆ )+2 b
nσ2 (P̃+1)3

2(P̃+1)2(b/(nσ2)+P̃+1)2
log22 e, respec-

tively [16, Th. 2]. Here, P̆ = 1
n2σ4

∑E
i=0 i

2L̄i. Given {L̄i}Ei=0,
the error probability of the device is approximated as

ϵb,{L̄i} ≈ Q
(√

n
V ′(b,{L̄i})

(
1
2 log2(1+P̄ )−R

))
. (36)

We further assume that the receiver employs SIC. It first
decodes all devices that transmit with E energy units, removes

the decoded packets, then decodes all devices that transmit with
E − 1 energy units, and so on. We assume that the decoding
of a packet of energy j is attempted only if all higher-energy
packets have been correctly decoded and removed. In this case,
the battery profile of the interfering devices becomes L̂LL

(j)
=

(L̂
(j)
0 , . . . , L̂

(j)
E ), where L̂

(b)
i = L̄i1{i ≤ b}; if j > b, then L̂

(j)
i

takes value 0 if i > j, value L̄i − 1 if i = j, value L̄i + 1 if
i = b, and value L̄i if i < j, i ≤ b. It follows that

wb,LLL = E{L̄i}E
i=1

[(
1− ϵ

b,L̂LL
(b)

)∏
j>b

(
1− ϵ

j,L̂LL
(b)

)L̄j
]
, (37)

where L̄i follows the binomial distribution with parameters
(Li, απi). Note that L̂LL

(b)
is a function of (b, {L̄i}Ei=1).

Hereafter, we consider a slot length n of 100 channel uses
and transmission rate R of 0.8 bits/channel use.

B. AoI and Throughput Evaluation

We first verify the accuracy of the exact and approximate AoI
analysis by comparing with simulation results obtained from an
implementation of the complete protocol operations over 107

slots. To enable the computation of the exact average AoI, we
consider a small system with U = 30 and E = 2. We further
set η = 0.05, θ = 1000, and σ2 = −20 dB. In Fig. 4, we plot
the average AoI (normalized by U ) and AVP for the considered
setting with capture. We consider πππ = (1, 1) and πππ = (0, 1).
In both cases, the approximate average AoI (26) matches well
both the simulation results and exact analytical results. The
approximate AVP (33) is also in agreement with the simulation
result. This confirms that our approximate analysis provides an
accurate prediction of the AoI performance.

Next, we report the approximate average AoI and AVP for
a larger system with U = 1000, E = 8, η = 0.005, and
θ = 10000. We optimize πππ to obtain πππ∗

∆̄
= argminπππ∈[0,1]E ∆̄,

πππ∗
ζ = argminπππ∈[0,1]E ζ(θ), πππ∗

S = argmaxπππ∈[0,1]E S. We
numerically solve these optimization problems using the Nelder-
Mead simplex algorithm [17]. In Fig. 5, we plot the minimized
average AoI, minimized AVP, and maximized throughput as a
function of Uα, and compare it with two baseline strategies: i)
πππ = (0T

E−1, 1), i.e., a device transmits only with full battery,
and ii) πππ = 1T

E , i.e., a device transmits a new update whenever
possible.2 We see that the optimized πππ leads to significant
improvement in all three metrics. The strategy πππ = 1T

E is close
to optimal when Uα is small, especially with capture. However,
this strategy becomes highly suboptimal when Uα increases,
since it causes many collisions. In contrast, the strategy with

2The strategy with πππ = 1T
E (best-effort uniform policy) was shown to be

average-AoI optimal in the case of infinite battery capacity for the single-source
scenario with perfect or packet-erasure channel [8], [9].

TTT =


1− η η 0 0 . . . 0 0

απ1(1− w̄1) (1−η)(1−απ1) η(1− απ1) 0 . . . 0 0
απ2(1− w̄2) 0 (1− η)(1− απ2) η(1−απ2) . . . 0 0

...
...

...
. . .

. . .
...

...
απE−1(1− w̄E−1) 0 0 0 . . . (1−η)(1−απE−1) η(1− απE−1)

απE(1− w̄E) 0 0 0 . . . 0 1− απE

 (23)
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Fig. 4: Average AoI and AVP vs. average total number of new updates
in a slot (Uα). Here, U = 30, η = 0.05, E = 2, n = 100, R = 0.8,
θ = 1000, σ2 = −20 dB, and the decoder is with capture.

πππ = (0T

E−1, 1) has a decreasing gap to the optimal performance
without capture when Uα is large. However, this strategy does
not benefit from decoding with capture since the level of
interference in non-singleton slots is always high. With capture,
the minimized average AoI and maximized throughput are
improved by about 10% and 18.7%, respectively, for Uα = 2.5,
compared to decoding without capture.

The optimized πππ can be different for different metrics. While
the πππ optimized for the average AoI also performs close
to optimal for the AVP and vice versa, the one optimized
for throughput leads to suboptimal average AoI and AVP,
especially for high Uα. Without capture, for the optimized
πππ, devices with higher battery level transmit more often. With
capture, the devices transmit with either low or high power,
facilitating the decoding of high-energy packets and then of
low-energy packets after SIC. For example, for Uα = 2.1, πππ∗

∆̄
is

(0, 0, 0, 0.68, 1, 1, 1, 1) without capture and (0, 0, 1, 1, 0, 0, 0, 1)
with capture.

VII. CONCLUSIONS

We studied the impact of energy harvesting on information
freshness in slotted ALOHA networks. Leaning on a Markovian
analysis, we provided an exact analytical analysis of the average
AoI, as well as an approximate analysis that results in easy-
to-compute and accurate approximations of both the average
AoI and AVP. Our main findings are as follows: i) transmitting
a new update whenever possible is beneficial only for low
update generation rates, while waiting for sufficient energy
before transmitting is preferable for high update generation
rates, ii) significant gains with respect to these two baseline
strategies can be achieved with an optimized strategy, iii) the
AVP-minimizing strategy performs close to optimal in terms of
the average AoI and vice versa, while the one optimized for
throughput entails a notable loss in terms of the AoI metrics,
iv) decoding with capture significantly outperforms decoding
without capture, especially for high update generation rates.
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