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Zusammenfassung 
 

Mit dem Start des Satelliten Landsat-4 TM am 16. Juli 1982 wurde der Beginn einer langen Ära 

der Erhebung optischer Satellitenbildinformationen eingeläutet. Die bis heute regelmäßig 

ergänzte U.S. amerikanische Landsat Satellitenfamilie stellt insbesondere durch die Archivöffnung 

der Bilddaten im Jahr 2008 ein bisher konkurrenzloses Erdbeobachtungsprogramm für 

retrospektive, wiederkehrende sowie aktuelle Analysen der globalen Erdoberfläche dar. Unver-

gleichlich sind dabei die hohe räumliche und zeitliche Abdeckung der zur Verfügung stehenden 

Daten. In vielen Umweltdisziplinen zur Erforschung von Ökosystemen oder forstwirtschaftlicher, 

landwirtschaftlicher und urbaner Flächen kommen die Daten der Satelliten seit Jahrzehnten 

erfolgreich zum Einsatz. Auch in der Geologie und der Bodenkunde sind die gemessenen 

Spektralinformationen ein zentrales Analyseelement, um beispielsweise Folgen von Erosion, 

Klimawandel oder Landnutzungsänderungen zu erfassen und zu quantifizieren.  

Vor allem die Ressource Boden charakterisiert für viele Lebensräume eine wichtige Grundlage. 

Durch Ökosystemleistungen ermöglicht diese Leben und Überleben auf der Erde. Die Tatsache, 

dass Böden den größten terrestrischen Kohlenstoffspeicher darstellen, verdeutlicht dabei die 

Relevanz der Geosphäre. Beispielsweise kann durch aktive Kohlenstoffbindung in 

landwirtschaftlichen Böden eine Minderung der Treibhausgasemissionen erreicht werden, um 

somit einen wertvollen Beitrag zum Klimaschutz zu leisten. In den vergangenen Jahren gab es 

zahlreiche nationale und internationale Bestrebungen und Aktivitäten, die Bedeutung des Bodens 

hervorzuheben und eine nachhaltige Nutzung der Ressource zu realisieren. Aktuell wird in den 

von den Vereinten Nationen definierten Sustainable Development Goals (SDG) explizit der Schutz 

sowie der nachhaltige Umgang mit Böden adressiert. Vor allem der organische Kohlenstoffgehalt 

(Corg) in landwirtschaftlichen Flächen stellt einen wesentlichen Parameter zur Beurteilung 

gesunder, nachhaltig genutzter Böden dar. Kenntnisse über den Corg-Gehalt sind höchst relevant 

und lassen unter anderem Aussagen über Ernteerträge oder die Erosionsanfälligkeit zu. Ein 

ausreichend hoher Corg-Gehalt ist deshalb Kernelement diverser politischer Reglementierungen. 

Um den zahlreichen (politischen) Anforderungen gerecht zu werden, bedarf es hochaufgelöster 

und flächenscharfer Informationen, die auch ein (rückblickendes) Verständnis von 

Bodenparametern ermöglichen. Aktuelle Bodenkarten und Datenbanken sind allerdings zeitlich 

und räumlich zu limitiert, um eine nachhaltige Nutzung der Ressource Boden zu dokumentieren 

und den formulierten Zielen gerecht zu werden. Traditionelle Methoden zur Bodenkartierung 

sind mit einem hohen zeitlichen und finanziellen Aufwand verbunden.  

Die optische Erdbeobachtung liefert Techniken und Auswertungsverfahren, diesen zeitlichen 

und räumlichen Limitierungen zu begegnen. Als sog. Mapping Mission, ermöglichen die Landsat 

Satelliten mit deren seit mehr als 40 Jahren erhobenen Daten dabei großflächige und 

wiederkehrende Beobachtungen und Analysen. Zudem sind durch die hohe Pixelauflösung (30 m) 

Analysen auf Schlagebene möglich. Die Bilddaten bieten so die Möglichkeit der Erfassung und des 

Monitorings von Oberböden landwirtschaftlicher Flächen und können helfen, die zeitliche und 
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räumliche Dimensionen bestehender Datenbanken zu optimieren. Für verschiedene Regionen 

konnten bereits diverse Bodenparameter erfolgreich mit validen Genauigkeiten modelliert 

werden. Auch die Anwendung von Landsat Daten zur Abschätzung von Corg-Gehalten wurde 

gezeigt. Eine Limitierung der Anwendung optischer Erdbeobachtungsdaten stellt die Tatsache 

dar, dass ausschließlich Böden, die bei einem Überflug unbedeckt und vegetationslos sind, 

analysiert werden können. In Deutschland sind dies hauptsächlich ackerbaulich genutzte Flächen. 

Um die Satellitenbilddaten in Wert setzen zu können, müssen zunächst unbedeckte Böden 

ermittelt und von anderen Landbedeckungsarten separiert werden. Der Zeitraum, in dem ein 

Schlag unbedeckt ist, kann allerdings durch die regionale Fruchtfolge variieren und teilweise sehr 

kurz sein. Sog. Komposittechniken multispektraler Bilddaten stellen eine Alternative zur Nutzung 

singulärer Aufnahmen dar und bieten die Möglichkeit, die Limitierung durch Vegetations-

bedeckung zu überbrücken. Erste Studien haben bereits die Anwendbarkeit einer derart 

optimierten Datenquelle in Hinblick auf die Ableitung von Bodenparametern gezeigt. Sog. 

Bodenreflektanzkomposite (engl. surface reflectance composite, SRC), welche mittels der 

Komposittechniken generiert werden, werden dabei mit Feldproben verknüpft, um Aussagen 

über Oberbodenparameter zu treffen. Allerdings sind zahlreiche Fragen bezüglich einer 

Verwendung solcher auf Landsat-Daten basierten SRCs zur Erfassung von Bodenparametern und 

vor allem zur Analyse von (rückblickenden) Veränderungen derzeit noch unbeantwortet.  

Diese Dissertation umfasst Aktivitäten zur Exploration der Möglichkeiten zur Ableitung und 

des (retrospektiven) Monitorings von Oberbodeninformationen ackerbaulich genutzter Flächen 

aus SRCs, generiert mittels langjähriger Landsat-Daten. Zur Abschätzung des Potentials wurde das 

Bundesland Bayern in Deutschland als Testgebiet gewählt, da hier neben Expertenwissen eine 

umfangreiche Bodendatenbank zur Verfügung steht. Der Fokus liegt auf der Ableitung des Corg-

Gehalts. Verwendet werden mehrjährige SRCs, die mittels des sog. Soil Composite Mapping 

Processors (SCMaP) generiert wurden. 

Zu Beginn wurde die Notwendigkeit der Überarbeitung des Schwellwertverfahrens, welches 

einen essentiellen Teil der SCMaP Methodik darstellt und der Ableitung unbedeckter Böden dient, 

identifiziert. Vor allem für überregionale Analysen ist ein standardisiertes Verfahren, welches hier 

auf dem Verhalten verschiedener Landbedeckungsklassen beruht, essentiell für eine erfolgreiche 

Separierung unbedeckter Böden von anderen Oberflächen. Die Ableitung der Grenzwerte 

basierend auf überregionalen bio-geographischen Räumen zeigte sich dabei als der beste Ansatz. 

Auch eine Validierung der räumlichen und zeitlichen Verteilung unbedeckter Böden wurde 

durchgeführt, um das Verständnis der Datengrundlage für aufbauende Bodenparameter-

modellierungen zu maximieren. 

 Bei einer anschließenden Studie zur Beurteilung der Anwendbarkeit eines 30-jährigen SRCs 

zur Ableitung von Corg-Gehalten von Ackeroberböden in Bayern wurde dieses mit zahlreichen 

Feldproben verknüpft. Algorithmen des maschinellen Lernens (Multiple Linear Regression, 

Partial Least Square Regression und Random Forest Regression) wurden dabei miteinander 

verglichen, wobei sich der Einsatz des Random Forests als am besten geeignet herausstellte. Vor 

allem die Verschneidung von Bodenpunktdaten mit Fernerkundungspixeln, welche mehrere 

Meter Kantenlänge (Landsat: 30 m) besitzen, bedingen zahlreiche Quellen für Ungenauigkeiten. 

Hier wurde ein räumlicher/spektraler Filteransatz, welcher auf spektralen Beziehungen des 

Probenpixels und dessen Nachbarpixeln beruht, entwickelt, um heterogene Pixelcluster von der 

Corg Modellierung auszuschließen. Zudem bestätigte eine zusätzlich durchgeführte Validierung 

basierend auf einem externen unabhängigen Datensatz die hohe Genauigkeit des Modellierungs-

ansatzes.  
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Da für eine Erfassung von Änderungen von Corg im Oberboden ein 30-jähriger Komposit-

zeitraum eine zu lange Zeitspanne darstellen kann, wurden die im zweiten Teil gewonnenen 

Erkenntnisse durch weitere Analysen vertieft, inwieweit dieser Zeitraum minimiert werden kann. 

Obwohl nachgewiesen werden konnte, dass längere Zeiträume (10/15 Jahre) höhere 

Modellierungskapazitäten bieten, zeigte bereits ein fünf-jähriger Zeitraum ausreichend hohe 

Modellgenauigkeiten im Untersuchungsgebiet für wiederkehrende Analysen. Die Erstellung der 

SRCs basiert auf einem spektralen Vegetationsindex. Die Resultate dieser Arbeit zeigen, dass 

Indices im Vergleich zu einer saisonalen Vorauswahl an Szenen, welche in das SRC integriert 

werden, eine untergeordnete Rolle bezüglich der Modellierungskapazitäten von Corg spielen. 

Einen weiteren zentralen Aspekt stellt ein Vergleich der zeitlichen Auswahl unbedeckter Böden 

mit Daten, an denen das beobachtete Feld (wahrscheinlich) unbedeckt ist dar. Ein Vergleich der 

extrahierten Daten unbedeckter Böden mit Feldbeobachtungen und phänologischen Infor-

mationen aus dem regionalen Feldfruchtkalender zeigte, dass der Großteil der ermittelten 

unbedeckten Böden in Zeiträumen lag, in denen der betrachtete Schlag vegetationslos und vom 

Satelliten sichtbar war. Auf Basis dieser Informationen wird eine Vorauswahl der Szenen 

basierend auf den phänologischen Informationen der im jeweiligen Gebiet angebauten 

Feldfrüchte geraten. 

Zusammenfassend konnten im Rahmen dieser Dissertation zahlreiche Erkenntnisse für die 

Modellierungen des Corg-Gehalts in Ackeroberböden auf Basis multispektraler SRCs der Landsat 

Satellitenfamilie gewonnen werden. Die Ergebnisse liefern einen entscheidenden Beitrag zum 

Verständnis der großflächigen Anwendbarkeit satellitengestützter Erdbeobachtungsdaten zur 

Überwindung der räumlichen und zeitlichen Limitierungen herkömmlicher Bodenkartierungen 

und eines (retrospektiven) Monitorings von Corg.  
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The launch of Landsat-4 TM satellite on July 16, 1982, marked the beginning of a long era of 

optical satellite imagery. The U.S. Landsat family, which has been regularly expanded, represents 

an unrivaled Earth Observation program for retrospective, recurrent and recent analyses of the 

Earth’s surface, especially due to the opening of the image data archive in 2008. The high spatial 

and temporal coverage of the freely accessible data is incomparable. For decades, Landsat data 

have been successfully used in many environmental disciplines to study ecosystems or forestry, 

agriculture and urban surfaces. Measured spectral information is a central element of analyses in 

geology and soil science, e.g., to detect and quantify soil erosion, impacts of climate change or land 

cover changes. 

Soils are an essential resource for human subsidence, as they carry out a number of ecosystem 

services. The fact that soils represent the largest terrestrial carbon pool illustrates the relevance 

of the geosphere. Active carbon sequestration in agricultural soils can reduce greenhouse gas 

emissions and thus make a valuable contribution to climate protection. In recent years, there have 

been numerous national and international efforts and activities to highlight the importance of 

soils and to realize a sustainable use of the resource. Currently, the Sustainable Development 

Goals (SDG), defined by the United Nations, explicitly address the protection and sustainable use 

of soils. Above all, soil organic carbon (SOC) in croplands represents an essential parameter for 

assessing healthy sustainable used soils. Knowledge about SOC contents is highly relevant and 

allows conclusions about crop yields or erosion vulnerability. Therefore, sufficiently high SOC 

contents are a core element of various political regulations. In order to fulfil the numerous 

(political) requirements, high-resolution information is needed that also enables to capture the 

temporal development of soil parameters. However, current soil maps and databases are 

temporally and spatially limited to capture a sustainable use of the resource and to achieve the 

formulated goals. Traditional methods for soil mapping are associated with a high temporal and 

financial effort. 

Optical Earth Observation (EO) is a valuable data source for area-wide soil mapping and 

monitoring purposes to distinguish patterns between or even within fields and to overcome the 

temporal and spatial limitations. As a long-term mapping mission, Landsat enables recurring 

observations and analyses. In addition, the high pixel resolution (30 m) supports analyses at field 

level. The image data thus offer the possibility of acquisition and monitoring of topsoil croplands 

and can help to optimize the temporal and spatial dimensions of existing databases. Various soil 

parameters have already been successfully modeled with valid accuracies for different regions 

(i.e., different climatic conditions, crop cycles, land management). The use of Landsat data to 

estimate SOC was also demonstrated. A limitation of the application of optical EO data is the fact 

that only soils which are exposed during the satellite overpass can be analyzed. In Germany, these 

are mainly cropland areas. In order to use the satellite imagery, uncovered soils must first be 

identified and separated from all other land cover types. However, the period during which a field 

is uncovered can vary due to regional crop rotation and can be limited to a short window of time. 

Soil compositing techniques of multispectral image data provide an alternative to the use of single 
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scenes and offer the possibility to bridge the limitation due to vegetation cover. First studies have 

demonstrated the applicability of such an optimized data source for soil parameter estimation. 

Soil reflectance composites (SRC), which are generated by these compositing techniques, are 

linked with field samples to predict topsoil parameter information. However, numerous questions 

regarding the use of such Landsat based SRCs for the estimation of soil parameters and especially 

for analyzing (retrospective) changes are still unanswered.  

The efforts in this dissertation comprise activities to explore the capabilities of deriving and 

(retrospectively) monitoring topsoil cropland SOC information from SRCs, generated with long-

term Landsat data. To assess the potential, the Federal state of Bavaria in Germany was chosen as 

a test area, since an extensive soil database is available here in addition to expert knowledge. The 

focus is on the derivation of SOC contents. Therefore, multi-year SRCs, generated by the Soil 

Composite Mapping Processor (SCMaP) are used.  

At first, the need to revise the index thresholding, which is an essential part of the SCMaP 

methodology as it is the baseline to separate soils from all other land cover classes, was identified. 

Especially for area-wide analyses, a standardized procedure, which in this case is based on the 

behavior of different land cover classes, is essential for successful separation of exposed soils from 

other surfaces. The derivation of thresholds based on bio-geographically classified regions was 

shown to be the best approach. Validation of the spatial and temporal distribution of exposed soils 

was also performed to maximize the understanding of the SCMaP data basis for building soil 

parameter models.  

In a consecutive study the applicability of a 30-year SRC to derive topsoil SOC contents of 

croplands in Bavaria was tested. The SRC was linked to numerous legacy field samples and 

different machine learning algorithms (Multiple Linear Regression, Partial Least Square 

Regression, and Random Forest Regression) were compared. The use of the Random Forest 

algorithm was determined to be the most suitable. Especially the intersection of point soil samples 

with remote sensing pixel, which have several meters resolution (Landsat: 30 m), can be a source 

of inaccuracies. Here, a spatial/spectral filtering approach based on spectral relationships of the 

sample pixel and its eight neighboring pixels was developed to exclude heterogenous pixel 

clusters. Furthermore, an additional validation based on an external independent data set 

confirmed the high accuracy of the modeling approach.  

Considering that a 30-year composite period could be too long for detecting topsoil SOC 

changes, the results obtained in the second part of this thesis were further analyzed to minimize 

the compositing period. Although it has been demonstrated that longer compositing lengths 

(10/15 years) provide higher model performances, a five-year period already showed sufficiently 

high modeling accuracies in the study area. The SRC processing is based on a spectral vegetation 

index. The results of this work showed that different spectral indices for SRC generation have a 

minor impact on SOC modeling compared to a seasonal pre-selection of scenes, integrated into the 

SRC. Another key aspect of this thesis represents a comparison of the temporal selection of 

exposed soils with dates when the observed field is likely to be bare. A comparison of the extracted 

exposed soil dates with field observation and phenological information based on the regional crop 

calendar showed that the majority of the identified exposed soils are located in periods when the 

observed field is vegetation-free and visible from the satellite. Based on these findings, a pre-

selection of scenes, derived from regional phenological information of crops, should be considered 

for SRC generation and SOC estimation. 
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In summary, this dissertation contains numerous insights for modeling SOC in topsoil 

croplands based on multispectral Landsat SRCs. The results provide a crucial contribution to the 

understanding of large-scale applicability of spaceborne EO data to minimize the spatial and 

temporal limitations of traditional soil mapping and (retrospective) monitoring of SOC.
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1. Introduction 

 

Annually on December 5th the World Soil Day, organized by the United Nations (UN), is 

celebrated in order to raise awareness of the critical role of soils and to advocate for the 

sustainable management of soil resources (Bouma 2019). Soil is a complex system as a mixture of 

minerals, organic materials, air, and water and is the upper part of our earth’s crust with a 

thickness of a few centimeters up to several tens of meters (Blume et al. 2010). In terms of the 

earth radius of 6,370 km, soils form the thin and vulnerable skin of the earth (Blume et al. 2010). 

Nevertheless, this thin skin is essential for human existence as it carries out a number of 

ecosystem services throughout soil functions (Blounin et al. 2013, Adhikari and Hartemnik 2016). 

One of the most recognized service of soil is its support for food production. Nearly 95% of the 

food is (in-)directly produced on soils (FAO 2015). In this context, soil health is defined as “the 

continued capacity of soil to function as a vital living ecosystem that sustains plants, animals and 

humans” (EJP SOIL 2022) and is amongst others an indicator for food productivity (Lehmann et 

al. 2020). As an important component of solid soils (Lal 2018) Soil Organic Carbon (SOC) is a key 

soil property for several ecosystem services (Adhikari and Hartemnik 2016). SOC directly impacts 

a huge variety of services as water regulation and filtering, nutrient conservation or climate and 

gas regulation of weathering or soil formation (Adhikari and Hartemnik 2016). Additionally, SOC 

is a principle determinant of soil health (Lal 2014) for ensuring food security and agricultural 

sustainability (Ren et al. 2020). Especially, SOC in cropland soils is of particular relevance and is 

becoming increasingly important. 

 

1.1. Relevance of SOC for croplands 

Soils are the largest terrestrial carbon (C) pool, where more C is stored than in the biosphere 

and the atmosphere combined (Jobbagy and Jackson 2000, Todd-Brown et al. 2013). The soil C 

stocks are comprised of two different C types, the soil inorganic C (SIC) and the soil organic C 

(SOC) fractions (Lorenz and Lal 2016). For the organic carbon portion, the primary source 

consists of materials from various biological origins (Kumar et al. 2006) and includes plant, animal 

and microbial residues in all stages of decomposition (Post and Kwon 2000). Croplands account 

for 10% of the global SOC with an estimated amount of 128-165 Pg C (Ren et al. 2020, Watson et 

al. 2000). Cropland soils with balanced and sufficient high SOC contents are less prone to soil 

degradation and can serve as a fundamental basis for food production (Lorenz and Lal 2016). A 

threshold level of approximately 2% SOC in the root zone is essential and indicates healthy soils 

(Lal 2014, Loveland and Webb 2003, Schjonning et al. 2010, Musinguzi et al. 2013, Lal 2016, 

Panagos et al. 2013). Below this concentration, the productivity is about to reduce notably 

(McBratney et al. 2014). However, in depleted soils, an increase of SOC concentration due to 

adequate management practices can contribute to raising crop yields (Lal 2006, Seremesic et al. 

2011, Seitz et al. 2022). This can also be achieved, for example, by the use of cover crops between 

two crop cycles (Seitz et al. 2022). During the last decades, decreasing SOC stocks have been 

detected in many European croplands (e.g., Sleutel et al. 2006, Lal et al. 2007, Ciasis et al. 2010, 
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Wiesmeier et al. 2016, Guillaume et al. 2020), which in addition to crop yield decreases have also 

negative implications for climate change (Lal 2004). Since, as described at the beginning, organic 

carbon stocks in soils represent one of the largest reservoirs in the global carbon cycle (Jobbgay 

et al. 2000, Scharlemann et al. 2014).  

The rising concern about soil health has been answered with several global or European-wide 

soil policies and regulations, aiming for a more detailed information gain on SOC contents for soil 

management and soil protection (Chabrillat et al. 2019). E.g., in the framework of the 17 

Sustainable Development Goals (SDGs), defined by the United Nations, SOC is listed as one of the 

most relevant soil properties with regard to climatic regulations (Toth et al. 2018). In this context, 

carbon stocks, with SOC as the initial metric, are one of the three sub-indicators for SDG 15.3.1 

(proportion of land that is degraded over total land) (Lorenz et al. 2019, Sims et al. 2019). SOC 

contents are treated here as a proxy for land degradation (Giuliani et al. 2020). The European 

Commission considered the decline of SOC as one of the eight threats for soil degradation in the 

European Union Thematic Strategy for Soil Protection back in 2006 (COM 2006) and updated this 

recently (Panagos and Montanarella 2018). Therefore, the goal of maintaining and improving SOC 

levels is included in the European Commission’s Roadmap for a resource efficient Europe (EC 

2011, Panagos et al. 2013). Recently, the importance of SOC was re-stated in the Soil Thematic 

Strategy 2030 (Panagos and Montanarella 2018, Panagos et al. 2022). Within the Paris Agreement 

at the 21st Conference of Parties (COP21) of the United Nations Framework Convention on Climate 

Change (UNFCCC) a limiting of global warming well below 2 °C was stated (Soussana et al. 2019). 

In preparation for the COP21, amongst others, the voluntary action plan, ‘4 per 1000 initiative: 

Soils for Food Security and Climate’ was launched by the French Ministry of Agriculture in 2015 

(Poulton et al. 2017). The initiative is supported by 39 countries and is striving for SOC stock 

increase at a rate of 0.4% (4 per 1000) per year for agricultural soils (Francaviglia et al. 2019, 

Soussana et al. 2019). The targeted annual increase is supposed to compensate a high percentage 

of human-induced carbon emissions (Wiesmeier et al. 2016, van Groeningen et al. 2017). In the 

context of the European Green Deal (EGD), which addresses Europe’s goal to become the world’s 

first climatic-neutral continent by 2050, a sustainable soil management is explicitly addressed 

(Montanarella and Panagos 2021). As a measure for sustainably managed and thus healthy soils, 

relevant factors include appropriate SOC contents in agricultural soils (Montanarella and Panagos 

2021). The political programs mentioned represent only a small selection of aspirations to 

emphasize the importance of soil and the relevance of SOC. 

To capture, quantify and monitor SOC contents, especially in croplands, for efficient and 

sustainable land use, and in order to control the implementation of policy objectives, SOC 

estimations with high spatiotemporal resolution on a national to global scale are urgently 

required. For instance, progress toward achieving the SOC-related SDGs is hampered by the lack 

of basic soil data and reliable monitoring systems for several countries (Lorenz et al. 2017). Hence, 

there is an urgent need of adequate soil data to achieve the SDGs (Toth et al. 2018). As McBratney 

(2014) pointed out: “SOC varies in space and time, modelling approaches are needed to predict 

SOC dynamics in both dimensions”. However, as Heuvelink et al. (2021) indicated, there are only 

a few studies on modelling SOC variations in time. Most of the existing studies and databases are 

temporally and spatially limited. Changes in topsoil SOC contents are often related to (local or 

regional) land-use decisions and/or agricultural management adaptions (Meersmans et al. 2016) 

and may require more frequent observations (Collier et al. 2021). Especially for this purpose, 

retrospective estimation of cropland SOC is of high importance. In many European countries, 
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monitoring networks are existing, using only a limited number of sites per country (Panagos et al. 

2013). However, global soil monitoring programs are still immature (Jandl et al. 2014).  

For applications with a large geographical extent (nation to European-wide) maps are mostly 

available with an insufficient spatial (i.e., 250 m to 1 km) and a low temporal resolution of more 

than ten years. E.g., the European Soil Data Center (ESDAC) provides several pan-European SOC 

maps. Both soil datasets, the OCTOP: Topsoil Organic Carbon Contents for Europe (Jones et al. 

2005) and the Topsoil Soil Organic Carbon Map based on the LUCAS (Land Use and Coverage Area 

frame Survey) for EU25 (de Brogniez et al. 2015) are generated in coarse 1 km raster format. 

Distributed and coordinated by the Food and Agriculture Organization (FAO) of the United 

Nations the Global Soil Organic Carbon Map (GSOCmap) was released in 2018 in support of the 

SDG 15.3.1. The generic map is based on a consultative and participatory process involving 

contributions of member countries and is available on a 1 km raster format (FAO and ITIPS 2018). 

The International Soil Reference and Information Center’s (ISRIC) SoilGrids250m provides global 

information about SOC in the upper 30 cm with a spatial resolution of 250 m (Hengel et al. 2017). 

Supplied by the Joint Research Center (JRC), the Harmonized World Soil Database (HSWD) is also 

a well-known map, containing the spatial distribution of SOC contents (Nachtergaele et al. 2010, 

Hiederer and Köchy 2011). Although the latter three are available worldwide, small-scale analyses 

at field level are not feasible. In addition to the limitation of the spatial resolution, most maps have 

in common that they represent only one temporal snapshot, for which conceivably a long period 

of time is summarized. The applicability of the vast majority of the maps for recurring field-scale 

analysis is limited as the spatial and temporal resolution is insufficient. Currently, “the methods, 

data needs and models for the assessment of SOC changes at a spatial resolution relevant for 

decision-making in land-use are not yet sufficiently elaborated” (Jandl et al. 2014). Also, Popleau 

et al. (2020) defined especially for Germany the essential need for centralized and accurate 

monitoring of SOC dynamics to cope with the rising management of climate-driven alterations of 

SOC. 

To fulfill the growing demand for high spatiotemporal SOC analyses, traditional soil mapping 

involves intense soil sampling effort (in time and financial constraints) and laboratory analysis 

(Stevens et al. 2013, Ward et al. 2020). Often, the high financial efforts of field sampling and 

laboratory analysis restrict the monitoring of soil properties at large scale (Conant et al. 2011). 

However, as elaborated, there is a growing demand for alternative soil mapping and monitoring 

approaches applicable for an area-wide mapping which enables recurring analyses (Chabrillat et 

al. 2019, Castaldi et al. 2019). Earth Observation techniques and model approaches provide an 

alternative to traditional soil mapping because of the ability to overcome the spatial and temporal 

limitation of existing maps and databases. 

 

1.2. Earth Observation for soil analysis 

Earth Observation (EO) is a valuable data source for area-wide soil mapping and monitoring 

purposes to distinguish patterns between or even within fields. Hyperspectral airborne data (e.g., 

Ben-Dor et al. 2009, Bartholomeus et al. 2011, Bayer et al. 2016, Chabrillat et al. 2019) or 

(simulated) data of the Italian PRISMA (Hyperspectral Precursor and Application Mission - Loizzo 

et al. 2019; Mzid et al. 2022) and the German EnMAP (Environmental Mapping and Analysis 

Program - Guanter et al. 2015; Ward et al. 2020) satellites, as well as multispectral spaceborne 

datasets (e.g., Castaldi et al. 2019, Vaudour et al. 2019, Wang et al. 2020, Gholizadeh et al. 2018) 

have been intensively studied during the past years for soil analysis to derive cropland SOC 
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contents. Especially the spaceborne multispectral mapping missions (i.e., Landsat and Sentinel-2) 

are suitable for SOC topsoil estimation purposes due to their high spatial and multitemporal 

resolution, global coverage and recurring acquisitions. Mapping approaches based on spaceborne 

multispectral sensors can provide a temporal and spatial information increase to existing maps 

and databases (section 1.1). For monitoring purposes and to understand changes due to 

management adoptions, special emphasis must be given to the long history of Landsat data (> 40 

years with global coverage), as Sentinel-2 does not yet provide such a long data history (Sentinel-

2A: launched in 2015, Sentinel-2B: launched in 2017, Phiri et al. 2020).  

For SOC estimation, soil reflectance values acquired by the EO instrument are correlated with 

field soil point information based on spectral and/or digital soil modeling techniques. Machine 

learning is a widely applied and effective approach to generate successful soil property prediction 

models. Commonly techniques such as random forests (RF), partial least-square regressions 

(PLSR), support vector machines (SVM) or convolutional neural networks (CNN) are widely 

applied for soil property estimation and mapping (Tziolas et al. 2021). For the use of optical 

sensors, which are only able to detect the upper nanometers of the observed surface, first bare 

soil pixels have to be selected and separated from all other land cover classes. Due to temporal or 

permanent surface vegetation cover, mapping of bare, uncovered and undisturbed soils for SOC 

prediction is challenging (Dematte et al. 2018). The area of exposed soil in temperate areas is 

usually spatially limited, distributed differently throughout the year, and often restricted to a 

short time period in the crop cycle. E.g., at the beginning of the crop cycle, i.e. after tilling, when 

the field is in seedbed conditions, the possibility of enhancing soil property prediction of exposed 

soils exists. However, this is related to the regional crop phenology of the observed field and varies 

in time (e.g., winter and summer crops). Temporal compositing techniques of multispectral 

satellite images can provide an alternative in contrast to the use of single data takes and are widely 

applied in the literature to get a comprehensive understanding of the Earth’s surface including 

soils (e.g., Hansen et al. 2011, White et al. 2014, Hermosilla et al. 2015, Diek et al. 2017, Dematte 

et al. 2018, Griffiths et al. 2019, Loiseau et al. 2019, Adams et al. 2020, Safanelli et al. 2020, 

Vaudour et al. 2021). In general, the compositing technique, initially introduced by Holben (1986), 

strives for a reduction of a range of difficulties, as e.g., cloud contamination, different atmospheric 

compositions, and view or illumination geometry by incorporating information from several 

overpasses for the same pixel (Flood 2013). In addition to these aspects, a compositing approach 

for soil analyses enables to overcome the limitation of temporal vegetation cover of croplands 

during the overpass of one satellite. All bare soil occurrences of all input scenes are combined 

pixel wise to create soil reflectance composites (SRC). The SRC represents mostly the averaged 

situation (sometimes also the barest situation) of all exposed soil occurrences in the observed 

time period. This implies, that the spectra of the spatially enhanced data source are relatively 

independent of seasonal differences in soil moisture and other soil surface conditions (e.g., 

occurring during rain events or longer drought periods) as only permanent spatial soil moisture 

differences or texture characteristics remain, at least for an SRC where multiple scenes are 

averaged over time. Temporal and spatial averaging of exposed soil occurrences in an observed 

area allows the processing of a spatially enhanced data source (i.e., SRC) for soil parameter 

estimation. Based on multispectral spaceborne EO images (mainly Landsat and Sentinel-2) 

several bare soil compositing techniques were developed and applied for soil analysis (e.g., Diek 

et al. 2017, Rogge et al. 2018, Dematte et al. 2020, Castaldi et al. 2021, Sorenson et al. 2021, 

Vaudour et al. 2021).  
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Dematte et al. (2018) developed the first operational SRC processor (Geospatial Soil Sensing 

System (GEOS3)) based on Landsat data for large scale soil mapping. Safanelli et al. (2020) applied 

the GEOS3 derived bare soil composite, called Synthetic Soil Images (SYSI), for large scale soil 

analysis over Europe and estimated SOC contents amongst other soil parameters. The Soil 

Composite Mapping Processor (SCMaP; Rogge et al. 2018, see chapter 1.3), established at the 

German Aerospace Center (DLR), is an alternative valuable tool to build area-wide SRCs. A unique 

characteristic of SCMaP is its independence of external data sources for exposed soil identification. 

Besides these two area-wide compositing methods, several studies have created small scale 

optimized SRC approaches for different geographically regions in terms of soil parameter 

modeling using multispectral Landsat and/or Sentinel-2 data (e.g., Diek et al. 2017, Zizala et al. 

2019, Dvorakova et al. 2021, Mzid et al. 2021, Sorenson et al. 2021, Zepp et al. 2021 b, Möller et 

al. 2022). Some approaches are extended by the use of ancillary data to pre-select scenes for 

compositing. Common are SAR (synthetic aperture radar) and Sentinel-3 data (e.g., Lin et al. 2020, 

Tziolas et al. 2020, Vaudor et al. 2021) or the pre-selection of input scenes (e.g., crop calendar, 

minimal surface roughness, and minimal soil moisture) to improve the exposed soil selection 

based on expert-knowledge (e.g., Castaldi et al. 2019, Dvorakova et al. 2021, Mzid et al. 2021, 

Vaudour et al. 2019). However, most of these approaches are developed and applied at the local 

level for a small spatial extent (0.09 to 10,000 km²). 

When comparing available bare soil compositing techniques, the spectral index and index 

threshold derivation, responsible for exposed soil selection, is of particular importance for almost 

all compositing techniques. The well-known normalized difference vegetation index (NDVI) is 

used by a wide range of approaches individually (Vaudour et al. 2019, Loiseau et al. 2019) in 

combination with other indices (Diek et al. 2016, Dematte et al. 2018, Sorenson et al. 2021, Urbina 

Salazar et al. 2021) or is slightly modified (Rogge et al. 2018, Heiden et al. 2022). In addition to 

the NDVI the majority of authors used the Normalized Burn Ratio II (NBR2) (e.g., Dematte et al. 

2018, Gallo et al. 2018, Dvorakova et al. 2021, Urbina-Salazar et al. 2021, Castaldi et al. 2021) 

and/or the Bare Soil Index (BSI) (e.g. Diek et al. 2017, Mzid et al. 2021) separately or in 

combination for bare soil selection. In general, each approach requires one or more thresholds to 

separate exposed soils from other land cover classes. These thresholds are either set empirically 

or by an expansion integrating LUCAS (Land Use and Coverage Area frame Survey, Origazzi et al. 

2018) topsoil spectral measurements into the framework specified for local or site-specific 

conditions. The selection of the thresholds mainly determines the quality of the composites and 

requires therefore special emphasis. However, these methods have in common, that there is no 

standardized systematic selection of the thresholds and the determination is mainly focused on 

regional characteristics. A data-driven standardized and systematic index thresholding approach 

can enable area-wide mapping of exposed soils and an operational use of the technique without 

ancillary data.  

Beside the index and the index thresholding, responsible for exposed soil selection, the 

compositing length (i.e., how many years and a seasonal composition integrated into the 

compositing process) is of particular importance for SRC generation. This is a crucial point 

especially for SOC monitoring purposes claimed by the political requirements. So far, only a small 

number of studies investigated and compared different compositing lengths (Castaldi et al. 2021) 

for long-term SOC estimation and monitoring purposes. However, only by answering this question 

a concept for recurrent (retrospective) analyses can be designed. By using the long-term Landsat 

archive, the SCMaP approach enables such recurrent and retrospective SOC predictions to detect 

changes.  
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1.3. Bare Soil Information (SCMaP)  

The operational SCMaP chain has been developed by Rogge et al. (2018) for the use of Landsat 

imagery. It is a multitemporal compositing approach, which enables an automated extraction of 

exposed soil pixels and the generation of area-wide cloud-free SRCs for an individually defined 

period of time (Figure 1.1). This section provides a brief summary of the methodology, which is 

described in detail by Rogge et al. (2018).  

 

Figure 1.1: Summary of the SCMaP processing chain including index calculation, index threshold determination 

and SRC generation. 

To separate soils from photosynthetic active (PV) areas, a spectral vegetation Index (PV+BLUE, 

Equation 1) based on the NDVI (Rouse et al. 1974) is used:  

 

𝑃𝑉 + 𝐵𝐿𝑈𝐸 =  
𝜌𝑁𝐼𝑅−𝜌𝑅𝑒𝑑

𝜌𝑁𝐼𝑅+𝜌𝑅𝑒𝑑
+

𝜌𝑁𝐼𝑅−𝜌𝐵𝑙𝑢𝑒

𝜌𝑁𝐼𝑅+𝜌𝐵𝑙𝑢𝑒
      (1) 

 

where 𝜌 is the reflectance [%] of the Red, Blue, and NIR (near infrared) spectral regions (Landsat-

4 TM, Landsat-5 ETM, Landsat-7 ETM+: Blue = Band (B) 1, Red = B3, NIR = B4, Landsat-8 OLI: Blue 

= B2, Red = B4, NIR = B5). The PV+BLUE index is based on the NDVI for effectively separating 

photosynthetic active vegetation from most other materials. However, the index alone provides 

no possibility to separate soils from other not photosynthetically active land cover types. To 

overcome this limitation in the SCMaP methodology two thresholds are set, that can be used 

combined to extract exposed soil pixels. The addition of the second normalized difference index, 

using the blue reflectance information of Landsat, is chosen to minimize increased reflectance in 

the blue channel caused by thin haze which is not filtered during pre-processing.  
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SCMaP has been developed for temperate and continental climates. Here, exposed soils occur 

mainly in agricultural areas not permanently covered by vegetation (i.e., grasslands). Croplands 

in this climatic region are characterized by a transition from bareness after field tillage (e.g., 

seedbed preparation) to vegetation cover during the vegetative active phase. Therefore, the 

thresholding is optimized to select pixels with a change from vegetation cover to bare conditions. 

To extract the exposed soil pixels, two temporal composites containing the minimum PV+BLUE 

index (PVmin) and the maximum PV+BLUE index (PVmax) per pixel and observed compositing 

period are derived. Based on the spatial and temporal behavior of the PVmin/max index composites, 

two thresholds (TH) are determined, built on specific land cover (LC) classes (urban, deciduous 

trees, and croplands), to distinguish between exposed soils and other LC classes. Exposed soils 

and urban surfaces show the lowest PVmin composite values but are also intermixed with non-

photosynthetic active vegetation (e.g., crop residues after harvesting) or dry grassland. When soils 

are covered with vegetation, they show an overlap with forests and grasslands in the PVmax 

composite. Here, soils can be easily separated from urban surfaces and areas showing permanent 

low vegetation indices (i.e., water or mining sites). Therefore, THmin is set to separate urban 

surfaces and exposed soils from LC classes with active vegetation cover. The THmax is set to 

distinguish soils temporally covered by vegetation from classes never covered by vegetation, as 

urban materials or water. By applying THmin/max to the PVmin/max composites, two masks are 

generated, one containing permanent non-vegetation pixels, while the other mask contains 

permanent vegetated pixels. The intersection of these masks allows the determination of the 

exposed soil mask containing all pixels with an alternating vegetation cover. These pixels are 

showing at least one exposed soil occurrence in the observed time period. The SRC is calculated 

at each pixel as the average reflectance per band of all exposed soils in the image data stack, where 

the index value is lower than THmin and the pixel is spatially within the soil mask (Figure 1.1). 

Non-photosynthetic active vegetation (NPV, Daughtry et al. 2006) such as crop residues, 

grassland (dry condition) or leaf-off condition of deciduous forests show a spectral similarity with 

soils. A clear separation of NPV and exposed soils is hampered by the limited spectral resolution 

of multispectral images, especially in the short-wave infrared (SWIR) region (Asner and 

Heidebrecht 2002, Okin 2007, Malec et al. 2015). For the differentiation of NPV from exposed soils, 

these LC classes have to be considered with specific emphasis in the threshold derivation method. 

The data-driven SCMaP index thresholding focuses on a clearer separation from grassland and 

leaf-off conditions of deciduous forests applicable for an area-wide mapping. A majority of other 

small-scale compositing approaches focus on empirically selected and locally limited thresholds. 

Also, ancillary data such as urban or water masks are often used for a selection of exposed soils. 

There is a need for a data-driven definition of two spectral index-based thresholds to overcome 

an empirical derivation of the thresholds and to avoid the implementation of ancillary data masks. 

For SCMaP the determination of the thresholds is originally based on manually selected LC data 

which show no change over the entire investigation time. The approach is applicable for area-

wide mappings of exposed soils. However, it is time consuming and prone to user errors, why a 

revision to a data-driven automated, standardized approach was identified and developed in this 

thesis. 

SCMaP is requiring a multispectral Level 2 database. Landsat collection data (Dwyer e al. 2018, 

Landsat-4 TM, Landsat-5 ETM, Landsat-7 ETM+, and Landsat-8 OLI) between 1984 and 2019 were 

used for SRC generation. To avoid external effects, the same pre-processing steps (i.e., 

atmospheric correction (ATCOR – Atmospheric / Topographic Correction software, Richter and 

Schläpfer 2013) and cloud masking (FMask algorithm, Zhu et al. 2015)) were applied to all scenes 



Introduction 

8 
 

to prepare a consistent database. SCMaP can be applied to different compositing lengths. 

However, for Landsat due to the temporal coverage and the resulting number of cloudless scenes 

at least five years should be integrated in the compositing approach (Rogge et al. 2018). 

 

1.4. Overall goal of the thesis 

As discussed in the last chapters, currently available soil maps and monitoring approaches 

demonstrate a spatial and/or temporal limitation for achieving the policy objectives and for 

creating an information gain on SOC contents for the various soil management and soil protection 

aspirations for croplands. These spatiotemporal gaps can be bridged by the use of multispectral 

EO data. Especially the long-term archive of Landsat imagery is a valuable data source for various 

(retrospective) soil analysis. Landsat, as a mapping mission, provides the opportunity for area-

wide mapping approaches supported by a high spatial resolution (30 m) enabling analysis on field 

scale, and it is the only optical mission on a global scale for the past 40 years. Despite the high 

potential, the Landsat data have barely been used for (retrospective) soil analyses and monitoring 

purposes to overcome the spatial and/or temporal limitation of current mapping approaches. 

However, more research is needed to capture the potential use and the applicability of Landsat 

data for (retrospective) soil analyses integrated to a soil compositing approach for bare soil 

extraction. This paves the ground for increasing the physical and chemical understanding on soil 

developments and their impacts on e.g. climatic processes, yield capacities or erosion resilience. 

To address the numerous demands for an area-wide mapping and (retrospective) monitoring 

of SOC contents in non-permanently covered cropland topsoils the overall goal of the thesis was 

defined to explore the capabilities of the long-term Landsat based SCMaP SRCs for SOC prediction 

and monitoring. The analyses were conducted for a subset of Germany, the Federal State of 

Bavaria. In addition to in-depth expert knowledge, extensive validation data were available here. 

In order to answer the overall goal, several analyses were conducted to fill some identified 

scientific gaps (chapter 2). The emerged research gaps and the conducted analyses are presented 

and discussed in detail in the following chapter. 
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2. Research Objectives and Framework of the Thesis 

 

This work is a synthesis of the research done over the past years and is published in three 

scientific international journals. In order to explore SOC monitoring capabilities, different 

research gaps and challenges were identified, and were also highlighted in the previous chapters. 

A majority of them were addressed in this thesis by several analyses. Therefore, three research 

objectives (RO) were established to focus on the different demands for exploring a monitoring 

concept (Figure 2.1). Each RO is treated in a scientific publication and defines the overall goal of 

the analyses conducted per publication in order to address the overall scope of the thesis (chapter 

1.4). The ROs are linked with and built on each other and are (partly) based on findings of the 

previous objective. It must be emphasized, that there is a strong connection between the analyses. 

The interaction and the combination of results of the three ROs gives a comprehensive analysis 

addressing the different requirements and aspects needed for exposed soil retrieval and the 

subsequent SOC estimation for monitoring purposes based on Earth Observation Landsat 

timeseries data. 

 

Figure 2.1: Framework of this thesis - aspects for SOC monitoring addressed by the three defined research 

objectives (RO) and answered within the related scientific publication. 
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RO 1: Derivation and validation of masks that contain exposed soil pixels from multi-year 

Landsat data stacks for Germany from 1984 to 2019. 

EO exposed soil information is essential for SOC estimation and monitoring purposes. In this 

context, the SCMaP methodology in combination with Landsat data for bare soil selection was 

used. Currently, only few approaches use the area-wide (retrospective) mapping potential of 

Landsat images. In contrast to other compositing approaches, the extraction of bare soil 

information based on the SCMaP methodology can benefit area-wide mapping purposes (e.g., 

country-wide, continental) with a high spatial resolution. However, for an area-wide application 

of the approach, critical methodological constraints of the existing thresholding method were 

recognized. The need of a systematic and standardized threshold determination was identified. A 

re-definition of the thresholding also contributes to the uniqueness of the process, as most of the 

existing comparable composite approaches use empirically determined thresholds and are thus 

mainly applicable for a regional use. The aim was to create a data-driven concept, where no 

auxiliary data was needed. Furthermore, the resulting exposed soil areas identified for 5-year 

periods between 1984 and 2019 can be of great value for statistical analysis due to land cover 

changes or the localization and monitoring of extensively used cropland areas over time. 

Regarding the data-driven approach for threshold determination and the potential applicability 

of the spatial and temporal exposed soil information for statistical purposes, special emphasis was 

also dedicated to a comprehensive validation concept. Based on the manual thresholding 

approach, there was no validation of the spatial and temporal distribution of exposed soil pixels 

conducted so far. 

Both, the need of a standardized threshold derivation concept to go beyond existing 

approaches and the lack of a spatial and temporal validation of exposed soil pixels using the 

SCMaP methodology resulted in RO1. It gives the methodological baseline (processor 

optimization and output validation) in order to create an operational approach, which is 

independent of auxiliary or empirical threshold fitting to prepare soil products for SOC estimation. 

The first technical focus is set on the impact and the optimization of a training sampling strategy 

to automatically and randomly select land cover (LC) pixels from CORINE Land Cover (CLC) data. 

The spectral-temporal behavior of these LC classes is then used for the determination of two 

thresholds required for the derivation of exposed soil information. The aim is the development of 

the originally manual selection of land cover pixels for threshold determination in the SCMaP 

chain by Rogge et al. (2018) towards an automatically standardized approach for an operational 

use which is not limited to a local application. A manual sampling is not robust enough, time-

consuming and might not represent the spectral variability of the required LC classes. For the 

selection of LC pixels, a data-driven random sampling approach was chosen, using CLC data sets 

that do not change in the observed time period. Further, it was tested, if the threshold definition 

rule is still applicable or has to be adjusted due to the automated LC pixel selection process. The 

second focus of RO1 is to validate the resulting masks of exposed soil pixels covering Germany for 

all time periods in order to enhance the understanding of the spatial and temporal extraction. For 

this purpose, the resulting exposed soil masks are correlated with two independent reference 

datasets (surveys from the Federal Statistical Office (DESTATIS) and the CLC inventories) 

available for different time steps containing information about the coverage of croplands in 

Germany. Both data sets contain the spatial distribution of croplands for several time steps since 

1990. 
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RO2: Estimating the potential of the SCMaP SRC generated from Landsat images covering 30 

years to derive a high-resolution map of SOC contents in Bavarian croplands. 

Shown by the good validation results given in the first publication, the methodological 

revisions of the SCMaP chain were successful. This allows the question, if the soil reflectance 

composites (SRC), which are generated on behalf of the exposed soil masks, can be used for SOC 

estimation of topsoil croplands. So far, the SCMaP SRCs have not been used for SOC prediction for 

larger areas. However, the SCMaP SRCs, generated with multitemporal Landsat data can serve as 

a spatially enhanced data source for EO based SOC estimation and modeling. Additionally, they 

can benefit the temporal and spatial limitation of current approaches. The applicability of Landsat 

SCMaP SRC for topsoil SOC predictions of croplands has to be estimated. For this purpose, 

methodological constraints for SOC modeling have to be analyzed and in this context several 

components were identified (Figure 2.1). Beside a pre-processing of the soil sample database an 

appropriate machine learning algorithm for spatial SOC prediction has to be selected. Further, 

several publications show the successful implementation of additional spectral indices for 

modeling purposes. Existing studies usually do not contain an external validation using an 

independent dataset that goes beyond the model validation. However, such an additional 

validation is a central aspect to enhance the understanding of SOC estimation. All the formulated 

requirements led to RO2. 

 In order to answer RO2, the second publication addresses the applicability of the SCMaP SRC, 

for SOC estimation of not permanently covered topsoil croplands. The focus of RO2 was on a 

regional feasibility study to use Landsat SCMaP SRC for SOC predictions covering large parts of 

Bavaria (Germany) and adjacent regions. The SRC was generated for a time-period of 30-years 

(1984-2014) as no changes in cropland SOC contents are expected in the investigation area. 

Furthermore, the cooperation with two Bavarian environmental agencies enabled the use of a 

unique soil database containing numerous field samples (n > 1,000) between 1986 and 2016. The 

available legacy SOC data were intersected with the SRC and the resulting database was used to 

build spectral models. For the preparation of a modeling framework, special focus was put on 

several aspects. Firstly, the intersection of point soil samples with EO pixels can be a potential 

source of inaccuracies. In this regard, a spatial/spectral filtering technique to prepare the dataset 

for modeling purpose was developed. Several established Machine Learning approaches (Multiple 

Linear Regression, Partial Least Square Regression, and Random Forest Regression) for SOC 

prediction were compared. Furthermore, the influence of spectral indices as additional covariates 

in combination with the reflectance composite pixel features on the model performances were 

evaluated. The prediction quality was assessed by established performance and accuracy 

measures (R², root mean squared error - RMSE, ratio of performance to deviation - RPD) and 

compared with existing approaches, to better understand the advantages / disadvantages of the 

developed model setup and database. In order to answer RO2, special emphasis was also given to 

an independent external validation, based on a dataset not integrated within the model calibration 

and validation. From the authors point of view, an additional external validation offers a new 

perspective to the understanding of the applicability of SCMaP SRCs for SOC modeling. 
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RO3: Optimization of parameters for SRC generation for recurrent assessments of SOC 

contents using Landsat data, considering the reliability of the selection of exposed soil dates. 

The results of RO2 showed a reliable applicability of the SCMaP SRC for SOC prediction of 

topsoil croplands in Bavaria and adjacent regions. However, a 30-year compositing length can be 

too long, especially for monitoring purposes in areas, where changes are expected within a shorter 

period of time or to capture retrospective SOC developments. Other studies barely give insights 

into the impacts of different compositing lengths for SOC determination, even though Landsat 

offers a high (retrospective) monitoring potential due to its long lifetime. This led to thoughts 

about the role of the compositing length in general. Also, the influence of other processing 

parameters (e.g., a pre-selection of scenes, different spectral indices) for bare soil selection are 

relevant issues in order to understand their implications on SRC generation and thus on SOC 

estimation. Closing this research gaps forms an integral part of RO3. In view of maximizing the 

understanding of the SRC generation process, the reliability of the bare soil dates identified by the 

SCMaP approach have not been evaluated yet. The question, if the index (-combination) used, 

correctly extracts the acquisition dates, i.e., fields which are bare, smooth and show dry soils was 

not addressed yet. In addition to this, a clear separation of NPV and exposed soils by the index 

thresholding is an essential part of bare soil compositing approaches. The validation aims to 

improve the understanding of bare soil selection, the separation between NPV and bare soils and 

forms the second focus of RO3.  

All analyses addressing RO3 are presented in the third scientific publication and are based on 

the findings of the first (index thresholding) and second publication (SOC prediction 

methodology). Again, the analyses were conducted for the Federal State of Bavaria and adjacent 

regions, even though no high temporal SOC changes are expected. The valuable, comprehensive 

database and the expert knowledge available were the decisive factors for the decision here. First, 

bare soil dates determined by the approach are validated against field observations and 

information from the local crop calendar, when the fields are likely to be bare and visible from the 

satellite. In this context also, the influence of different spectral indices for bare soil selection were 

discussed. Furthermore, the impacts of SRCs composed of these spectral indices for topsoil SOC 

determination were analyzed in the test area. Conclusively, the publication indicates which 

compositing length and seasonal composition allows the most accurate derivation of SOC contents 

in terms of (retrospective) monitoring purposes.  

 

Based on the topics addressed by the three scientific publications, a comprehensive analysis 

was conducted to explore the potential of the novel soil compositing approach SCMaP for long-

term SOC monitoring using Landsat data. In the following chapter, the findings of the analyses 

addressing the different ROs are presented and discussed in more detail. 
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3. Publications 

 

This cumulative thesis comprises three peer-reviewed scientific publications in international 

journals. Each publication is dedicated to a RO given in chapter 2 in order to answer the scope of 

the thesis. Two of the three publications have been published, the third is submitted and currently 

under review. The scientific publications are presented in chronological order as this follows the 

framework of the thesis. For all papers, the SCMaP approach is the methodological baseline for 

the extraction of exposed soil information. In order to answer the scope of the thesis, a revision of 

the SCMaP methodology (Paper I), a regional feasibility study of the applicability of SCMaP 

exposed soil information for SOC estimation (Paper II) followed by a comprehensive validation of 

identified bare soil dates and an analysis regarding an optimization of the parameters for SRC 

generation and SOC modeling using Landsat data (Paper III) was conducted.  

In the following subsections, the findings of the analysis related to the scientific publications 

are presented in detail. Each is introduced by a concise overview page, where information about 

the journal, the impact factor of the selected journal, the status of the paper, and the contribution 

of the author and co-authors are given.  

 

In addition to the three publications, the author has contributed to research as co-author in the 

following articles, which are (partly) built on findings of the scientific publications: 

Möller, M., S. Zepp, M. Wiesmeier, H. Gerighausen, U. Heiden, 2022. Scale-Specific Prediction 

of Topsoil Organic Carbon Contents Using Terrain Attributes and SCMaP Soil Reflectance 

Composites. Remote Sensing, 14, 2295. 

Heiden, U., P. d’Angelo, P. Schwind, P. Karlshöfer, R. Müller, S. Zepp, M. Wiesmeier, P. Reinartz, 

2022. Soil Reflectance Composites – Improved Thresholding and Performance Evaluation. 

Remote Sensing, 14, 4526. 
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3.1. Scientific Publication I: The Influence of Vegetation Index Thresholding on EO-

based Assessments of Exposed Soil Masks in Germany between 1984 and 2019 

 

Reference: Zepp, S., M. Jilge, A. Metz-Marconcini, U. Heiden, 2021. The influence of vegetation 

index thresholding on EO-based assessments of exposed soil masks in Germany between 1984 

and 2019. ISPRS Journal of Photogrammetry and Remote Sensing, 178 (2021), 366-381. 

 

https://doi.org/10.1016/j.isprs.2021.06.015  

 

Status: published 

 

Author`s contribution: SZ: Conceptualization, Methodology, Software, Data curation, Writing – 

Original Draft, Visualization, Project administration. MJ: Methodology, Software, Data curation, 

Writing – Review & Editing. A.M.-M.: Software, Writing – Review & Editing. UH: Conceptualization, 

Writing – Review & Editing, Supervision, Funding acquisition. 

 

Scope of the journal: The ISPRS Journal of Photogrammetry and Remote Sensing (P&RS) is the 

official journal of the International Society for Photogrammetry and Remote Sensing (ISPRS). The 

Journal provides a channel of communication for scientists and professionals in all countries 

working in the many disciplines that employ photogrammetry, remote sensing, spatial 

information systems, computer vision, and related fields. The Journal is designed to serve as a 

source reference and archive of advancements in these disciplines. 

 

5-year impact factor: 11.774 (2021) 
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Abstract: Knowledge about the spatial and temporal distribution of exposed soils is necessary 

for e.g., soil erosion mitigation. Earth Observation (EO) is a valuable data source for detecting 

exposed soils on a large scale. In the last couple of years, the multitemporal compositing 

technique has been used for the generation of so-called exposed soil composites that overcome 

the limitation of temporarily coverage of the soils with vegetation as it is occurring at 

agricultural sites. The selection of exposed soil pixels from the stack of multispectral images is 

mainly done using spectral reflectance indices such as NDVI, NBR2 and others calculated on a 

per-pixel basis. The definition of the thresholds that are applicable to large areas such as 

regions, countries or continents is still a challenge and requires a reliable and robust sampling 

data base. In this study, the Soil Composite Mapping Processor (SCMaP) is used to build 

exposed soil masks containing all pixels in a given time period showing at least once exposed 

soil. For this purpose, a modified vegetation index (PV) based on the NDVI is used to separate 

the soils from other land cover (LC) classes by two PV thresholds. The overall goal of this study 

is to derive and validate exposed soil masks from multi-year Landsat data stacks for Germany 

from 1984 to 2019. The first focus is set on the impact of a newly developed sampling approach 

of LC classes such as urban areas, deciduous forests and agricultural fields that are 

automatically derived from Corine Land Cover (CLC) data. The spectral-temporal behavior of 

these LC classes in PVmin/max index composites show larger variability of the PV values 

compared to a manual sampling for selective LC classes such as urban areas. It reveals that the 

threshold definition method previously developed by Rogge et al. (2018) is not robust enough 

and the percentile rule used to define the Tmax threshold had to be adapted from 0.995 to 0.900. 

On the other hand, the sampling data base has proven to be robust across time and region. The 

second focus of the paper is to validate all generated exposed soil masks covering Germany for 

seven time periods from 1984 to 2019. A linear correlation analysis was performed comparing 

the SCMaP data with surveys from the Federal Statistical Office (Destatis) and the CLC 

inventories. The comparison with both datasets showed high regression coefficients (R2 = 0.79 

to 0.90) with small regional deviations for areas in the Northern part of Germany. Strong 

correlation was found for time periods based on a higher number of cloud free Landsat images 

such as from 2000 to 2009. This demonstrates the high potential of SCMaP’s to generate 

exposed soil masks based on an automated sampling and a robust threshold derivation. To 

contribute to soil erosion studies that need information about where and when soils are bare, 

accurate exposed soil masks in suitable time periods can be of great value. 

Keywords: Soil exposure, Soil reflectance composites, Landsat, Multispectral, Thresholding 
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1. Introduction 

Soils provide numerous ecosystem services that are essential for human life on Earth (Adhikari 

and Hartemink, 2016). Knowledge about the spatial and temporal distribution of exposed soils is 

very informative for assessing ecosystem processes and statistical analyses and can serve as a 

basis for further soil-related assessments (Lavelle et al., 2014). Natural or anthropogenically 

induced soil degradation and erosion affects the quality of ecosystem services (Demattè et al., 

2018). In particular, exposed soils that are not covered by vegetation are prone to erosion (Virto 

et al., 2015), resulting in a notable amount of soil loss each year (Borelli et al., 2017; Borelli et al., 

2018; Steinhoff-Knopp and Burkhard, 2018). In addition to the location and exposition of 

uncovered soils (Panagos et al., 2014a; Panagos et al., 2015), the duration of exposure indicates 

the vulnerability of an area (Cerdan et al., 2010; Panagos et al., 2014b) to different geofactors, such 

as wind (Borelli et al., 2015; Schmidt et al., 2017) or water (Gobin et al., 2004; Steinhoff-Knopp 

and Burkhard, 2018). Thus, information on the spatial and temporal distribution of exposed soils 

enables estimations of the vulnerability of a region (Cerdan et al., 2010; Panagos et al., 2015a) and 

can support the assessment of the future availability of soil-derived ecosystem services (Baude et 

al., 2019). 

Earth Observation (EO) is a valuable data source for detecting exposed soils. Merging 

information from multiple images have been developed as suitable technique for many purposes 

such as cloud-freeimages (Hermosilla et al., 2015), crop and land cover (LC) detection (White et 

al., 2014; Griffiths et al., 2019; Hansen et al., 2011) and for analyzing forests (Adams et al., 2020). 

In the last couple of years, the compositing technique has also been used for the generation of 

images containing reflectance values of exposed soils (Rogge et al., 2018; Dematt`e et al., 2018; 

Diek et al., 2017; Vaudour et al., 2021). This is an important step towards subsequent large-scale 

soil analyses that overcomes the temporarily coverage of soils by vegetation. The selection of 

exposed soil pixels from the multitemporal time stack is still a challenge and there are different 

solutions tested by previous studies. Loiseau et al. (2019) empirically defined a threshold based 

on the Normalized Difference Vegetation Index (NDVI) to select exposed soil pixels. Demattè et al. 

(2018) used field soil samples spectrally measured in the laboratory to define a suitable threshold 

based on the NDVI and the Normalized Burn Ratio 2 (NBR) for exposed soil compositing. The 

methodology was developed for an area-wide automated processing to retrieve soil spectral 

reflectances (Geospatial Soil Sensing System (GEOS3)). Diek et al. (2017) used the Bare Soil Index 

(BSI) to build a bare Soil Composite for topsoil characterization of the agricultural areas in 

Switzerland. Different indices (NDVI, NBR2, BSI and Soil Surface Moisture Index (S2WI)), 

thresholds and regulations for creating composites were tested and compared by Vaudour et al. 

(2021) for two test sites in France. In all these cases, exposed soils can be successfully separated 

from photosynthetic active vegetation. Spectral index thresholds are used due to their simplicity 

and applicability. 

A lot of emphasis has been put to cope with the spectral similarity of soils with non-

photosynthetic active vegetation (NPV; Daughtry et al., 2006) such as grasslands (dry condition) 

or deciduous forests (leaf-off condition). But also crop residuals can have an impact on the soil 

pixel purity. The clear spectral separation of NPV and exposed soils is hampered by the limited 

spectral resolution of multispectral images in the SWIR region (Asner and Heidebrecht, 2002; 

Okin, 2007; Dematt`e et al., 2018; Malec et al., 2015). However, studies from Demattè et al. (2018) 

and Rogge et al. (2018) have shown that this influence can be minimized. Demattè et al. (2018) 

have tested different NBR2 values in order to minimize the influence of NPV in the soils spectra 

that especially are traced back to stubbles and crop residuals. They concluded that the results can 

be improved, if longer time ranges are considered that allows for a stricter threshold and thus, 

purer bare soil pixels in the soil mask. Rogge et al. (2018) developments have focused on a clearer 

separation from grasslands and leaf-off conditions of deciduous forests. The developed technique 
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uses the change of agricultural fields from soil exposure to vegetation coverage to derive two 

spectral index-based thresholds. The definition of these thresholds is based on LC classes derived 

from CORINE Land Cover (CLC) data sets that do not change in the observation period. Thus, the 

spectral-temporal behavior of urban areas, deciduous trees and agricultural fields are analyzed to 

set the thresholds. These thresholds are applied to first, separate exposed soils from permanently 

photosynthetic active vegetation and second, to distinguish between exposed soils and 

permanently non-vegetated areas such as urban areas, water and mine sites. In the result, areas 

with a changing cover and an index value lower than a previously defined threshold are selected 

as exposed soils (exposed soil mask) and averaged (mean) into a soil reflectance composite. The 

advantage of this technique is that no further ancillary data is necessary to separate exposed soils 

from other LC classes such as forests and urban areas (e.g. Diek et al., 2017). 

CLC are selected for the derivation of thresholds because it is European-wide available and 

thus, has the potential to derive thresholds suitable for continental processing. However, sampling 

of CLC pixels in Rogge et al. (2018) has been done manually, which is very time consuming and a 

pixel selection might not represent the spectral and spatial variability of the LC. For country-wide 

and continental mappings of exposed soils, automated sampling strategies are needed that first, 

can help to handle regional differences of LC dynamics (Ying et al., 2017) represented in 

multispectral satellite data and second, allows for repeated derivation of thresholds in order to 

analyze their stability across time. The influence of these parameters is not yet fully understood 

or analyzed. For operational processors such as SCMaP and GEOS3, it is important to know the 

effect of different threshold settings to optimize operational processors and find the best solution 

for the regions of interest.  

The overall goal of this study is to derive and validate masks that contain exposed soil pixels 

from multi-year Landsat data stacks for Germany from 1984 to 2019. For the exposed soil masks, 

it is important to clearly separate grasslands in dry conditions and deciduous trees as examples 

for NPV from exposed soils. The first focus is set on the impact of the sampling strategy to derive 

spectral index thresholds. We use SCMaP for the detection of exposed soils that require two 

spectral index thresholds and we also used the concept of threshold definition based on percentile 

rules. For the definition of the threshold, this paper presents a new and fully automated sampling 

strategy. In order to analyze the impact of the sampling scheme, we compared the results of the 

automated sampling with the manual sampling (Rogge et al., 2018) by comparing the spatial-

temporal behavior of the LC classes. Further, selection criteria such as the number of samples and 

the repeatability of the results are analyzed. We also tested, if the threshold definition rule that is 

used in Rogge et al. (2018) is still applicable. Therefore, the impact of the new sampling data base 

on the resulting exposed soil masks is analyzed. We select the best approach for deriving seven 

exposed soil masks for entire Germany for different time periods ranging between 1984 and 2019.  

The second focus of the paper is to validate all exposed soil masks covering Germany for all 

time periods. For this objective, the selection of suitable and independent data sets that contain 

country-wide repeated statistics is essential. In Germany and regions with similar climate 

conditions, exposed soils are rare and occur predominantly in agricultural areas. The pixels that 

SCMaP is collecting for the exposed soil masks are characterized by a change from vegetated to 

non-vegetated condition. The majority of these pixels are occurring on agricultural sites. All other 

permanently vegetated and permanently non-vegetated areas are neglected. Therefore, we used 

two independent data sets that contain information on the coverage of agricultural areas at 

different time steps. The Federal Statistical Office (Destatis) collects statistical data regarding 

agricultural areas and crop types in Germany on a regular basis (Destatis, 2017). However, 

determining the methods used for the data collection is in the responsibility of each federal state 

and might result in regional differences. For that purpose and for future continental processing, 
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we additionally used the agricultural classes of the CLC surveys for the validation of exposed soil 

masks. Both data sets have their pros and cons and validation results are shown. 

 

2. Study area 

Germany stretches over an area of 357,095 km2, of which 47% is used for agricultural 

purposes (Destatis, 2020a). These areas are split into permanent grassland (14%) and cropland 

(33%). In order to discuss the regional differences of the developments in this study, a brief 

introduction to the characteristics of the federal states of Germany is necessary. Intensively used 

arable land is the dominant land use in the federal states of Schleswig-Holstein (41%), Lower 

Saxony (39%), North Rhine Westphalia (31%), Brandenburg (35%), Mecklenburg-Western 

Pomerania (47%), Saxony (39%), Saxony-Anhalt (49%) and Thuringia (38%) (Destatis, 2020a; 

Destatis, 2020b). The federal states of Schleswig Holstein (22%), Lower Saxony (15%), Bremen 

(17%) and Saarland (16%) show a higher portion of permanent grasslands compared to the areas 

in the state. In particular, northern Germany is primarily covered by permanent grasslands.  

The investigation area of Germany is covered by three bio-geographical regions (EEA, 2016). 

These bio-geographical regions were developed by the European Environmental Agency (EEA) 

and represent similar biodiversity and biological structures based on comparable vegetation and 

climatic conditions (EEA, 2016). All of Europe consists of eleven regions, which are defined 

geographical reference units for characterizing the habitat types and species present in different 

countries (EEA, 2020). Germany is mainly covered by the continental bio-geographical region 

(Fig. 3.1.1). Small portions in northwestern Germany are associated with the atlantic bio 

geographical region, whereas the high mountainous areas in southern Germany are classified as 

an alpine bio-geographical region (EEA, 2016).  

Multiple analyses on the influence of thresholding on the derivation of the exposed soil masks 

shown in this study are performed for five subportions of the study area (Fig. 3.1.1). The test areas 

were selected to cover all three bio-geographical regions and land cover/land use types in 

Germany. 

 

3. Methods and data 

3.1 Using SCMaP for mapping soil exposure 

SCMaP is used to build exposed soil masks containing all pixels in a given time period showing 

at least once exposed soil. For this purpose, a modified vegetation index (PV) (Rogge et al., 2018), 

based on the NDVI (Rouse et al., 1974), is used to separate the soils from other LC classes: 

PV = ((NIR - RED)/(NIR + RED)/((NIR - BLUE)/(NIR + BLUE)). Although authors have tested 

different indices for detecting bare soils such as BSI (e.g. Diek et al., 2017), combinations of NDVI 

and NBR2 (Demattè et al., 2018; Dematt`e et al., 2020), NBR2 and soil moisture indices (Vaudour 

et al., 2021) or NDVI and Normalized Difference Builtup Index (NDBI) (Ying et al., 2017), we retain 

the PV index for this study in order to compare the results of the manual sampling with the 

automated sampling strategy. It is further important to remark that for the purpose of this study, 

the focus is not on selecting the purest soil pixels, but on creating an exposed soil mask that 

correspond to agricultural areas with changing covers and excludes all grasslands and deciduous 

forests.  

To extract the exposed soil pixels, two composites containing the minimum (PVmin) and the 

maximum PV index (PVmax) per pixel are generated for a given time frame. Using the spatial and 

temporal behavior of the PV index values, two thresholds (Tmin and Tmax) are defined to distinguish 
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the exposed soil areas from all other LC classes (Fig. 3.1.2) to build the exposed soil mask. The 

determination of the thresholds is based on different LC classes (Fig. 3.1.2a). Exposed soils 

(referred to as fields) and urban surfaces show the lowest PV values in the PVmin composite but 

also overlap with non-photosynthetic active vegetation (e.g., stubble on fields), dry grassland and 

deciduous forests. In the PVmax composite, soils are covered with vegetation, showing an overlap 

with forests and grasslands, and can be clearly separated from urban surfaces and areas showing 

permanent low vegetation indices, such as water. Therefore, the minimum threshold (Tmin) is to 

separate urban surfaces and exposed soils from grassland, deciduous forests coniferous forests 

and water. The maximum threshold (Tmax) is set to distinguish the soils covered by vegetation 

from urban materials and water. By applying Tmin and Tmax thresholds to the PVmin and PVmax 

composites, two masks are generated. The intersection of the two masks results in the exposed 

soil mask.  

 

Figure 3.1.1: Coverage of the three bio-geographical regions in Germany and the location of the five test areas 
(BRE - Bremen, BRA - Brandenburg, HAL - Halle, MAI - Mainz, BAV - Bavaria). 

As Rogge et al. (2018) demonstrated in detail, the lower 0.005 percentile of the deciduous 

forests defining Tmin (Fig. 3.1.2b) and the upper 0.995 percentile of the class urban are used to 

separate soils from all other LC classes (Fig. 3.1.2c). These points are selected to avoid as many 

false positives as possible. 
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Figure 3.1.2: PVmin and PVmax characteristics of a) six LC types for the study area, b) the behavior of exposed 
soils (referred to as LC vlass fields) and LC class deciduous trees to define Tmin and c) the behavior of fields and 
urban areas to define Tmax. 

 

3.2 Data preparation 

3.2.1 Landsat data base preparation  

The Landsat database used in this study is built from reprocessed Landsat-4 TM, Landsat ETM 

5, Landsat-7 ETM+, and Landsat-8 OLI collection data sets provided by the USGS (Dwyer e al. 

2018) for all path/row combinations covering Germany (paths 192 to 197, rows 22 to 27) 

between 1984 and 2019. The images were downloaded from the Google Archive in 2018 and 

2019. All scenes available in the Level-1C processing state flagged with the highest correction level 

L1TP (calibration and orthorectification based on ground control points and digital elevation 

model data to correct for relief displacements (USGS, 2020)) were downloaded. A total of 17,852 

pre-processed Landsat images are used in this study (Table 3.1.1). SCMaP is applied to seven time 

periods from 1984 to 2019 each making use of five years of data. However, the first time period 

contains six years (1984–89).  

For the seven composite periods, all available scenes per time period of the different sensors 

are combined. The merging of Landsat-4 TM, -5 ETM and -7 ETM+ images is a well-established 

method (Claverie et al., n2015; Kovalskyy and Roy, 2013; Teillet et al., 2001). For the time period 

of 2015–19, scenes from Landsat-7 ETM+ and -8 OLI were combined, even though the equivalent 

bands for the calculation of the PV index of the two sensors contained slightly different 

wavelength ranges (Chastain et al., 2019). However, several studies have shown a minor to 

negligible influence resulting from merging the different wavelength ranges of Landsat-7 ETM+ 

and -8 OLI bands (Langford, 2015;Xu and Guo 2014; Zhu et al., 2016; Roy et al., 2016; Holden and 

Woodcock 2016; Flood 2014). Based on these findings, the Landsat-7 ETM+ and Landsat-8 OLI 

data were merged as input to the SCMaP processing chain and were not separated for the 

generation of the 2015–19 composite.  

For this study, Landsat collection data were used instead of the former Landsat pre-collection 

data, as the Landsat re-processed data sets provided a higher data quality (Li et al., 2018; Wulder 

et al., 2019) and showed fewer artifacts in direct comparison.  

Several pre-processing steps were applied to the Landsat path/row scenes. The FMask 
algorithm (Zhu and Woodcock 2012; Zhu et al., 2015)detected and removed clouds, cloud 

shadows and pixels that were covered by snow. An atmospheric correction was applied to all 

scenes using Atmospheric Topographic Correction (ATCOR) software for satellite imagery 

(Richter and Schläpfer, 2014; Richter 2010; Richter et al., 2006). Saturated pixels in urban areas 

and water bodies were identified and eliminated. Furthermore, manual filtering was performed 

to identify large-scale data artifacts as detector striping effects. The manually flagged path/row 

scenes (approximately 330 scenes) were excluded from the database. In particular, large artifacts 
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covering a whole scene can substantially affect the SCMaP output, as the processor occasionally 

includes affected pixels in the exposed soil mask. Finally, the database was reorganized in 1◦ by 1◦ 

geographical tiles. For this purpose, lists of all intersecting path/row scenes per tile were 

generated and used by SCMaP for achieving efficient data handling and processing benefits. 

Table 3.1.1: Overview of the number of pre-processed Landsat scenes available for all five-year time periods in 
the investigation area between 1984 and 2019. 

time period Landsat-4 TM Landsat-5 ETM 
Landsat-7 

ETM+ 
Landsat-8 OLI total 

1984-89 85 1,772 - - 1,857 

1990-94 143 2,030 - - 2,173 

1995-99 - 1,986 211 - 2,197 

2000-04 - 1,612 1,421 - 3,033 

2005-09 - 1,946 1,154 - 3,100 

2010-14 - 644 1,547 460 2,681 

2015-19 - - 1,319 1,982 3,301 

1984-2019 228 9,990 5,652 2,472 18,342 

 

3.2.2 Data preparation for automated sampling 

Threshold determination requires the identification of known regions with no LC change over 

the observed time frame. For this purpose, temporarily stable LC areas without transition to other 

LC classes, preferably for the total investigation period (since 1984), are needed. The CORINE 

Land Cover (CLC) data set (EEA, 2007) is a European data set containing repeated LC surveys that 

is provided by the EEA. To identify the stable areas, all available CLC layers and CLC change layers 

in vector format were downloaded (https://land.copernicus.eu/pan-european/corine-land-

cover) and underwent several pre-processing steps (Fig. 3.1.3b).  

 

Figure 3.1.3: Workflow for preparation of the LC data for the required threshold determination for SCMaP: a) 
summarized CLC classes used to build the nine LC classes for the automated selection of stable LC pixels; b) 
deviation of randomly selected stable CLC pixels; and c) subsequent threshold determination using regional 
settings per processing area (described in Section 3.3). 
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In a first step, the CLC classes that also contain land use components are reorganized and 

generalized to ensure that the resulting areas can be clearly assigned to a specific LC. The CLC data 

set consist of classes with different levels of detail. Fig. 3.1.3a shows the summarized CLC 

subclasses for the subsequent threshold derivation (Section 3.3). In addition, the CLC change 

layers containing the information regarding the transition of one LC class to another between two 

classification periods was subtracted from the data set. The reclassified and cleaned data sets 

were rasterized to the Landsat spatial resolution of 30 m. The removal of single pixels as well as a 

reduction of direct border pixels of individual class clusters was performed twice in order to 

exclude edge effects. To remove them, a three by three pixel moving window was used to analyze 

the relationships in a pixel neighborhood following von Neumann criteria (Toffoli and Margolous, 

1987). Finally, the resulting stable and cleaned data set contains LC pixels that did not change 

between 1990 and 2018 and are therefore called stable.  

The threshold determination is built on randomly selected, automatically extracted stable CLC 

pixels based on different regional settings (Fig. 3.1.3c), and is described in Section 3.3. 

 

3.2.3 Validation data sets  

For the validation of the exposed soil masks for Germany generated by SCMaP, a country-wide 

data set is needed that can be assigned to exposed soils. Following the philosophy of SCMaP that 

is only extracting those exposed soil pixels that additionally show a change to vegetated condition 

in the observation time, a data set containing agricultural areas is needed. For Germany, the 

statistical federal agency Destatis provides several surveys containing, for instance, the spatial 

size of agricultural areas in Germany per federal state and per county. These data sets are available 

for the years 1999, 2001, 2003, 2007, 2005, 2010 and 2016 (Destatis, 2020a; Destatis, 2020b). 

The general agricultural structure survey and agricultural census data sets were downloaded 

from the regional statistical database provided online by Destatis 

(https://www.regionalstatistik.de/genesis/online/logon). The surveys contain the number of 

farms and combined of agricultural area of common crop types, including grasslands in Germany 

per federal state and county. Because SCMaP is applied to an optical multispectral remote sensing 

database itis not possible to detect soils underneath permanent vegetation, the proportion of 

grasslands was excluded from the Destatis agriculture statistical analysis. All spatial information 

was converted to the percent coverage of agricultural area per federal state and per county using 

the size of each state and county provided by Destatis (2018). As the SCMaP time periods of 2000–

04 and 2005–09 contain two Destatis data sets each, the two respective statistics were averaged. 

For the states Berlin, Bremen, Hamburg and Mecklenburg Western Pomerania (Fig. 3.1.1), no 

statistical data were available for any given time step. For the federal state of Saxony, data for a 

subset of the administrative districts were available.  

The second validation data set used was the CLC inventories of 1990, 2000, 2006, 2012 and 

2018 provided by the EEA (EEA, 2007). The data sets were downloaded as vector files for Europe 

(https://land.copernicus.eu/pan-european/corine-land-cover), clipped to the extent of Germany, 

re-projected, resampled to the spatial resolution of the soil mask (30 m by 30 m) and saved as 

raster files. For validating the spatial distribution of the exposed soil masks in Germany extracted 

by SCMaP, the agricultural classes were of interest. The LC classes non-irrigated arable land (2.1.1) 

and permanently irrigated land (2.1.2) were extracted from the whole data set and summarized 

as the input for validation. For better comparability of the validation results to the Destatis survey, 

the percent coverage of the agricultural areas in the CLC data sets was also calculated per county 

and federal state. 
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3.3 Automated sampling and threshold derivation 

Thresholds are necessary to separate exposed soils from all other LC classes. The objective is 

to derive thresholds that are applicable to the entire area of Germany. Therefore, a training data 

set that can be derived from the CLC mapping is needed, as described in Section 3.2.2. For this 

purpose, a new technique was developed that randomly selects CLC pixels that are stable over a 

long time period (Section 3.2.2) and then applied to the Landsat database (Section 3.2.1).  

Originally, the threshold determination was based on the behavior of PVmin and PVmax of the 

manually selected LC pixels for the five test areas covering the spatial differences across Germany 

(see Rogge et al., 2018). The manual selection of LC pixels is a time-consuming step, which needs 

to be repeated for every processed region. Furthermore, the manual selection process can be 

influenced by the user. To overcome these limitations, an automated and random selection of LC 
pixels based on stable CLC pixels was developed. The stability of the new approach was tested via 

an in-depth comparison with the manual determination approach, and an analysis of the influence 

of the randomized selection procedure on the derivation of the thresholds was performed.  

Due to the automated nature of the pixel selection procedure, several settings were tested to 

assess the performance of the new technique (Fig. 3.1.3c). In this method, the area (tiles, countries, 

geographic regions, etc.), the LC classes (different amounts and composition of LC classes), the 

time steps, and the number of pixels per class can be selected individually, and enabling the 

assessment of the influence of these settings on the thresholds and the resulting exposed soil 

masks. To compare the random selection method with the manual selection method, the same 

regional settings were chosen. For this purpose, pixels were selected from the same five tiles 

covering Germany (Fig. 3.1.1). A total of 5,000 stable CLC pixels per class and tile were selected 

using a random selection approach to avoid biased manual selection and a clustered distribution 

to ensure that all expressions of a land use class were recorded per region.  

To determine the influence of the random selection approach on the thresholds, the temporal 

behavior of the LC classes needed to be analyzed in the first step. Therefore, the randomly selected 

PVmin/max pixel values for the LC classes urban, deciduous trees and fields (presumably exposed 

soils), which are used to determine the thresholds, are shown in a histogram and compared to the 

PVmin/max values derived from the manual selection approach.  

Based on the PVmin/max pixel values, the thresholds were defined. The defined thresholds based 

on manually selected LC pixels are referred to as TMmin/max and were compared with the thresholds 

derived from the random selection approach (TAmin/max). In the first step, the applicability of the 

established percentiles for defining TAmin/max was investigated. Furthermore, TAmin/max were 

compared to the original sets of TMmin/max for all tiles (2000–04; period with the largest overlap of 

data between Landsat-5 TM and -7 ETM+ and a minimum SCL failure of Landsat-7 ETM+) and all 

time steps of the Bavarian tile to investigate the spatial and temporal stability of the random 

selection approach. To estimate the influence of the random selection approach, ten sets of stable 

pixels per LC class (5,000 per LC class) for all tiles (2000–04) were selected. The influence of the 

TAmin/max on the different sets of randomly selected pixels was investigated. Additionally, the 

absolute number of random stable pixels per class was altered. The influence of fewer (2,500) and 

more (10,000) stable pixels per class was investigated. Therefore, the TAmin/max of ten sets of 

different numbers of randomly stable pixels per class for the Bavarian test tile (2000–04) were 

derived and compared. 
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3.4 Validation of the exposed soil masks in Germany 

The processing of the SCMaP exposed soil masks (Section 3.1) was performed by applying the 

averaged TAmin/max of all five test areas (2000–04) (Section 3.3) to all tiles in Germany for the seven 

time periods. The validation of the spatial and temporal distribution of the extracted exposed soil 

masks was performed using the two data sets described in Section 3.2.3. The five prepared 

Destatis and CLC data sets were compared to the exposed soil masks for the time period 

containing the year in which each survey was conducted. To compare the validation 

data set and the mask, the coverage of the exposed soils extracted by SCMaP, expressed as percent, 

was calculated per federal state and county for each time step. To validate the spatial distribution 

of the exposed soil masks provided by SCMaP, a linear correlation analysis between the coverages 

of the exposed soil masks extracted by SCMaP and the agricultural areas provided by the Destatis 

statistics as well as the CLC data sets was explored for all 16 German federal states and at the 

county level. The comparison was evaluated by calculating the correlation coefficients (R²) and 

root mean squared errors (RMSE) for each comparison to estimate the potential of SCMaP to build 

exposed soil masks for Germany based on the new thresholding method. 

 

4. Results 

4.1 Index thresholding 

In Fig. 3.1.4, the frequencies of the summarized PVmin/max pixel values for the LC classes urban, 

fields and deciduous trees from all tiles comparing the manual and random pixel selection 

approaches are visualized, as these classes are relevant for the derivation of thresholds. For PVmin, 

the distributions are similar, excluding the LC class urban. Here, a clear shift of the maximum and 

a higher variability of PVmin values are visible. However, the shift of the class does not influence 

the determination of the TAmin as the LC class urban is not used to determine TAmin. Comparing 

the PVmax, the LC class shows a shifted and diversified distribution of values. The distribution of 

the LC classes deciduous trees and fields are less extreme and narrower than that of the manually 

selected pixels. Excluding the LC class urban, the PVmin/max of the automated selected pixels shows 

a higher variance and standard deviation, whereas the median is similar. The shift and differing 

distribution of the PVmax of the LC class urban indicates an adaption of the point at which the TAmax 

has to be set to realize the separation between soils and other LC classes.  

 

Figure 3.1.4: Histogram of the PVmin/max frequencies summarized for all five test tiles comparing manual 
(dashed line) and random, automated (solid line) selected LC class pixels for the time step 2000-04. 

The behavior of the LC classes urban and deciduous trees is used for the determination of 

TAmin/max (Rogge et al., 2018). Comparing the scatterplots of the PVmin/max values of the manually 

(Fig. 3.1.5a) and randomly (Fig. 3.1.5b) selected LC pixels, a lower clustering tendency of the data 

is visible. Mainly, the randomly selected pixel cluster of the LC class urban is not as selective 
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compared to the manually selected pixel cluster. As mentioned, originally, the 0.995 percentile of 

the class urban was used to define the TMmax. Applying the 0.995 percentile to the automatically 

sampled pixels excludes almost half of the data cloud from fields and this, seems to be too high. 

Fig. 3.1.5b shows that in the resulting exposed soil mask, a significant number of pixels is missing 

compared to the original exposed soil mask generated based on the manual sampling (Fig. 3.1.5a). 

Therefore, an adjustment of the percentile to set the TAmax is required due to the less clustered 

distribution and the less selective behavior of the LC class urban (Fig. 3.1.5b). For this purpose, a 

test has been designed by varying the TAmax from 0.995 to 0.89 for the exposed soil mask building. 

 

Figure 3.1.5: PVmin/max pixel values for different LC classes comparing a) manual and b) randomly selected LC 
pixels and the derivation of TMmax and TAmax using the 0.995 percentile of the manually and randomly slected 
pixels of the LC class urban. 

 

Figure 3.1.6: Influence of different percentiles on TAmax and the percentage coverage of exposed soil masks in 
comparison to TMmax shown for the time period 2000-04 for an area near Aschersleben. 
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Fig. 3.1.6 shows the result of this test for an area surrounding Aschersleben (within the test 

region HAL) in which different percentiles for the derivation of TAmax have been applied to the 

PVmin/max composites (time period 2000–04). Based on CLC, approximately 78% of the land surface 

is covered by agricultural fields in the selected region. When using the TMmax value, 71% of the 

area is included in the exposed soil mask. Setting the TAmax at 0.995 results in a coverage of 36.6% 

in the same area. Using different TAmax values based on varying percentiles, the reduction in the 

percentiles used for setting the TAmax value resulted in an increase in the soil exposure mask 

saturating at the 0.94 percentile (TAmax = 1.723) (Fig. 3.1.7). As Fig. 3.1.6 shows, a percentile of 

0.90 for the LC class urban is used to define TAmax, and the resulting soil exposure is 71.3%, which 

is comparable to the soil exposure (71%) defined by TMmax.  

 

Figure 3.1.7: Varying soil exposure [%] determined for different percentiles to set the TAmax for an area 
around Aschersleben. 

Following the selection of the percentile to be used in the definition of TAmin/max, Table 3.1.2 

displays all TAmin/max values and comparisons them to the TMmin/max used across the different 

test areas for the time period of 2000–04 and for all time steps in the Bavarian tile. The TAmin/ max 

values for all areas are similar to the TMmin/max values. Additionally, the averaged thresholds across 

the test areas fall within a similar range. The standard deviations across the test areas of TAmin/max 

in comparison to TMmin/max are slightly lower. For the different time steps of the Bavarian tile, the 

TAmin/max values are also similar to the TMmin/max values, reporting low standard deviations (STDs).  

Table 3.1.2: TAmin/max in comparison to TMmin/max for all investigation areas (2000-04) and across time (only 
for Bavaria). 

tile (time step) TMmin TMmax TAmin TAmax 

BRE (2000-04) 0.896 1.831 0.866 1.795 

MAI (2000-04) 0.803 1.675 0.823 1.635 

HAL (2000-04) 0.836 1.762 0.844 1.666 

BRA (2000-04) 0.861 1.467 0.827 1.701 

BAV (2000-04) 0.758 1.749 0.744 1.685 

average (areas – 2000-04) 0.831 1.697 0.821 1.696 

STD (areas – 2000-04) 0.053 0.140 0.046 0.060 

     

BAV (1984-89) 0.758 1.738 0.762 1.733 

BAV (1990-94) 0.722 1.757 0.748 1.724 

BAV (1995-99) 0.744 1.741 0.767 1.724 

BAV (2005-09) 0.741 1.795 0.779 1.713 

BAV (2010-14) 0.794 1.763 0.756 1.702 

BAV (2015-19) 0.818 1.741 0.815 1.709 

average (BAV – time) 0.762 1.755 0.767 1.713 

STD (BAV – time) 0.033 0.020 0.024 0.016 
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Additionally, the reliability of the automated random selection of the stable LC pixels was 

investigated. The influence of the spatial distribution of the 5,000 randomly selected pixels was 

found to be minor though a comparison of ten sets of derived thresholds based on different sets 

of random stable pixels across the five test areas (Fig. 3.1.8a and b). The ten sets of thresholds of 

each test area show few differences, which are evidenced by low standard deviations (0.002 to 

0.005). 

 

Figure 3.1.8: TAmin/max variability across ten sets of randomly selected stable pixels for all test areas (2000-04) 
(a, b) and based on a different number of randomly selected stable pixels per LC class, extracted for the 
Bavarian tile (2000-04) (c, d). 

In addition to the spatial distribution of the random stable pixels, the influence of the total 

number of selected pixels on the determination of the thresholds was analyzed. Hence, ten sets of 

determined thresholds based on 5,000 randomly selected stable pixels per LC class were 

investigated and further compared to ten sets of 2,500 and 10,000 randomly selected stable pixels 

in the test area of Bavaria (Fig. 3.1.8c and d). Overall, low standard deviations are observed (0.02 

to 0.003), and the determined TAmax varies slightly (Fig. 3.1.8c).  

Due to the temporal and spatial stability of the defined thresholds and the statistically 

significant small influence of the location and number of random stable pixels, the presented 

derivation of the thresholds was found to be suitable for further processing steps. 

 

4.2 Application of new thresholds 

The five sets of thresholds derived for the five test areas are averaged to one set of global 

thresholds, resulting in a TAmin of 0.831 and a TAmax of 1.697. Both thresholds were applied to all 

tiles in Germany to produce the exposed soil masks for all seven time periods.  
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Figure 3.1.9: Generic LC classification for the study area showing pixels with soil exposure (yellow), permanent 
vegetation (green) and permanent no vegetation (gray) derived from 2000-04. The five test areas are marked. 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 

 

Figure 3.1.10: Detail of the generic land use classification showing the temporal development between 1984 
and 2014 of a mainly urbanized area in the west of the city of Munich within BAV (upper row) and the temporal 
development of two mining areas (Etzweiler and Garzweiler) near Juelich (bottom row). 
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These soil exposure masks contain pixels that show at least once exposed soil in the given time 

period. In addition, SCMaP provides two further binary masks per period containing the areas 

showing permanently low PV indices, which comprise urban areas, infrastructure, bare rocks and 

water bodies. In addition, a mask is generated in areas that show permanently high PV indices 

representing areas with permanent vegetation (e.g., grassland or coniferous trees). The 

combination of the three masks generates a generic LC classification of the investigation area (Fig. 

3.1.9).  

Since the soil mask is available for several time steps between 1984 and 2019, changes in the 

spatial soil cover can be detected. Fig. 3.1.10 (upper row) shows the temporal development of an 

area in western Munich (within the test region BAV). Here, areas with permanently low vegetation 

indices, which include the expansion of the city of Munich and the expansion of infrastructure, are 

increasing. Due to the expansion of Munich, a decrease in the area with exposed soils in the shown 

region is observed. Most agricultural areas have been transformed into settlement areas. The 

southern part is dominated by forests, where, in the early 1990s, a thunderstorm event deforested 

large portions, mainly in the southwest of Munich. The deforestation shows recovery in the 

subsequent time periods up until 2014. Here, the exposed soil areas gradually fill with permanent 

vegetation.  

The bottom row of Fig. 3.1.10 shows the development of two mining (Etzweiler and 

Garzweiler) near the city of Juelich in northeastern Germany. A spatial shift in the mining areas to 

different local regions can be seen. In addition to the spatial shift, a spatial expansion of the mining 

sites had resulted in a decreasing agricultural area around the sites was found to be suitable for 

further processing steps. 

 

Table 3.1.3: Correlation coefficients comparing the exposed soil masks determined by SCMaP to the 
agricultural areas provided by the statistical surveys by Destatis for all 16 Federal States of Germany. However, 
some states were not included in the statistical survey due to missing data. 

Federal state 
agricultural 

area [%] 
1995-99/ 

1999 
2000-04/ 
2001/03 

2005-09/ 
2005/07 

2010-14/ 
2010 

2015-19/ 
2019 

Baden-Wuerttemberg 22.69 0.85 0.97 0.95 0.94 0.96 

Bavaria 30.70 0.93 0.94 0.92 0.88 0.93 

Berlin 8.58 - - - - - 

Brandenburg 39.02 0.88 0.95 0.92 0.85 0.95 

Bremen 8.62 - - - - - 

Hamburg 6.61 - - - - - 

Hesse 22.78 0.82 0.92 0.92 0.87 0.95 

Mecklenburg-Western Pomerania 62.43 - - - - 0.94 

Lower Saxony 37.95 0.68 0.78 0.66 0.70 0.59 

North Rhine-Westphalia 27.39 0.90 0.95 0.94 0.93 0.92 

Rhineland-Palatinate 27.27 0.93 0.94 0.93 0.90 0.91 

Saarland 14.30 0.80 0.91 0.86 0.82 0.94 

Saxony 49.23 0.81 - - - - 

Saxony-Anhalt 60.26 0.84 0.88 0.92 0.91 0.91 

Schleswig-Holstein 36.39 0.82 0.86 0.90 0.90 0.94 

Thuringia 48.75 0.93 0.93 0.93 0.91 0.94 
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4.3 Validation of the exposed soil masks determined by SCMaP 

The spatial and temporal distribution of exposed soil masks across Germany at several time 

steps is first validated according to Destatis statistics. The correlation coefficients (R2) of the 

comparison for all 16 German federal states are shown in Table 3.1.3. Overall, high R2 for all time 

steps and states can be derived. The lowest R2 values are detected in the Lower Saxony state (0.59 

to 0.78). Here, the agricultural area covers 37.95% of the total state. The highest R2 values are 

reported in the states of Baden-Wuerttemberg (0.85 to 0.97), North Rhine-Westphalia (0.90 to 

0.95) and Rhineland-Palatinate (0.90 to 0.94). For the states with a high amount of used 

agricultural area (Brandenburg, Saxony, Schleswig Holstein and Thuringia), the correlation 

coefficients are higher than 0.82 (Schleswig Holstein – SCMaP: 1995–99/Destatis: 1999) per time 

step. As described above, the Destatis survey does not include all federal states as it does for the 

city states; no data are available for Mecklenburg Western Pomerania and parts of Saxony. 

Table 3.1.4: R² based on a comparison between the exposed soil masks derived by SCMaP and agricultural areas 
of the CLC data in comparison to the total amount of agricultural areas per stats. 

Federal state 
agricultural 

area [%] 
1990-94/ 

1990 
2000-04/ 

2000 
2005-09/ 

2006 
2010-14/ 

2012 
2015-19/ 

2018 

Baden-Wuerttemberg 22.69 0.91 0.92 0.91 0.94 0.97 

Bavaria 30.70 0.85 0.90 0.86 0.90 0.84 

Berlin 8.58 - - - - - 

Brandenburg 39.02 0.80 0.92 0.94 0.91 0.97 

Bremen 8.62 - - - - - 

Hamburg 6.61 - - - - - 

Hesse 22.78 0.82 0.95 0.93 0.92 0.97 

Mecklenburg-Western Pomerania 62.43 0.91 0.96 0.94 0.92 0.99 

Lower Saxony 37.95 0.68 0.86 0.79 0.75 0.61 

North Rhine-Westphalia 27.39 0.84 0.92 0.91 0.91 0.90 

Rhineland-Palatinate 27.27 0.90 0.95 0.92 0.94 0.93 

Saarland 14.30 0.85 0.88 0.90 0.95 0.99 

Saxony 49.23 0.90 0.95 0.96 0.93 0.84 

Saxony-Anhalt 60.26 0.86 0.95 0.96 0.97 0.95 

Schleswig-Holstein 36.39 0.90 0.65 0.94 0.92 0.80 

Thuringia 48.75 0.91 0.96 0.96 0.96 0.94 

 

Additionally, the comparison between the exposed soil masks determined by SCMaP and the 

agricultural areas provided by CLC data sets show high R2 values for each time step (Table 3.1.4). 

Comparing all federal states, the lowest correlation coefficients are reported for the state of Lower 

Saxony (0.61 to 0.86), as described for the validation with the Destatis data, whereas the highest 

correlation coefficients can be found for Baden-Wuerttemberg (0.91 to 0.97), Mecklenburg-

Western Pomerania (0.91 to 0.97) and Rhineland-Palatinate (0.90 to 0.95). In contrast to the 

correlation of the exposed soil masks provided by SCMaP and the Destatis data, the state North 

Rhine Westphalia shows lower R2 (0.84 to 0.92) comparing SCMaP and CLC. Overall, the states 

show similar R2 when comparing to the correlation of the SCMaP and Destatis data. For the states 

with a large amount of agricultural area (i.e., the states of Brandenburg, Mecklenburg-Western 

Pomerania, Saxony, Schleswig Holstein and Thuringia), the correlation coefficients are higher 

than 0.80 (Schleswig Holstein – SCMaP: 1995–99/Destatis: 1990) for all compared time steps. The 

high R2 indicate high potential for the determination of exposed soil masks over time in 

agricultural areas.  
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Figure 3.1.11: Regression between exposed soil masks identified by SCMaP and the agricultural areas based on 
Destatis at the county level for Germany. 

In addition to the correlation per federal state, a comparison at the county level was conducted. 

High R2 values and low RMSE values (Fig. 3.1.11) demonstrate that SCMaP captures the exposed 

soil masks in Germany well. For all time periods, high correlations between the percentage 

proportion of SCMaP exposed soil masks and the agricultural areas provided by statistical surveys 

of Destatis are identified. The highest correlation can be found for the SCMaP time period 2000–

04 (R² = 0.88) compared to the respective averaged Destatis data sets of 2001/03, whereas the 

SCMaP time period 1995–99 shows the lowest correlation (R² = 0.82) compared to the 

corresponding Destatis data set from 1999. Although the general correlation is high, there is a 

minor systematic underestimation of the higher soil exposure values in all analyzed time periods 

(Fig. 3.1.11).  

Moreover, a linear correlation analysis comparing the percentage of exposed soil masks per 

county derived by SCMaP to the percentage of agricultural areas provided by the CLC data sets 

was performed. The results show a strong correlation between the tested data sets (Fig. 3.1.12). 

The highest correlation is reported for the SCMaP periods of 2000–04 and 2005–09 to the CLC 

data sets of 2000 (R² = 0.89) and 2006 (R² = 0.88), respectively. The weakest correlation can be 



Scientific Publication I 

32 
 

found for the SCMaP time period of 1990–94 when compared with the CLC data set from 1990 (R² 

= 0.80). Overall, low RMSE values are observed.  

 

Figure 3.1.12: Regression between exposed soil masks extracted by SCMaP and the agricultural used areas 
based on CLC data for all counties in Germany. 

Fig. 3.1.13 shows the variability between the differences in the percentages of exposed soil 

masks extracted by SCMaP and the portion of agricultural areas provided by the validation data 

sets for all counties and compared time steps. Comparing the exposed soil masks extracted by 

SCMaP to the agricultural areas based on the Destatis surveys, a deviation to the mean, ranging on 

average between - 1.46% (SCMaP: 2005–09/Destatis: 2007) and +1.43% (SCMaP: 2000–

04/Destatis: 2001/03), is detected. However, the range of 50% of the counties varies between ± 

5.04% (SCMaP: 2005–09/Destatis: 2007) and ± 7.38% (SCMaP: 1995–99/Destatis: 1999). 

Excluding the outliers, there is a small absolute difference between the percentage of agricultural 

areas documented by the Destatis surveys and the exposed soil masks derived by SCMaP. The 

differences between the percentages of exposed soil masks extracted by SCMaP and the CLC-

derived agricultural areas show a slightly stronger underestimation, ranging between - 5.61% 

(SCMaP: 2005/CLC: 2006) and - 2.90% (SCMaP: 2000–04/CLC: 2000). Excluding the outliers, the 
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range of 50% of the counties varies between ± 5.63% (SCMaP: 2005–09/CLC: 2006) and ± 3.42% 

(2000–04/CLC: 2000). 

 

Figure 3.1.13: Variability of the difference in exposed soil masks extracted by SCMaP compared to the 
validation data sets of Destatis and CLC based on all counties in Germany for all time periods. 

Overall, the comparison between both validation data sets indicates a high consistency across 

all time periods. In particular, the time periods of 2000–04 and 2005–09 show the highest 

correlation coefficients and lowest RMS errors for both validation data sets compared at the state 

(Tables 3.1.3 and 3.1.4) and county level (Figs. 3.1.11 and 3.1.12). 

 

5. Discussion 

5.1 Sampling and threshold definition 

Section 4.1 shows the results of the different settings used to derive the TAmin/max thresholds. 

The random selection of stable CLC pixels demonstrates an overall minor influence on the 

frequency distribution of LC classes, such as deciduous trees and fields, comparing the PVmin/max 

behaviors in relation to the manually selected LC pixels. The main differences were found for the 

class urban (Figs. 3.1.4 and 3.1.5). The manual selection of the land cover class urban was 

concentrated in the downtown areas of metropolitan regions (e.g., central Munich in the Bavarian 

test tile), the random selection of stable CLC pixels resulted in an even distribution across the 

complete tile. This better captures the variability associated with urban structures (e.g., densely 

to less densely populated areas, industry, infrastructure, etc.) and can also include vegetated 

pixels from parks or trees and lawns along streets. The less clustered selection influences the 

frequency distribution of the PV indices for the land cover class urban and thus, more pixels have 

higher PVmax values (Fig. 3.1.4).  

To account for the differences in the distribution of the LC classes in the PVmax composite, an 

adaptation of the percentile used for the determination of the TAmax was necessary. Figs. 3.1.6 and 

3.1.7 show the influence of the modified percentile rule depending on the spatial–temporal 

behavior of the analyzed LC. However, we observed a gradual decrease (TAmax = 0.89 – 0.98) 

followed by a rapid decrease (TAmax > 0.99) of the resulting soil exposure. A decrease of the 

percentile (0.995 to 0.900) for the definition of the TAmax enabled the generation of an exposed 

soil mask (Fig. 3.1.6) comparable to the coverage of agricultural area provided by the reference 

data set and comparable to the soil exposure mask based on the manual derived TMmax for an 

example area in the Halle test tile.  
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The adapted percentiles were the basis for further analyses. In this way, thresholds have been 

derived separately for the five different regions across Germany (Fig. 3.1.8). In particular, the 

TAmax of Bremen is higher than the four other TAmax values (Fig. 3.1.8a). Although the TAmin/max 

values of the individual test sites are comparable to the averaged TMmin/max of all five areas, the 

derivation of exposed soil masks could be affected, especially for the region near Bremen. A 

varying TAmin/max value may impact the classification of exposed soil masks, so it might be more 

feasible to process all of Germany not only using one set of TAmin/max. A scheme summarizing 

comparable areas should be established. This could include replacing political borders with larger 

geographically homogenous units. For this purpose, the bio-geographical regions (Section 2 and 

Fig. 3.1.1) (EEA, 2016) could provide a valuable baseline for the definition of the thresholds. 

Germany is covered mainly by the continental bio-geographical region (the test areas Bavaria, 

Mainz, Brandenburg and Halle), whereas the areas near Bremen, as the northwestern part of 

Germany, are covered by the atlantic bio-geographical region. Applying SCMaP with TAmin/max 

adapted to the different regions could reduce the local effects on the thresholds and improve the 

extraction of exposed soil masks. 

Finally, we tested the influence of the number of pixels per class selected for the threshold 

determination and found almost no influence. This suggests that regardless of the number of 

selected pixels, the thresholds are very stable when they are equally distributed over the area of 

interest.  

In summary, the new automated sampling is a very flexible and robust method to provide the 

data base for the threshold derivation, whereas the threshold definition based on percentile 

seemed not as the best method although its simplicity (Lobell et al., 2007; Zhao et al., 2012; Avisse 

et al., 2017; Thonfeld et al., 2020; Zhuo et al., 2019). In this study, an adaption of the percentile 

rule was necessary for the changed sample data set and it is very likely that the percentile rule 

need to be changed again if a different area is explored. Therefore, in the future, alternative 

methods to extract exposed soil pixels should be tested for instance regression and classification 

methods such as logistic regression (Kleinbaum et al., 2002), Random Forests (Breiman, 2001) or 

maximum likelihood classification (Richards, 1993) or any other machine learning approaches. 

For this study, it was important to use the same methodology as for the manual sampling to obtain 

the highest possible comparability to the method of Rogge et al. (2018). 

Table 3.1.5: Average cloudless scenes per pixel for Germany and R² at the county level per time period. 

time 
period 

average cloudless 
scenes per pixel 

(Germany) 

STD 
(Germany) 

maximum cloudless 
scenes per pixel 

(Germany) 

R² (SCMaP – 
Destatis) 

R² (SCMaP – 
CLC) 

1984-89 35.0 12.1 112 - - 

1990-94 44.3 15.0 112 - 0.80 

1995-99 41.7 14.2 134 0.82 - 

2000-04 56.0 18.6 102 0.88 0.89 

2005-09 59.0 17.6 140 0.87 0.88 

2010-14 41.6 12.3 104 0.86 0.86 

2015-19 49.7 19.4 146 0.87 0.85 

 

5.2 Validation of exposed soil masks across Germany 

We have chosen TAmin of 0.831 and TAmax of 1.697 as the best results and used them for the 

generation of exposed soil masks for several time periods. We validated the extraction of exposed 

soil masks per selected time periods at the federal state and county level by using the Destatis and 

CLC data sets (see Section 4.3). The comparison of the soil exposure with both validation datasets 
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showed overall high correlation results (R2 > 0.80 on county level for) for all time periods (Tables 

3.1.3 and 3.1.4, Figs. 3.1.11 and 3.1.12).  

In particular the five-year periods of 2000–04 (R² = 0.88 for Destatis; R² = 0.89 for CLC) and 

2005–09 (R² = 0.87 for Destatis; R² = 0.88 for CLC) show the overall highest R², and the periods of 

1990–94 (R2 = 0.80 for CLC) and 1995–99 (R² = 0.82 for Destatis) show the weakest R² comparing 

the exposed soil masks to the agricultural areas of the validation datasets on county level. These 

results are similar at the state levels based on both validation datasets. The high R² in the periods 

of 2000–04 and 2005–09 might correlate to the high availability of input data. In 2000–04 and 

2005–09; even though the scan line correction failure of Landsat-7 ETM+ appeared in 2002 

(Markham et al., 2004), over 3,000 pre-processed input images were available (2000–04: 1946 

Landsat-5 TM, 1154 Landsat-7 ETM+; 2005–04: 1946 Landsat-5 TM, 1154 Landsat-7 ETM+). In 

comparison to the 1990–94 and 1995–99 periods with lower R² values, less than 3,000 images 

per composite were available (1990–94: 1857, 1995–99: 2681 pre-processed scenes). This 

availability of scenes resulted in a large number of cloudless scenes per pixel (Table 3.1.5). On 

average, 56.0 ± 18.6 (2000–04) and 59.0 ± 17.6 (2005–09) cloudless scenes per pixel were 

included in the database for the extraction of exposed soil masks for Germany. In contrast, there 

were 44.3 ± 15.0 and 41.7 ± 14.2 cloudless scenes that built the database for the time periods of 

1990–94 and 1995–99, respectively. For the time periods showing weaker R2 values, fewer 

cloudless input scenes are available per pixel, which could indicate a higher deviation from the 

validation data. Here, too few data are available to capture the exposed soil masks with high 

accuracy compared to the following periods. 

The correlation analysis showed an overall high R2 for Germany on the state and county levels 

(Tables 3.1.3 and 3.1.4, Figs. 3.1.11 and 3.1.12). The federal state of Lower Saxony shows a lower 

R2 for all time periods for both scenarios compared. An in-depth review of the input data has 

shown no data artifacts or comparable data quality limitations for the federal state or the entire 

region in northwestern Germany. A possible source of the low accuracy of the soil mask in Lower 

Saxony could be the lower number of cloudless scenes per pixel in comparison to all of Germany. 

The number of maximum cloudless scenes per pixel for the Lower Saxony state is lower than the 

cloudless scenes available for all of Germany (Section 5.1). In Germany, a maximum number of 

102 (2000–04) to 140 (2005–09) are available for the extraction of exposed soil masks. For the 

state of Lower Saxony, a maximum number of 70 (1984–89) to 110 (1995–99) cloudless scenes 

are available. This difference could have been driving the deviation in accuracy, as a certain 

number of scenes should be available for the extraction of exposed soils. 

Furthermore, as described in Section 4.2, all of Germany was processed using the averaged 

TAmin/max of the five test tiles. However, as discussed above, the TAmin/max value of Bremen, situated 

in the center of Lower Saxony, varies more relative to the other four sets of TAs. Considering that 

the different thresholds have an influence on the extraction of the soil pixels, the use of the bio-

geographical region as the definition of thresholds in Germany could result in better adjustment 

to the natural conditions present in the northwestern parts of the country.  

However, it should be mentioned that a possible source of inaccuracy could have resulted from 

the comparison of a multiyear composite with a validation data set collected in one year. In all 

five-year composites, areas that show at least one exposed soil in the observed time period are 

included in the exposed soil mask. The selection of the longer time period was performed based 

on previous experience as it guaranteed the capture of all agricultural exposed soils. As the five-

year periods are compared to one reference data set, changes in land use could have had an 

influence on the accuracy analysis. For instance, if a transition of permanent grassland to exposed 

soils occurred early within an observed period, the possibility of obtaining a sufficient number of 

available scenes showing exposed soils is high. SCMaP would then classify these areas correctly 
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as exposed soils. For validation purposes, a comparison to a data set recorded early in the five-

year period would then result in an erroneous identification of the area by SCMaP. As the five-year 

composites contain two LC types; grassland and exposed soils; however, the classification by 

SCMaP for exposed soils is correct. A reduction in the time for compositing could enable a decrease 

in the occurrence of such cases.  

For validation purpose of the SCMaP exposed soil masks two different data sets were chosen. 

The Federal Statistical Office (Destatis) collects statistical data regarding agricultural areas in 

Germany on a regular basis since 1999. However, determining the methods used for the data 

collection is in the responsibility of each federal state and might result in regional differences. 

Additionally, the lowest available spatial resolution is on county level. For that purpose and for 

future continental processing, we additionally used the agricultural classes of the CLC surveys for 

the validation of exposed soil masks as the data sets are available since 1990. Although the CLC 

inventories are derived from a pixel-based classification, the data also shows a lower spatial 

resolution than the SCMaP exposed soil masks. This demonstrates that both data sets have their 

advantages and disadvantages for the validation of the exposed soil masks, since both 

comparisons showed systematic differences with respect to lower correlations of the earlier 

periods and regarding to lower R2 for the federal state Lower Saxony. However, since both 

validation results are similar and in the same order of magnitude, we believe that they represent 

realistic accuracy values. Both datasets seem to be suitable for large scale accuracy analyses, 

whereas CLC has the potential for a European-wide validation of the detection of exposed soils. 

 

6. Conclusion and Outlook 

In this study, we analyzed the influence of the new automated sampling strategy on 

thresholding and the derivation of exposed soil masks. Further, we provided a Germany-wide 

validation for several time periods in order to show the accuracy of the resulting exposed soil 

masks across time. An automatized random sampling of stable CLC pixels required for the 

determination of two thresholds (TAmin/max) to separate exposed soils from all other LC classes 

was developed and implemented in the SCMaP processing chain. The automatization of the 

thresholding process is necessary for operational processors to ensure the fast and correct 

adaption of the thresholds to regions of interest and to provide regionalize thresholds for the 

processing of large areas, such as countries and continents. Our results demonstrated the large 

dependencies that the vegetation index approach has on environmental conditions. Thus, we 

suggest regionalizing the parameter setting by using e.g., bio-geographical regions instead of 

counties or countries. Furthermore, the rules to derive thresholds need to be evaluated depending 

on the sample database. In this study, we used CLC information; however, we would not suggest 

applying a fixed percentile rule since it needs to be adapted according to the sampling scheme. A 

more robust method that accounts for the minimal overlap of spectral similar LC classes would be 

more suitable. Additionally, the nature of fixed thresholds for large regions are not suggested. A 

flexible method to derive region-specific thresholds or the use of dynamic thresholds using 

machine learning techniques or artificial intelligence approaches could be a valuable topic for 

future developments. The implementation of such approaches in operational processors is 

important for future studies. For this purpose, the automated and robust sampling such as 

developed in this study is of high importance. 

The validation using two independent reference data sets again shows the need to account for 

the regional differentiation of the thresholds. For both data sets (CLC and Destatis) we selected 

agricultural classes that can be assigned to exposed soils. Areas in northwestern Germany have 

shown a systematic underestimation of exposed soils compared to both reference data. 

Additionally, there is a difference in R2 based on the number of available input scenes per time 
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step. We could show that the more scenes per time period are available, the higher the percentage 

of cloudless scenes and thus, the higher the R2. The implementation of Sentinel-2 data could 

potentially shorten the recent composite time length of five years. This is also in line with the 

findings of Demattè et al. (2018). Sentinel-2 delivers data from two twin satellites with a combined 

revisit time of less than five days (Lacroix et al., 2018; Ienco et al., 2019). The use of Sentinel-2 

data could therefore result in an increased accuracy in the building of exposed soil masks and the 

shortening of the compositing time period. Additionally, the current developed “Harmonized 

Landsat and Sentinel-2 surface reflectance data set” (Claverie et al., 2018) should be considered. 

Since both data sets have been pre-processed following the same protocols and methods, thisdata 

set could be a highly valuable input regarding the large number of available scenes and needs to 

be analyzed in the future. This could enable monitoring of soil more frequently than every five 

years.  

In summary, the automated and random sampling of LC pixels for the determination of 

thresholds is a stable and reliable workflow that enables the identification of the spatial and 

temporal distribution of exposed soils with high accuracy. Thus, it can be a valuable data source 

for statistical surveys of agricultural areas in Germany. SCMaP is additionally used to generate 

information about how frequently soils are exposed and how often these areas shift from 

exposure to vegetation. To contribute to soil erosion studies that need information about where 

and when soils are bare, accurate exposed soil masks in suitable time period can be of great help 

for these studies (Pimentel and Burgess, 2013; Labriere et al., 2015; Ayalew et al., 2020). The 

exposed soil masks derived from SCMaP can additionally offer a new remote sensing database for 

retrospective erosion and LC analysis. 
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Abstract: For food security issues or global climate change, there is a growing need for large-

scale knowledge of soil organic carbon (SOC) contents in agricultural soils. To capture and 

quantify SOC contents at a field scale, Earth Observation (EO) can be a valuable data source for 

area-wide mapping. The extraction of exposed soils from EO data is challenging due to 

temporal or permanent vegetation cover, the influence of soil moisture or the condition of the 

soil surface. Compositing techniques of multitemporal satellite images provide an alternative 

to retrieve exposed soils and to produce a data source. The repeatable soil composites, 

containing averaged exposed soil areas over several years, are relatively independent from 

seasonal soil moisture and surface conditions and provide a new EO-based data source that 

can be used to estimate SOC contents over large geographical areas with a high spatial 

resolution. Here, we applied the Soil Composite Mapping Processor (SCMaP) to the Landsat 

archive between 1984 and 2014 of images covering Bavaria, Germany. Compared to existing 

SOC modeling approaches based on single scenes, the 30-year SCMaP soil reflectance 

composite (SRC) with a spatial resolution of 30 m is used. The SRC spectral information is 

correlated with point soil data using different machine learning algorithms to estimate the SOC 

contents in cropland topsoils of Bavaria. We developed a pre-processing technique to address 

the issue of combining point information with EO pixels for the purpose of modeling. We 

applied different modeling methods often used in EO soil studies to choose the best SOC 

prediction model. Based on the model accuracies and performances, the Random Forest (RF) 

showed the best capabilities to predict the SOC contents in Bavaria (R2 = 0.67, RMSE = 1.24%, 

RPD = 1.77, CCC = 0.78). We further validated the model results with an independent dataset. 

The comparison between the measured and predicted SOC contents showed a mean difference 

of 0.11% SOC using the best RF model. The SCMaP SRC is a promising approach to predict the 

spatial SOC distribution over large geographical extents with a high spatial resolution (30 m). 

Keywords: soil reflectance composites, soil modeling, soil organic carbon, Landsat, 

multispectral 
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1. Introduction 

Precise knowledge about the distribution of soil organic carbon (SOC) contents in agricultural 

soils is a valuable information for, e.g., food security issues [1] or global climate change [2]. The 

organic carbon stocks in soils represent one of the largest reservoirs in the global carbon cycle 

[3,4] and are affected by various drivers [5]. Soils with sufficiently high [6,7] and balanced SOC 

contents are considered healthy soils [8,9] and are less prone to impacts of climate change [7]. 

Adequate land management is necessary to preserve soil health and soil quality [10] and enables 

an increase of agroecosystem resiliency [11].  

To capture and quantify SOC contents in agricultural soils for efficient and sustainable land use, 

data with high spatial resolution is needed in order to understand the impacts of climate change 

on soil quality [12]. High-resolution surveys at the national to regional scale are urgently required, 
as detailed spatial patterns in SOC are an important aspect for land management at the farm or 

even the field scale [13]. For applications with a large geographical extent [14] (national to 

European-wide), SOC maps are mostly available with a spatial resolution of 250 m to 1 km. The 

European Soil Data Center (ESDAC) provides several pan-European SOC maps. However, both 

well-known maps OCTOP: Topsoil Organic Carbon Contents for Europe [15] and the Topsoil Soil 

Organic Carbon Map based on the LUCAS (Land Use and Coverage Area frame Survey) soil datasets 

for EU25 [16] are distributed in a coarse 1 km raster format. The maps have, therefore, a limited 

suitability as a basis for high-resolution analysis at the farm or even the field scale.  

Earth Observation (EO) can be a valuable data-source for area-wide mapping with a resolution 

that allows distinguishing between or even with field patterns [17]. In this context, hyperspectral 

(e.g., [18–21]) and multispectral images (e.g., [22–24]) are commonly used EO datasets to derive 

SOC contents. In Table 3.2.1, studies for different European regions are compared regarding their 

capabilities of SOC modeling. Generally, point soil information was correlated with multi- or 

hyperspectral pixel values using different machine learning (ML) techniques to derive SOC 

contents. However, in most studies, the estimation of SOC was restricted to relatively small areas 

(0.09 to 10.000 km2) in which the soil conditions (bare, smooth and dry soils) were considered 

to be optimal. This optimization prevented applying the models to cover larger geographical 

areas, except for a couple of previous efforts [25,26]. Additionally, the use of hyperspectral and 

multispectral remote sensing data for the estimation of SOC contents and other soil variables is 

hampered by the need for data that provide bare soil conditions. Mapping of exposed soils and the 

estimation of soil parameters is challenging due to temporal or permanent vegetation cover [27]. 

The area of exposed soils on a single remote sensing scene is limited, and often, the periods in 

which exposed soils dominate are restricted to short time windows [28] when the soil is in 

seedbed condition. Compositing techniques of multi-temporal satellite image archives provide an 

alternative and are widely used in the literature [25–34]. The compositing approach allows 

combining all bare soils of all input scenes, which enables a joint estimation of soil parameters for 

all exposed soils in the observed time period. For several years, new compositing techniques were 

developed in the course of opening the Landsat archive [35] that can retrieve exposed soils from 

multi-temporal satellite image archives [26,28,36,37]. An averaging of exposed soil areas over 

several years allows producing a new and spatially enhanced data source for soil analyses. Here, 

the soil spectra are relatively independent from seasonal differences in soil moisture and other 

soil surface conditions occurring during rain events or longer drought periods. In the resulting 

new data source, only permanent spatial soil moisture differences such as for the different soil 

types and texture characteristics remain. However, an in-depth proof of this assumption has not 

yet been provided. 

The operational Soil Composite Mapping Processor (SCMaP) is a multitemporal compositing 

approach [36], which enables an automated generation of area-wide soil reflectance composites 
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(SRC) for the estimation of soil parameters using all available multispectral reflectance images for 

a defined period. So far, SCMaP SRC has not been used as an EO database for the SOC modeling of 

exposed topsoils in croplands of large geographical extents. Therefore, in this study, the SOC 

modeling capabilities of the SCMaP SRC are investigated and performed for a large portion of the 

German federal state of Bavaria and adjacent areas (about 130,000 km2) as solid calibration and 

validation datasets are available. 

Generally, linking point data with EO images (30 m, 20 m pixel resolution) can be considered 

as a potential source of inaccuracies for soil parameter modeling as not all samples are collected 

at least 30 m from the field border the sample is related to [38]. In this case, the EO pixel may 

reflect the signal from adjacent fields with different spectral information, which is related to a 

single soil sample. New approaches are necessary that can handle the misalignment of the soil 

database and the spectral pixel information from the EO images for SOC modeling. 

The overall purpose is to test the potential of the SCMaP SRC database derived from Landsat 

images covering 30 years to derive a high-resolution map of SOC contents in Bavarian croplands. 

For this purpose, the SRC is correlated with point soil measurements to derive spatial SOC 

contents for an area-wide mapping approach. The objectives of the study are: 

1. Develop a spatial/spectral filtering technique to prepare the point dataset of the Bavarian 

test site for modeling purpose using the novel SCMaP SRC. 

2. Apply the 30-year SCMaP SRC to derive SOC contents in Bavaria using different 

machine learning algorithms. 

3. Validate the SOC map using an additional independent external dataset not included 

in the model calibration and validation 

 

2. Materials and Methods 

2.1 Study area 

The study area covers most of the Federal State of Bavaria (Figure 3.2.1) and adjacent regions in 

southeast Germany and was selected regarding the diversity of landscape and soil types. The area 

south of 48° N was excluded as permanent grassland is the dominating land use in this region, and 

SCMaP is not able to detect soils covered by permanent vegetation. Moreover, mountainous 

regions of the Alps in southern Bavaria were also excluded. Due to the frequent cloud coverage in 

this region, only a small number of cloudless scenes per pixel were available for the compositing 

process compared to other parts of Bavaria. 

The study area comprises about 130,000 km2, in which the elevation ranges between 100 m and 

1000 m above sea level. The mean annual temperature lies between 6 ◦C and 10 ◦C, and the 

precipitation is between 551 mm and 1800 mm. The region is mainly dominated by Cambisols, 

Luvisols, Stagnosols, Gleysols and Leptosols [49] according to the World Reference Base for Soil 

Resource [50]. 

 

2.2 Soil Organic Carbon Modeling 

An overview of the SOC modeling approach is outlined in Figure 3.2.2. Landsat 4–7 collection 

data from 1984 to 2014 are used to build the SRC based on the SCMaP workflow (Section 2.3). To 

calibrate an SOC model, SRC reflectance values and spectral indices (Section 2.3) are regressed 

against topsoil SOC measurements provided by two local authorities and the European LUCAS 

survey (Section 2.6).
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Table 3.2.1: Overview on soil organic carbon (SOC) modeling studies across different regions in Europe. 

Study area (size 
[km²]) 

Earth Observation data / soil 
data: number of samples 
(samples / km²) 

SOC range [%] 
Machine 
Learning 
algorithm 

R² RMSE [%] RPD Ref. 

Albany Ticket, South 
Africa (320) 

HyMap (hy, A) / 125 (0.39) spectra 0.21 – 5.85 
Feature based 
MLR (1) 

0.62 0.43 1.57 [39] 

Loam belt, Belgium 
(BE) (462) / 
Luxembourg (LUX) 
(146) 

APEX (hy, A) / 84 (1.58) (LUX), 54 
(0.12) (BE) spectra / LUCAS 
spectra 

1.69 – 31.8 PLSR (1) - 
field spec: 0.49 (LUX) / 0.15 (BE) 
LUCAS: 0.49 (LUX) / 0.15 (BE) 

field spec: 1.7 (LUX) / 1.4 
(BE) 
LUCAS: 1.7 (LUX) / 1.4 (BE) 

[40] 

Demmin, Germany 
(GER) (200) / Loam 
Belt, BE (426) BE / 
Gutland-Oesling, LUX 
(204) 

Sentinel-2 (S-2) (ms, A) APEX (hy, 
A), S-2 resampled (ms, A) / 170 
(0.8) (BE) / 194 (0.4) (LUX) / 231 
(0.12) (GER) samples 

0.6 – 1.6 PLSR / RF (1) - 

PLSR: 0.10 – 0.17 (S-2) / 0.11 – 
0.17 (hy) / 0.08 – 0.14 (S-2 res) 
RF: 0.2 – 1.86 (S-2) / 0.2 – 1.84 
(hy) / 0.2 – 1.86 (S-2 res) 

PLSR: 1.0 – 1.7 (S-2) / 1.1 – 
1.7 (hy) / 1.0 – 1.5 (S-2 res) 
RF: 1.0 – 1.5 (S-2) / 1.0 – 2.1 
(hy) / 1.0 – 2.1 (S-2 res) 

[22] 

Demmin, GER 
(10.000) 

S-2B (ms, A) / 35 LUCAS spectra 0.5 – 38.4 RF (1) - 0.68 – 2.67 0.9 – 4.4 [41] 

Demmin, GER 
S-2 (ms, A), HySpex (hy, A), EnMAP 
simulated (hy, A) / 181 samples 

0.6 – 19.4 RF (1) - 
8.7 – 17.8 (S-2) / 11.0 – 18.8 
(EnMAP) 

1.2 – 2.5 (S-2) / 1.2 – 2.0 
(EnMAP) 

[42] 

Wallonia, BE (3.630) 
Sentinel-2 (ms, B) / 137 (0.038) 
samples 

0.67 – 2.1 PLSR (2) 
0.14 ± 0.03 
– 0.54 ± 
0.12 

0.209 ± 0.039 – 0.363 ± 0.036  1.06 ± 0.06 – 1.68 ± 0.45 [43] 

4 fields, Czech 
Republic (CZK) (0.7 – 
7.76) 

CASI (hy, A), Sentinel-2 (ms, A) / 
200 samples) 

0.56 – 2.62 
support vector 
machine 
regression (1) 

- 
0.12 – 7.95 (hy) / 0.14 – 9.15 (S-
2) 

1.03 – 2.05 (hy) / 0.89 – 
1.92 (S-2) 

[44] 

4 fields, Lower Rhine 
Basin (GER) (0.0025 
– 0.09)  

HyMap (hy, A) / 204 samples 0.8 – 1.85 PLSR (2) 0.34 – 8.83 0.76 – 1.13 1.14 – 2.32 [45] 

Europe 
Landsat-4, -5, -7, -8 composite 
(1982-2018) (ms, B) / LUCAS 
spectra 

0.0 – 43.84 
gradient 
boosting trees 
(1) 

0.06 – 0.13 1.52 – 1.68 0.52 – 0.58 [25] 

Wulfen, GER (200) 
GER 

HyMap (hy, A) / 73 (0.73) samples 0.7 – 3.85 
MLR / PLSR 
(2) 

0 90 
(PLSR) / 
0.86 (MLR) 

0 29 (PLSR) / 0.22 (MLR) - [46] 

Versailles Plains 
(VP), (221) / Peyne 
Valley (PV), France 
(FRA) (48) 

S-2 (ms, A) / 72 (0.33) (VP), 143 
(2.98) (PV) samples 

0.7 – 3.19 (VP) / 
0.4 – 2.18 (PV) 

PLSR (2) 
0.56 (VP) / 
0.02 (PV) 

0.123 (VP) / 0.371 (PV) 1.51 (VP) / 1.00 (PV) [23] 
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Versailles Plain, FRA 
(221) 

S-2 (ms, A) / 329 (1.49) samples 0.62 – 3.59 PLSR (2) 0.16 – 0.58 0.302 – 0.586 1.0 – 1.5 [47] 

Versailles Plain, FRA 
(221) 

S-2 (ms, B) / 329 (1.49) samples 0.62 – 3.59 PLSR (2) 
-0.02 – 
0.56 

0.253 – 0.545 0.99 – 1.53 [37] 

Sardice, Czech 
Republic (1.45) 

Sentinel-2 (ms, A), S-2 composite 
(03/2017 – 05/2019) (ms, B), 
Landsat-8 (ms, A), CASI (hy, A) ( 50 
(34.5) samples 

0.85 – 2.62 RF / PLSR (2) 

0.56 – 0.68 
(S-2) / 
0.81 (S-2 
comp) / 
0.65 (L-8) 
/ 0.76 
(CASI) 

0.27 – 0.28 (S-2) / 0.34 (S-2 
comp) / 0.28 (L-8) / 0.20 (CASI) 

1.4 – 1.52 (S-2) / 1.4 (S-2 
comp) / 1.41 (L-8) / 1.81 
(CASI) 

[48] 

(spectral characteristics: ms - multispectral, hy - hyperspectral; scene acquisition: A - single scene, B - multitemporal composite; mapping approach: 1 – spectral model, 2 – digital soil 
modeling; machine learning algorithms: PLSR – Partial Least Square Regression, MLR – Multiple Linear Regression, RF – Random Forest; accuracy and performance measures: RMSE – Root 

Mean Square Error, RPD – Ratio of Performance to Deviation; further significance of the regression models are not given in the cited studies, the relationships are likely to be significant given 
the large number of calibration points in relation to the number of (latent) variables.) 
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Figure 3.2.1: Overview of the study area in Bavaria and the distribution of the soil dataset (LfU - Bavarian 
Environmental Agency; LfL - Bavarian State Research Center for Agriculture; LUCAS - Land Use and Coverage 
Area frame Survey). 

 

Figure 3.2.2: A flowchart of the SOC modeling approach (SRC - soil reflectance composite; MLR - Multiple Linear 
Regression; PLSR - Partial Least Square Regression; RF - Random Forest; RMSE - Root Mean Square Error; RPD 
- Ratio of Performance to Deviation). 

Due to the positioning of several measurements at field borders, and thus, the potential 

integration of disturbances, a new filtering technique was developed and applied to evaluate the 

quality of calibration samples (Section 2.4). For the regression, three machine learning algorithms 
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were tested and evaluated (Section 2.5). The models were trained for different datasets combining 

the reflectances and additional spectral indices. 

Per algorithm, the best model is chosen, and the SOC contents are predicted for the entire study 

area. The prediction results are validated against external, independent SOC point measurements 

not included in the model calibration by a spatial correlation analysis (Section 2.7). 

 

2.3 SCMaP SRC and Spectral Indices 

The SCMaP chain [36] allows the generation of soil reflectance composites for individually 

determined time periods of different years. Bare soil pixels are selected based on a modified 

vegetation index (PV) using two thresholds that allow separating predominantly undisturbed 

soils from all other land cover types such as permanent vegetation and permanent non-vegetation. 

The derivation of the thresholds is based on an automated technique described in [51]. All selected 

bare soil pixels are averaged. The operational SCMaP chain can be used to build SRCs containing 

all pixels in a given time period showing at least once exposed soil. 

For the SOC modeling, a period of 30 years (1984–2014) was chosen to provide a smooth 

spectral database that averages the seasonal variabilities of bare soils. The 30-year period was 

chosen for several reasons. A high possible soil coverage should be achieved. Using 5-year 

composites, 31.79% to 34.17% of the entire investigation area are selected as bare soil pixels. Ten-

year composites provide 37.54% to 41.21% as exposed soils, and the 30-year composite enables 

the analysis of 54.53% of the investigation area as uncovered soils. Additionally, a possible large 

number of soil samples was intended to be used in the modeling dataset. A reduction of the 

compositing period would have significantly reduced the number of soil samples. For 5-year 

periods, 112 to 397 soil samples were collected in the respective periods. Based on 10-year 

composites, 261 to 536 samples are available. For a 30-year compositing range, 1,250 samples 

can be used for the modeling dataset. Additionally, an average over multiple years enables a 

reduction of seasonal soil moisture differences and permanent spatial differences remaining in 

the composite.  

The SRC was processed for 228 Landsat-4 TM, 9,990 Landsat-5 ETM and 4,333 Landsat- 7 

ETM+ collection scenes [52] available between 1984 and 2014. For all scenes of all sensors, the 

same pre-processing steps were performed. The FMask algorithm [53,54] was used to detect and 

remove clouds, cloud shadows and pixels that were covered by snow. Additionally, an 

atmospheric correction was applied to all scenes using Atmospheric Topographic Correction 

(ATCOR) software for satellite imagery [55]. The quality of the composites is defined, among other 

factors, by the number of cloudless scenes per pixel [50]. The consistently large number of 

cloudless scenes per pixel for the total investigation time is given in Figure A1 in Appendix A. 

In addition to the point spectral information of the SCMaP SRC, different indices were selected 

and computed (Table 3.2.2). Indices are commonly used in remote sensing to parameterize 

specific spectral features caused by physical and/or chemical properties [56]. Besides established 

indices, an additional index (SCMaPI) was developed to capture the difference between the green 

and the SWIRI bands of the SCMaP SRC. The SCMaP shows smaller differences for high SOC content 

and higher differences for lower SOC content. 

 

2.4 Spectral/Spatial Filtering 

Based on Landsat imagery, SCMaP provides soil reflectance information with a pixel resolution 

of 30 m. The link of a point soil sample to a 30 m pixel can result in inaccuracies if the soil sample 
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is not collected at least 30 m from the field border. In this case, the SCMaP pixel may combine 

multiple surfaces with different spectral information, which are related to one soil sample.  

Table 3.2.2: Summary of the selected spectral indices. 

Spectral 
Index 

Description Expression Reference 

BI Brigthness Index √(𝑅𝑒𝑑 ∙ 𝑅𝑒𝑑) + (𝐺𝑟𝑒𝑒𝑛 ∙ 𝐺𝑟𝑒𝑒𝑛)

2
 [57] 

BI2 Second Brightness Index √(𝑅𝑒𝑑 ∙ 𝑅𝑒𝑑) + (𝐺𝑟𝑒𝑒𝑛 ∙ 𝐺𝑟𝑒𝑒𝑛) + (𝐵𝑙𝑢𝑒 ∙ 𝐵𝑙𝑢𝑒)

3
 [57] 

EVI Enhanced Vegetation Index 𝐺
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝐶1 ∙ 𝑅𝑒𝑑 − 𝐶2 ∙ 𝐵𝑙𝑢𝑒 + 𝐿
 [58] 

NBR2 Normalized Burn Ratio 
𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅 𝐼𝐼

𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅 𝐼𝐼
 [59] 

SCMaPI SCMaP Index 
𝑆𝑊𝐼𝑅 𝐼 − 𝐺𝑟𝑒𝑒𝑛

𝑆𝑊𝐼𝑅 𝐼 + 𝐺𝑟𝑒𝑒𝑛
 - 

MSAVI2 
Modified Soil Adjusted 

Vegetation Index 
2 ∙ 𝑁𝐼𝑅 + 1√(2 ∙ 𝑁𝐼𝑅 + 1)2 − 8 ∙ (𝑁𝐼𝑅 − 𝑅𝑒𝑑)

2
 [60] 

LSWI Land Surface Water Index 
𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅 𝐼

𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅 𝐼
 [61] 

NDSI 
Normalized Difference Soil 

Index 

𝑆𝑊𝐼𝑅 𝐼 − 𝑁𝐼𝑅

𝑆𝑊𝐼𝑅 𝐼 + 𝑁𝐼𝑅
 [62] 

RI Redness Index 
𝑅𝑒𝑑 ∙ 𝑅𝑒𝑑

𝐺𝑟𝑒𝑒𝑛 ∙ 𝐺𝑟𝑒𝑒𝑛 ∙ 𝐺𝑟𝑒𝑒𝑛
 [63] 

BSI Bare Soil Index 
(𝑆𝑊𝐼𝑅 𝐼 + 𝑅𝑒𝑑) − (𝑁𝐼𝑅 + 𝐵𝑙𝑢𝑒)

𝑆𝑊𝐼𝑅 𝐼 + 𝑅𝑒𝑑) + (𝑁𝐼𝑅 + 𝐵𝑙𝑢𝑒)
 [64] 

CI Color Index 
𝑅𝑒𝑑 − 𝐺𝑟𝑒𝑒𝑛

𝑅𝑒𝑑 + 𝐺𝑟𝑒𝑒𝑛
 [63] 

TVI 
Transformed Vegetation 

Index (
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
+ 0.5)0.5 [65] 

GRVI 
Green-Red-Vegetation 

Index 

𝐺𝑟𝑒𝑒𝑛 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
 [66] 

V Vegetation Index 
𝑁𝐼𝑅

𝑅𝑒𝑑
 [67] 

GNDVI 
Green Normalized 
Vegetation Index 

𝑁𝐼𝑅 − 𝐺𝑟𝑒𝑒𝑛

𝑁𝐼𝑅 + 𝐺𝑟𝑒𝑒𝑛
 [68] 

SATVI 
Soil Adjusted Total 
Vegetation Index 

𝑆𝑊𝐼𝑅 𝐼 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑 + 1
(1 + 𝐿) −

𝑆𝑊𝐼𝑅 𝐼𝐼

2
 [69] 

NDVI 
Normalized Difference 

Vegetation Index 

𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
 [70] 

GSAVI 
Green Soil Adjusted 

Vegetation Index 

𝑁𝐼𝑅 − 𝐺𝑟𝑒𝑒𝑛

𝑁𝐼𝑅 + 𝐺𝑟𝑒𝑒𝑛 + 𝐿
∙ (1 + 𝐿) [71] 

GOSAVI 
Green Optimized Soil 

Adjusted Vegetation Index 

𝑁𝐼𝑅 − 𝐺𝑟𝑒𝑒𝑛

𝑁𝐼𝑅 + 𝐺𝑟𝑒𝑒𝑛 + 𝑌
 [72] 

SAVI 
Soil Adjusted Vegetatin 

Index 

(NIR − Red) ∙ (1 + 𝐿)

(𝑁𝐼𝑅 − 𝑅𝑒𝑑 + 0.5)
 [73] 
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A proportion of the soil samples (especially the LUCAS points, [38]) are often taken within a 

few meters from the borders of agricultural fields, e.g., as shown by the photo documentation of 

the sampling points at the LUCAS viewer online 

(https://ec.europa.eu/eurostat/statisticalatlas/gis/viewer/?config=LUCAS-2009.json, accessed 

on 6 August 2021). The disturbance factors primarily exist at the field boundaries. Eliminating all 

samples that were collected within 30 m of the field border could decrease the number of biased 

pixels. However, this would drastically decrease the database and was therefore not considered. 

Instead, a spectral/spatial filtering technique was developed to prepare the soil database and the 

spectral information from the EO images for SOC modeling. 

The filtering technique evaluates the spectral differences between the sample SRC pixel and its 

eight neighboring pixels. A comparison of the sample spectra to the neighboring pixel spectra 

allows an estimation if the reflectance spectra of the sample pixel are influenced by any external 

disturbances or data artefacts (e.g., mixed spectra of soil and a small portion of vegetation, local 

variation) or if they are comparable to the surrounding spectra. The spectral/spatial filtering aims 

to detect pixel clusters with deviating spectra to remove this from further processing. For this 

purpose, all STDs per pixel cluster per band were used to define a threshold to exclude the 

deviating pixel clusters. Twice, the STD per band of all pixel cluster STDs was selected as the 

threshold. The threshold was determined and applied per band. The identified pixel cluster 

containing at least one to several spectral bands above the thresholds was excluded from the 

dataset. 

 

2.5 Soil Modeling Methods 

Three machine learning (ML) algorithms were used and evaluated. A Multiple Linear 

Regression (MLR), a Partial Least Square Regression (PLSR) [74] and a Random Forest regression 

(RF) algorithm [75] were applied to model the SOC contents in the topsoils. All three techniques 

are widely used in soil applications [76–79] and especially for SOC modeling (see Table 3.2.1, 

[22,23,37,39–49]). The modeling was performed using the Scikitlearn machine learning library 

for Python [80]. The following parameters were chosen for the RF: n_estimators: 100, 

max_features: 10, max_depth: 12, min_sample_split: 6, min_samples_leaf: 2 and for the PLSR: 

n_components: 5.  

The calibration dataset was randomly split into a training (70%) and test (30%) subset. The 

training set was used to train the model, whereas the test subset of the calibration data was used 

to validate the model. For the model calibration and validation, common accuracy and 

performance measures, such as the R2 (coefficient of determination, from sklearn.metrics), the 

root mean square error (RMSE) and the ratio of performance to deviation (RPD), were used to 

evaluate the model performances and to allow a comparison with the literature (Table 3.2.1). The 

RPD is an established performance measure that determines the quality of a model [81]. 

Moreover, the commonly used accuracy and performance measure, the Concordance Correlation 

Coefficient (CCC) [82], is given to assess the agreement between the predicted and measured SOC 

contents. Additionally, ten-fold cross-validation (cv) was performed to evaluate the performance 

of the models. The cv was applied to the training subset of the calibration data. In addition to the 

established accuracy and performance measures, an analysis of the standardized residuals and 

the autocorrelation of the residuals for the model calibration samples is given in Figures A2 and 

A3 in the Appendix A.  

Besides the reflectances, additional spectral indices (Table 3.2.2) per spectrally/spatially 

filtered sampling cluster were calculated and implemented in the modeling framework to 

investigate the influence of further spectral details. For this purpose, for each algorithm, three 
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different model setups were prepared to estimate the influence of the spectral indices on the 

modeling capabilities. The models were trained based on (a) the composite reflectances (R), (b) 

the composite reflectances and all indices (RI_all) and (c) the composite reflectances and for each 

algorithm individually selected indices (RI_sel). Besides the reflectances and indices, no other 

covariates (e.g., clay content of climate variables) were used in the modeling framework.  

For each algorithm, a selection of important features (RI_sel) was performed. The identification 

of the relevant features for the MLR was based on a linear correlation (Pearson’s correlation from 

Python sklearn.metrics). First, the relationship between the reflectances and indices to the 

modeling variable SOC was evaluated to exclude insignificant features (correlation coefficients (R) 

> 0.3). All significant feature pairs with correlation coefficients between -0.7 and 0.7 were then 

selected for the RI_sel dataset. For the PLSR, the variable importance in projection (VIP) per 

feature was calculated. Features with a VIP higher than 1.0 [22,83] were selected for the RI_sel 

dataset. For the RF, a calculation of the internal feature importance score (Mean Decrease 

Impurity (MDI)) was performed. Features with a score higher than 4.0% were selected as relevant 

features [84,85].  

For each algorithm, the best model setup was selected regarding the cross-validation results 

and the model validation accuracies. For the best performance dataset (RI, RI_all, RI_sel), the 

models were applied to the 30-year SRC to predict the spatial SOC contents for the entire study 

area. 

 

2.6 Soil Samples 

For point SOC measurements, all available legacy data to cover the highest possible temporal 

and spatial overlap with the SRC between 1984 and 2014 were used. Kühnel et al. [86] found no 

significant SOC changes between 1986 and 2015 of Bavarian croplands. The authors analyzed 92 

repeatedly measured cropland sites in Bavaria. Therefore, all available sampling points between 

1984 and 2014 were combined for the modeling dataset. However, there is a disadvantage of 

using legacy data, i.e., the sampling schemes are not optimally distributed.  

The SOC measurements for the calibration set were provided by the Bavarian Environment 

Agency (LfU—1071 sampling sites) and the Bavarian State Research Center for Agriculture (LfL—

134 sampling sites). Additionally, soil samples (504 sampling sites) collected in the framework of 

the LUCAS (Land Use and Coverage Area frame Survey) 2009 Topsoil Survey provided by the 

European Soil Data Centre (ESDAC) [87] were added (Figure 3.2.1). The LfU provided a large 

database with topsoil samples equally distributed across Bavaria [88]. The sites were each 

sampled once between 1984 and 2014. The LfL calibration dataset contained data from the 

permanent soil observation program (BDF) of Bavaria. In contrast to the once sampled LfU sites, 

these 134 BDFs were sampled multiple times in the observation period. As [86] found no 

significant change between 1986 and 2015 for the BDF sites across Bavaria, the available samples 

per BDF between 1984 and 2014 were averaged. Thus, one measurement per sampling location 

is included in the calibration dataset. The LUCAS soil samples were collected in 2009 from unique 

spatial positions across the investigation area. SOC contents of the LfU, LfL and LUCAS databases 

were all determined by dry combustion using elemental analyzers [88,89]. 

From all data sources, the samples intersecting with the SCMaP SRC and within the 

investigation period (1984 to 2014) were selected, i.e., 1385 soil samples. Per soil sample, the 

reflectance spectra and its eight neighboring pixels of the SRC were extracted and averaged to 

reduce local spatial variability. After the spectral/spatial filtering, 1215 sampling points for model 

calibration are remaining. 
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The external validation set was provided by the LfL and included 352 cropland fields with point 

SOC measurements sampled between 2001 and 2008. For each agricultural field, five sampling 

locations were randomly selected. At each sampling location (radius = 1.5 m), six soil samples 

were taken. SOC contents of all six soil samples of all five sampling locations were averaged to one 

SOC content per field. SOC contents were determined by dry combustions using CN elemental 

analyzers. For the external validation of the dataset, 308 samples were intersecting with the 

SCMaP SRC.  

The data provided by the LfU contained the highest range of SOC contents (0.26% to 18.30%; 

Table 3.2.3). The LfL calibration data showed a lower mean SOC content in comparison to the LfU 

and LUCAS datasets. Overall, the calibration dataset contained locations with higher SOC contents 

compared to the external validation dataset. 

Table 3.2.3: Statistics of the soil organic carbon (SOC) content of the model calibration soil samples and the 
independent validation soil samples by the different institutions. The number of samples per institute is given 
based on the spatially/spectrally filtered clusters (LfU – Bavarian Environmental Agency; LfL – Bavarian State 
Research Center for Agriculture; LUCAS – Land Use and Coverage Area frame Survey; STD – Standard 
Deviation; IQR – Interquartile Range). 

 LfL (93) LfU (885) LUCAS (237) LfL (308) 

 (Model Calibration & Validation) (Independent Validation) 

minimum SOC 
content (%) 

0.84 0.26 0.57 0.55 

maximum SOC 
content (%) 

5.96 18.30 6.81 4.65 

mean SOC 
content (%) 

1.74 2.28 2.02 1.58 

STD SOC (%) 0.70 2.24 1.06 0.57 

median SOC (%) 1.63 1.57 1.71 1.89 

IQR (%) 1.74 1.03 1.11 0.72 

 

For the model calibration and validation, the distribution of SOC contents of the training (70%) 

(Figure 3.2.3a) and test data (30%) (Figure 3.2.3b) were comparable. Both datasets contained 

samples with high SOC concentrations. The distribution of the SOC percentages of the calibration 

(cal) and the external independent validation (val) datasets (Figure 3c) showed a similar mean; 

however, the external validation dataset did not contain as high SOC concentrations. 

 

       (a)              (b)      (c) 

Figure 3.2.3: Frequency distribution of SOC contents of the (a) training, (b) test portion of the model calibration 
(cal) dataset and (c) a comparison of the model calibration dataset and the external independent validation 
(val) dataset. 
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2.7 External Validation 

To evaluate the accuracy of the prediction models more precisely, a further validation was 

performed using an independent external dataset provided by LfL, which was not included in the 

training. For each regression algorithm, the best data set up based on the model accuracies and 

performance was selected and applied to predict the SOC contents for the entire investigation 

area. The difference for all samples between the predicted and measured SOC contents of the 

external independent validation dataset were calculated to estimate the averaged difference 

between the predicted and the measured contents to provide the reliability of predicting SOC for 

each algorithm. 

 

3. Results 

3.1 Spectral/Spatial Filtering 

The spectral/spatial filtering was implemented in the model framework to ensure a 

high-quality calibration database. In order to ensure homogenous pixel clusters, a 

threshold is necessary to identify the heterogenous pixel clusters. Most of the nine 

individual pixel spectra per cluster showed homogenous patterns (Figure 3.2.4a). Here, an SOC 

measurement is linked to valid spectral information. However, a few pixel clusters showed 

deviating spectra (Figure 3.2.4b). These heterogenous pixel clusters with deviating individual 

spectra are represented by high standard deviations (STD) and need to be filtered, as here 

the possibility of any external influence or data artefacts (e.g., mixed spectra of soil and a small 

portion of vegetation, local variation) impacting the cluster is very high. 

Figure 3.2.5 shows six histograms of all STDs per band for all sample clusters of the calibration 

dataset. As the threshold twice, the STD per band was selected to identify and eliminate the 

heterogenous clusters with deviating spectra. Overall, 135 pixel clusters (9.7% of the total 

calibration dataset) were eliminated from the calibration dataset. The preprocessed, 

spectrally/spatially filtered calibration set accordingly comprises 1250 averaged sampling 

clusters. As shown in Figure 3.2.5, using the STD as the threshold, a higher number of pixel clusters 

(674, 48.7%) are identified as heterogeneous clusters. However, a visual analysis showed that too 

many pixel clusters would be eliminated using the STD as the threshold. It was also tested to set 

the threshold at three-fold STD (3 STD). Although, this would result in an insufficient selection of 

heterogenous pixel clusters. A visual analysis has shown that the filtering of 50 pixel clusters 

(3.6%) selected by the three-fold STD threshold does not filter all heterogenous pixel clusters 

sufficiently. 

The spatial/spectral filtering has a significant positive effect on the model accuracies. The RF 

was applied to the filtered and unfiltered RI_all datasets. A significant increase of the R² (0.64 to 

0.67), a decrease of the RMSE (1.38% to 1.26%) and an increase of the RPD (1.46 to 1.56) indicated 

an improved performance of SOC modeling. 

 

3.2 Feature Selection 

For each ML algorithm, a feature selection was performed based on the correlation coefficients 

for the MLR (Figure 3.2.6), the VIP scores for the PLSR (Figure 3.2.7a) and the feature importance 

scores for the RF (Figure 3.2.7b). We selected 15 features for the MLR, 14 features for the PLSR, 

and 10 features for the RF. Overall, similar reflectance bands and indices were identified as 

important features for the individual RI_sel subsets. For the PLSR and the RF, the Landsat bands 

two (green), three (red) and four (near infrared—NIR) were selected as important features. For 
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all three algorithms, the SCMaP and the NDSI were selected, whereas the overlap of selected 

indices was higher for the PLSR and RF (Figure 3.2.7a,b). However, for the MLR, not all reflectance 

bands identified as significant features were flagged as independent features showing high R 

scores (>0.7) in the correlation matrix. This would result in an elimination of most of the 

reflectance bands. However, they were all included in the TI_sel database as the analysis of the 

SCMaP SRC reflectances is the focus of this study. 

 

(a)       (b) 

Figure 3.2.4: SRC reflectances of the center pixel (dark grey), the eight neighboring pixels (grey), the average 
reflectance (blue solid), the STDs per pixel-cluster (blue dashed) for (a) a homogenous pixel cluster and (b) a 
heterogenous pixel cluster. 

 

 

Figure 3.2.5: Frequency distribution of the STDs of all pixel clusters per band. Twice, the STD per band was 
selected as the threshold for the identification of deviating pixel clusters. 
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Figure 3.2.6: The correlation matrix (Pearson's correlation) between the reflectances, the indices and the 
modeling variable SOC. The definition of significant features for SOC modeling and further independent 
features for the RI_sel dataset are based on the correlations (the hypothesis test by p-values showed for all 
significant feature combinations a correlation close or equal to zero). 

 

Figure 3.2.7: Feature selection for PLSR and RF. (a) VIP diagram of the PLSR to select the relevant features for 
the PLSR RI_sel run. Features with a VIP score higher than 1.0 are selected for the RI_sel database. (b) The 
feature importance score for the RF selection of relevant features. Features with a score higher 0.04 (4%) are 
selected for the RI_sel database. 

a) 

 

 

 

 

 

b) 
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3.3 Model Results - Calibration 

In order to ensure reliable models not overfitting the data, 10-fold cross-validation (cv) using 

70% of the calibration data was additionally conducted to the model calibration using the same 

portion of data (Table 3.2.4). The remaining 30% of the calibration sampling points excluded from 

the model training were used for validating the models (Table 3.2.4, Figure 8). 

 

Figure 3.2.8: A comparison of predicted and measured SOC contents using the 30% validation data from LfU, 
LfL and LUCAS not used for model calibration. Depicted are MLR (upper row), PLSR (middle row) and RF 
(bottom row) based on reflectances (R), reflectances and all indices (RI_all) and reflectances and per algorithm 
selected indices (RI_sel). The accuracies (R², RPD, RMSE) per algorithm and dataset, the regression (black line) 
and the 1:1 line (orange) are given. 

The model accuracies and performances of the cv in comparison to the calibration results (cal) 

and validation results (val) are given in Table 3.2.4. Overall, except for minor differences for the 

RF similar R2, RMSE and RPD values comparing the cal and cv results were detected for all 

datasets. This indicates that the cal models are valid and did not overfit the data. However, except 

for MLR and PLSR, based on the R datasets, the cv results are in a similar range compared to the 

val results. The model val results are in a similar range for the three algorithms. For PLSR and 

MLR, the use of additional indices is increasing the accuracies significantly. The influence of 

additional indices on the RF is less visible. Here, the R2 is constant, the RPD is increasing, and the 

RMSE is decreasing. The RF shows the highest CCC values compared to the MLR and PLSR, 

whereas the CCC values for PLRS are lower based on the MLR.  

Figure 3.2.8 shows the model validation results in detail for all three ML algorithms and for all 

prepared datasets. Overall, the RF regression performed best, showing the highest R2 (0.67) and 
RPD scores (1.62 to 1.77) for the different datasets using the 30% validation sampling points of 

the calibration dataset. Based on RI_all, the best model accuracies comparing all datasets were 

obtained. The PLSR showed the lowest modeling accuracies with lower R2 and RPDs and a higher 

RMSE in comparison to the other algorithms. The models based on the RI_all showed higher 
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accuracies overall than the models based on the R data setup. The indices positively influenced 

the prediction of SOC. The RI_sel database showed no improvements in the model accuracies for 

the different ML algorithms. It is worth noting that for high SOC values, all regression approaches 

and all data set ups (reflectance and/or indices) underestimated the SOC.  

Based on the cv and val results, the best set of features for all models was selected. For MLR, 

PLSR and RF, the model based on RI_all showed the best performances regarding the model 

validation and is therefore further used in this study. Using the RI_all feature set, the RF showed 

the best accuracies concerning the model training, cross validation and external validation. 

Table 3.2.4: Calibration (cal), cross validation (cv) and first independent validation (val) accuracies for MLR, 
PLSR and RF using R, RI_all and RI_sel. 

Algorithm 
Input-

datasetup 

R² RMSE (%) RPD CCC 

cal cv val cal cv val cal cv val val 

MLR 

R 0.40 0.80 0.48 1.48 1.50 1.50 1.27 1.27 1.39 0.61 

RI_all 0.60 0.55 0.59 1.20 1.29 1.44 1.44 1.44 1.57 0.73 

RI_sel 0.52 0.48 0.57 1.32 1.37 1.37 1.39 1.39 1.52 0.70 

PLSR 

R 0.40 0.38 0.47 1.48 1.50 1.51 1.29 1.27 1.38 0.60 

RI_all 0.52 0.48 0.56 1.34 1.37 1.38 1.43 1.40 1.51 0.69 

RI_sel 0.51 0.48 0.56 1.34 1.37 1.39 1.43 1.39 1.50 0.68 

RF 

R 0.91 0.53 0.67 0.59 1.31 1.25 3.25 1.46 1.74 0.78 

RI_all 0.86 0.58 0.67 0.71 1.24 1.24 2.67 1.54 1.77 0.78 

RI_sel 0.86 0.58 0.67 0.72 1.23 1.35 2.65 1.55 1.62 0.78 

 

3.4 External Validation 

For each ML algorithm, the model based on the best feature subset was selected and applied to 

the whole investigation area. For each point of the external validation dataset, the predicted SOC 

contents were compared to the measured SOC values. Figure 3.2.9 shows the differences between 

the 308 pairs of values of the predicted and measured SOC contents for Figure 3.2.9a MLR (RI_all), 

Figure 9b PLSR (RI_all) and Figure 3.2.9c RF (RI_all). In total, the average errors were relatively 

low (0.11% ± 0.56% to 0.21% ± 0.61%) comparing the predicted and the measured values. The 

comparison of the predicted data based on the RF (RI_all) to the external validation data indicated 

the lowest mean difference. However, all three histograms showed a Gaussian-like distribution 

with a small number of outliers and a relatively small bias (mean and median values are close to 

0.0 for all cases). The absolute differences ranged between -2.23% to +3.14% for MLR, -1.83% to 

2.17% for PLSR and -2.56% to 3.05% for RF. 

 

(a)        (b)            (c)  

Figure 3.2.9: Comparison of the difference between the 308 predicted and the measured SOC contents of the 
external validation dataset using the best set of input data for (a) MLR, (b) PLSR and (c) RF. 
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3.5 Spatial SOC prediction 

Overall, RF using the RI_all dataset provided the best model performance (R2 = 0.67, RPD = 

1.77), the highest model accuracy (RMSE = 1.24%) and the lowest mean difference comparing the 

predicted and the measured SOC contents of the independent external validation dataset (0.11% 

± 0.56%). Consequently, the RF based on the RI_all dataset was applied to the whole study area. 

Figure 3.2.10 shows the spatial prediction results of the RF model. 

Most of the study area revealed SOC contents lower than 2.0%, which is comparable to the 

mean SOC content of the soil datasets (Table 3.2.3). Regions with higher SOC contents (>6.0%) 

were mainly predicted in the South of Bavaria. Here, several patterns with relatively high SOC 

contents (>8.0%) are visible. High SOC contents are predicted in the river valleys in the south of 

the study area and in bogs and marshlands (e.g., Erdinger Moos around the Airport to the 
northeast of the city Munich or Königsmoos at the northeast of the city Augsburg). This is in line 

with an SOC map generated for Bavaria using a geostatistical modelling approach that showed the 

highest SOC stocks in floodplain and bogs [90]. 

 

Figure 3.2.10: Spatial prediction of the SOC contents based on the RF (RI_all) model. 

 

4. Discussion 

4.1 Spectral/Spatial Filtering 

We applied spectral/spatial filtering to enable the link of a 30 m SRC pixel possibly influenced 

by different spectral information or other artefacts to a single point SOC measurement. The 

filtering is based on neighborhood relationships by evaluating the spectral information of the 
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direct neighboring pixel in comparison to the spectral information of the sampling location. It is 

assumed that the soil sample is representative of the direct surrounding areas.  

Due to the analysis of the STDs of all bands of all pixel clusters, all clusters with a heterogenous 

land cover were identified to be excluded from the input database due to their possible spectral 

influences. The spatial/spectral filtering has a significant positive effect on the model accuracies. 

As shown in Figure 3.2.5, the distribution of the cluster STDs per reflectance band is 

representing a non-gaussian behavior, which indicates using the median and quantiles is more 

appropriate. Nevertheless, the selection of the threshold of the 2STD is equal to the 95% quantile 

for most bands. If the threshold is set using the 95% percentile, additionally six pixel clusters 

would be excluded and could provide an alternative to the presented method. 

In general, the link between EO data with a pixel resolution of several meters and point soil 

samples provides a challenge for a wide variety of modeling purposes as point information is 

related to a larger area. The spectral/spatial filtering technique presented can help to identify, in 

particular, pixels that are not completely within a field boundary and therefore may contain a 

mixture of several spectral information (e.g., bare soil and vegetation at the edges of fields) for the 

sample point. As spectral neighborhood relationships of the pixel to which a soil sample is 

assigned are included in the assessment, the method can also be applied to other areas and is 

independent of any region or sensor-specific characteristics. The method shown is a simple and 

robust approach to exclude possibly disturbed pixels from the given data compilation. However, 

the applicability of the filtering technique has to be evaluated because it might not be best suited 

for larger or smaller pixel sizes. More suitable approaches that address the issue of linking point 

information to a pixel with the spatial extent of several meters should be explored. 

 

4.2 Data and Modeling 

In contrast to many other studies (Table 3.2.1), we used a bare soil composite consisting of a 

long time series of spaceborne Landsat imagery. Except for some case studies [25,37,43,48], all 

other models listed in Table 1 were built for single, cloudless multi- or hyperspectral scenes. In 

contrast, the SOC contents were predicted for a novel multispectral data source that was based on 

a large number of input scenes (14,061) for an area of nearly 130,000 km². Due to the long 

compositing period, all variabilities were included, and a stable mean SRC was provided. Small-

scale spatial differences due to seasonal soil moisture differences are minimized. Soil moisture 

differences can have a huge influence on hyperspectral and multispectral remote sensing analysis 

and are addressed by several authors [91–93]. It hampers the prediction of soil variables from the 

reflectance spectra [94]. However, the influence of the permanent soil moisture differences 

regarding the used SRC has to be investigated. 

For SOC modeling, three different ML algorithms were used and compared (Table 3.2.4, 

Figure 3.2.8). Overall, the RF showed the best model performances comparing the R2 (0.62–0.67), 

RMSE (1.23–1.31), RPD values (1.62–1.77) and CCC results (0.78) for the model validation. 

However, the results of the RF and PLSR are comparable. Several indices were implemented in 

order to improve the SOC modeling capabilities. The application of indices is a widely used 

technique in remote sensing analyses and helps to capture more information, such as band ratios 

and spectral indices that are, e.g., sensitive to differences in soil properties [44]. As indicated by 

the model performance (Figure 3.2.8), an improvement can be noted for all three algorithms with 

the additional use of indices. However, the influence on MLR and PLSR was higher compared to 

the RF results. In this context, the additionally performed 10-fold cross-validation (Table 3.2.4) 

showed that a selection of relevant features is not necessarily required for the different ML 
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algorithms. The PLSR and the RF results using RI_sel showed a small decrease in the model 

accuracies comparing the RI_all runs. 

The model performances (Figure 3.2.8) based on the SCMaP SRC were comparable to the SOC 

prediction capabilities presented by various authors (Table 3.2.1). However, we covered a 

distinctly larger area (except for [25]) with a lower soil point density. However, in almost all 

studies, lower RMSE values were reported for the SOC prediction. The SOC content available for 

the study area shows a large range (0.26% to 18.3%; Table 3.2.3). A few of the referenced studies 

were based on a comparable distributed SOC data range. The high RMSEs could be related to the 

wide range of SOC content in the study area, as indicated by the general underestimation during 

the calibration stage for high SOC values (Figure 3.2.8). For analyzing the influence of high SOC 

content, it could be considered to separate organic soils with naturally high SOC contents from 

mineral soils with lower SOC content. A split of the soil samples regarding their SOC distribution 

was not considered as there was a small number of soil samples with higher SOC contents (52 

samples; SOC content > 6%).  

The SOC model performance based on the SCMaP SRC (RPD = 1.24, RMSE = 1.77) was slightly 

higher compared to the accuracies presented in Table 3.2.1 based on multitemporal Sentinel-2 

(RPD = 1.4, RMSE = 0.34 [48], RPD = 1.06–1.68, RMSE = 0.209–0.363 [43], RPD = 0.99–1.53, RMSE 

= 0.253–0.545 [37]) or Landsat composites (RPD = 0.52–0.58, RMSE = 1.52–1.68 [25], RPD = 1.41, 

RMSE = 0.28 [48]). However, it must be emphasized that the RMSE’s shown are higher compared 

to the listed studies.  

Using a 30-year composite could hamper the mapping of SOC contents if changes occur in the 

investigation area over time. However, for Bavaria, an analysis of SOC changes of the permanent 

soil observation sites in Bavaria showed a constant behavior of the SOC contents with relatively 

low overall changes between 1986 and 2016 [86]. Therefore, the use of a 30-year composite to 

overcome seasonal soil moisture differences is a reasonable approach to model SOC contents for 

large geographical areas where SOC changes are limited. Although, further analysis of the 

compositing technique to overcome seasonal soil moisture differences has to be conducted also 

with respect to the length of the compositing period. Additionally, for the investigation of SOC 

changes, the applicability of shorter compositing lengths has to be considered. 

 

4.3 External Validation 

In addition to the cross and model validation, we conducted an external validation based on an 

independent dataset. The predicted and measured SOC contents were compared, and the mean 

difference was calculated to estimate the accuracy of the modeling. The comparison showed small 

mean differences for MLR, PLSR and RF (0.11% to 0.21%). However, the SOC distribution of the 

validation dataset indicated small differences in comparison to the calibration dataset. The 

calibration dataset stretches between 0.26% and 18.3%, whereas the validation dataset contained 

samples with SOC contents between 0.55% and 4.65%. Although the majority of the calibration 

data is represented by the validation samples, very low (0.11% to 0.25%) and very high (4.66% 

to 18.3%) SOC contents are not included in the validation dataset. The comparison of the 

predicted SOC contents with the external validation dataset showed a small overestimation of the 

modeled SOC contents Figure 3.2.9, which has to be considered in the interpretation for the 

prediction of the entire study area (Figure 3.2.10). 
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(a)           (b)               (c)  

Figure 3.2.11: The distribution of the number of cloudless scenes per pixel of the calibration (a) and external 
validation (b) dataset. Plot (c) of the error in prediction (based on the external validation dataset) and 
measured SOC [%] as a function of cloudless scenes. 

To address large-scale SOC predictions (national to European-wide), further standardized 

validation datasets are needed. However, large-scale SOC maps are mostly available at a lower 

resolution (250 m to 1 km) and have limited suitability as a basis for validation for the 30 m pixel 

resolution of the SCMaP SRC database. A different aspect that could be considered for validation 

is an internal quality measure provided by the number of cloudless scenes per pixel. The usable 

data availability can be taken into consideration for data validation [51,95]. For the calibration 

and the validation dataset, an analysis of the number of cloudless observations of all sampling 

pixels showed a similar distribution (Figure 11a,b). On average, 300 scenes were available for the 

pixels of the SOC measurements. Both datasets showed a smaller peak on 200 scenes. These pixels 

are located in areas where the data of one Landsat path row is available. The absolute number of 

input scenes is smaller there. The smaller peak at 500 scenes per pixel can be related to 

overlapping areas, where several Landsat path rows are intersecting. 

Figure 3.2.11c shows the link between the SOC differences and the distribution of cloudless 

scenes. The higher differences (< -2% and > 2%) cannot be related to fewer cloudless scenes per 

pixel as the overall average of 300. These findings indicate that SCMaP captured the exposed soils 

well at the validation sampling points, and the influence of potentially remaining clouds is 

minimized and seems not to have any influence. 

 

4.4 SCMaP SRC as Database for Modeling SOC Contents with High Spatial Resolution Covering 

Large Geographical Areas 

In comparison to existing SOC maps (e.g., OCTOP [15], Topsoil Soil Organic Carbon Map based 

on the LUCAS Soil datasets for EU25 [16] or SoilGrids [96]), SCMaP provides a novel database for 

the estimation of soil parameters. The compositing approach allows the investigation of all areas 

which show at least once a bare soil within the observed time period. As the approach was trained 

using a large database and was successfully validated using independent data, the transferability 

to large-scale applications is feasible. In addition, high-resolution analysis considering within or 

between field differences is still possible as the original Landsat pixel size (30 m) is preserved 

(Figure 12). 

As shown in Figures 3.2.10 and 3.2.12, for several areas, relatively high SOC contents were 

predicted by the RF model. Here, a former peat bog (“Königsmoos”) is located, which naturally 

shows higher SOC contents. Such organic soils naturally contain higher SOC contents (> 18.0%) in 

comparison to other soils. Most of these peatlands have been drained for agricultural use [97]. 

A comparison with the soil map 1:200,000 (BUEK200, Federal Institute for Geosciences and 

Natural Resources, BGR) showed that areas with high predicted SOC contents are mostly fens, 
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underpinning the correctness of the results. In addition, the qualitative SOC distributions shown 

in the study area are consistent with the results of SOC mapping in Bavaria shown in [90]. 

 

Figure 3.2.12: The spatial distribution of SOC contents for a subset of the investigation data. The prediction 
possibilities of field scale are visible. 

 

5. Conclusion 

The potential of the SCMaP SRC database derived from Landsat images between 1984 and 2014 

for large-scale applications with a high spatial resolution was evaluated. We used the SRC to model 

the spatial SOC distribution of exposed topsoils of croplands in Bavaria. The SRC was correlated 

with soil point measurements to quantify SOC contents for an area-wide mapping approach. We 

first developed a spatial/spectral filtering technique to address the challenge of linking a point 

soil sample to EO data with a pixel resolution of several meters. The results show that a 

spectral/spatial filtering of heterogenous pixel clusters is improving the SOC modeling. 

For SOC quantification, several ML algorithms were applied and compared. The RF showed the 

highest capabilities to model the SOC content in Bavaria (R2 = 0.67, RMSE = 1.24%, RPD = 1.77). 

Further, we determined that the use of additional spectral indices compared to the usage of 

reflectance data alone can improve SOC modeling. In addition to the model validation based on a 

subset of the data, the best model setups (RI_all) were applied to the entire test area and validated 

using an external independent dataset (n = 308). The differences between the measured and 
predicted SOC contents were minor for all three ML algorithms and showed the lowest differences 

for the RF (0.11% ± 0.56% SOC).  

The SCMaP SRC is a promising approach to predict the spatial SOC distribution for mapping a 

large geographical extent with high resolution at the farm or even the field scale. Nevertheless, for 

application on a larger scale, a validation approach has to be further developed. Several large-

scale SOC products are available, although these maps are distributed on a lower resolution in 

comparison to the SCMaP capabilities. 
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Appendix A 

 

Figure A1: The number of cloudless scenes per pixel for the total composite time (1984-2014) in the 
investigation area. 
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Figure A2: Standardized residuals of the model validation (30% of data points). 

 

Figure A3: Autocorrelation of the prediction residuals of the model validation (30% of data points). 
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Abstract: Soil Organic Carbon (SOC) is an indicator for soil degradation, soil health of 

croplands and has the potential to mitigate climate change. Induced by recent policy initiatives, 

awareness for high resolution SOC maps and monitoring of changes is increasing. To quantify 

SOC contents for area-wide mapping approaches with at least a field resolution, Earth 

Observation is a valuable data source. Compositing techniques of multi-temporal image 

archives are widely used to overcome the limitation of vegetation cover of fields during the 

overpass of the satellite. Comparing current bare soil compositing approaches, two aspects are 

of particular importance: 1) the index for bare soil selection and 2) the length of the 

compositing period.  

Here, we applied the Soil Composite Mapping Processor (SCMaP) to the Landsat archive data 

between 2005 and 2019 to optimize parameters for bare soil compositing using images 

covering Bavaria, Germany. We implemented three spectral indices (PV+BLUE, PV+IR2, and 

NBR2) for soil reflectance composite (SRC) generation in the SCMaP chain. A validation of the 

extracted bare soil dates with field observations and phenological information from the crop 

calendar showed a reliable extraction of bare soil dates for all three indices. Due to the crops 

in the investigation area spring and autumn months showed the highest proportion of correctly 

selected bare soil dates. We also analyzed the SOC modeling capabilities of different composed 

SRCs in combination with available legacy data. In comparison to a seasonal pre-selection of 

the scenes (spring and autumn months) included in the SRC, the different indices showed a 

minor influence on SOC modeling. Furthermore, we compared the SOC model capabilities for 

different SRC compositing lengths (3-, 5-, 7-, 10- and 15-years). Overall, PV+BLUE performed 

best (R²: 0.56 – 0.72, RMSE: 1.09 – 1.29%, RPD: 1.51 – 1.91). For PV+BLUE and PV+IR2 longer 

compositing lengths (from three to 15 years) resulted in an increase of the model accuracies 

and performances. However, for NBR2 this was not as clear. Based on the results at least a 5-

year compositing period is required for SOC monitoring purposes using Landsat data. 
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1. Introduction 

The resource soil is at the heart of the sustainability paradigm for human development [Bouma 

et al. 2019]. In particular, soil organic carbon (SOC) is a crucial soil parameter [Wiesmeier et al. 

2019], which can be seen as an indicator for soil degradation [Lorenz et al. 2019], soil health [Lal 

2016], and crop yields [Lal 2020]. Equally significant to mention is the fact that the organic carbon 

stocks in soils are considered as the largest terrestrial reservoirs in the global carbon cycle [Batjes 

1996, Jobbgay and Jackson 2000, Denman et al. 2007, Scharlemann et al. 2014] and are an 

essential parameter for controlling greenhouse gas dynamics [Roy et al. 2022]. Due to its critical 

role, a high spatiotemporal resolution of SOC distribution and its dynamics in farmlands is decisive 

for quantifying the role of SOC [Castaldi et al. 2021, Zhou et al. 2021]. In this context, standardized 

data with a high spatial resolution and a full coverage of large areas are particularly valuable [Jandl 

et al. 2014], but hardly available [Heuvelink et al. 2021]. In recent years, SOC contents have been 

intensively studied in croplands mainly using traditional methods based on laboratory analyses 

of soil samples collected in the field [Nocita et al. 2013]. Existing soil maps such as the Harmonized 

World Soil Database (1:5,000,000 [Nachtergaele et al. 2009]) or the pan-European SOC maps, 

provided by the European Soil Data Center (ESDAC [Jones et al. 2005, de Brogniez et al. 2015]), do 

not yet fulfill the high spatial resolution required for adequate monitoring. In general, the scale is 

too coarse (250 m to 1 km raster) for analysis at the farm or even the field scale. Several policies, 

such as the European Green Deal or the EU Soil Strategy for 2030 call for a monitoring program 

to investigate soil degradation and the general current negative trend of soil health [Montanarella 

and Panagos 2021]. Monitoring of SOC also in agricultural soils integrating new mapping 

strategies are addressed. Moreover, the detection of SOC changes requires high temporal 

resolution in addition to field-scale analysis. However, as Heuvelink et al. [2021] pointed out, 

there are only a few studies on modelling and mapping temporal variation in SOC. In fact, most 

maps and databases represent only SOC contents of a single time period. 

Earth Observation (EO) is a valuable data source for an area-wide soil mapping to distinguish 

patterns between or even within fields and is also applicable for monitoring over time. Especially 

spaceborne multispectral mapping missions (e.g., Landsat and Sentinel-2) allow estimations of 

SOC changes due to their recurring acquisitions. Several authors used hyperspectral [e.g., Ben-Dor 

et al. 2009, Bartholomeus et al. 2011, Bayer et al. 2016, Chabrillat et al. 2019] or multispectral 

datasets to derive SOC contents [e.g., Castaldi et al. 2019 b, Vaudour et al. 2019 b, Wang et al. 

2020]. They acquired reflectance values by the remote sensing instrument and correlated these 

with soil point information using spectral and/or digital soil modeling techniques. Mapping of 

soils and the subsequent SOC estimation is challenging due to temporal or permanent vegetation 

as well as crop residue cover [Dematte et al. 2018]. Compositing techniques of multi-temporal 

image archives are widely used to overcome the limitation of vegetation or residue cover of 

cropland fields during the overpass of the satellite [e.g., Hansen et al. 2011, White et al. 2014, 

Hermosilla et al. 2015, Diek et al. 2017, Griffiths et al. 2019, Loiseau et al. 2019, Adams et al. 2020, 

Dematte et al. 2020, Safanelli et al. 2020, Vaudour et al. 2021]. The spatiotemporal averaging of 

exposed soil occurrences allows the processing of a spatially enhanced data source for SOC 

modeling. In recent years several compositing techniques were developed and applied for soil 

analysis [e.g., Diek et al. 2017, Rogge et al 2018, Dematte et al. 2020, Castaldi et al 2021, Sorenson 

et al. 2021, Vaudour et al. 2021]. Comparing the available bare soil compositing approaches, two 

aspects are of particular importance: 1) the index, responsible for the selection of bare soils and 

2) the length of the compositing period.  
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A wide range of indices have been used for bare soil compositing. Vegetation indices such as 

the Normalized Difference Vegetation Index (NDVI), adapted NDVIs and other spectral indices 

such as the Normalized Burn Ratio 2 (NBR2) or the Bare Soil Index (BSI) have been applied in 

different geographical regions and temporal setups. In particular, a combination of the NDVI and 

the NBR2 is widely used for bare soil detection in different areas based on multispectral Sentinel-

2 [e.g., Castaldi et al. 2021, Dvorakova et al. 2021, Vaudour et al. 2021, Mzid et al. 2022] or Landsat 

imagery [e.g. Dematte et al. 2020, Safanelli et al. 2020, Zepp et al. 2021 b, Mzid et al. 2022]. A pre-

selection of valuable scenes is pursued by various approaches, also concerning additional datasets 

such as soil moisture products [e.g., Vaudour et al. 2019 b, Urbina-Salazar et al. 2021] or the crop 

phenology [Dvorakova et al. 2021]. According to the efforts made a composite containing the 

largest number of real and undisturbed exposed soil dates is best suited for SOC modeling. In this 

context, the question is, if the index (-combination) used, correctly extracts the acquisition dates 

to be included in the SRC, i.e. fields which are bare, smooth and show dry soils. Furthermore, 

multispectral images such as Landsat data do not provide a clear spectral separation between bare 

soils and dry vegetation [Asner and Heidebrecht 2002, Okin 2007, Malec et al. 2015, Dematte et 

al. 2018]. However, many authors have shown that a strict threshold for compositing allows to 

minimize this influence [Dematte et al. 2018, Tziolas et al. 2020, Sorenson et al. 2021, Vaudour et 

al. 2021]. This question will become even more important as the proportion of conservation tillage 

systems increases [Dang et al. 2020] and the time windows during which the soil is bare become 

shorter. Additionally, the influence of different indices on the selection of bare soil dates and their 

effects on SOC modeling are barely investigated. Both aspects are addressed here.  

Zepp et al. [2021 b] developed a SOC modeling approach for cropland topsoils of Bavaria using 

a 30-year SRC (1984-2014) based on the Soil Composite Mapping Processor (SCMaP) approach 

for bare soil compositing. We showed good modeling accuracies and performances for the test 
area. However, to determine repeatable SOC contents also for modeling purposes, for instance to 

address the current political requirements, shorter compositing periods are needed. Especially, 

to identify SOC dynamics linked to changes in agricultural management. Questions such as which 

compositing length results in the most accurate modeling of soil parameters or what is the 

shortest reliable compositing length using Landsat data for SOC modeling have so far only been 

addressed by a small number of studies. E.g., Castaldi et al. [2021] compared topsoil parameter 

model capabilities using bare soil composites of one, two and three years based on Sentinel-2 and 

Landsat 8 data. For long term SOC monitoring, the Sentinel-2 time series do not yet provide a 

sufficient long database. In this regard, we investigate the potential of different compositing 

lengths for SOC estimation to determine how the long Landsat time series can be used for long-

term SOC quantification purposes and monitoring pursuits. 

The overall scope of the paper is to optimize the parameters for SRC generation for recurrent 

assessments of SOC contents using Landsat data considering the reliability of the selection of 

exposed soil dates. To address this question the specific objectives of this study are: 1) to compare 

the exposed soil dates derived by SCMaP to times, when a field is likely to be bare (based on the 

crop calendar and phenological observations), 2) to investigate the influence of different indices 

on exposed soil extraction, 3) to analyze the impact of different indices for topsoil SOC prediction 

in Bavaria, and 4) to evaluate which compositing length and seasons allow the most accurate 

prediction of SOC contents. 
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2. Materials and Method 

2.1 Study Area 

The study area comprises about 130,000 km² and covers most of the Federal State of Bavaria 

and adjacent regions in southeast Germany (Figure 3.3.1). Various landscapes are covered in the 

study area. The parts south of 48°N were excluded as in this region the mountain range of the Alps 

is located and permanent grassland is the dominant land use.  

The elevation is between 100 m and 1,000 m above sea level. The mean annual temperature 

ranges between 6°C and 10°C and the precipitation between 551 mm and 1,800 mm per year. 

Predominant soils are Cambisols, Luvisols, Stagnosols, Gleysols and Leptosols [Wiesmeier et al. 

2013, 2014 a, b] according to the World Reference Base for Soil Resources [IUSS Working Group 

WRB 2015]. The major land use is cropland, where mainly winter crops are cultivated (wheat, 

barley, and rape) [Bayerisches Landesamt für Statistik 2021]. Further summer crops such as sugar 

beet, summer wheat or corn are also common. 

 

Figure 3.3.1: Study area in southern Germany and location of the soil samples (n = 1,251) for soil organic 
carbon (SOC) modeling. 

 

2.2 SCMaP SRC 

2.2.1 SCMaP approach 

The SCMaP (Soil Composite Mapping Processor) processing chain [Rogge et al. 2018] allows 

the generation of bare soil reflectance composites (SRC) for individually determined time periods 

covering different years. The operational SCMaP chain can provide SRCs containing all pixels in a 

given time period showing at least once a bare soil. Per pixel all reflectances of all bare soil 

occurrences are averaged per band over the compositing period. Here, the SRC as input for SOC 

modeling was processed using all available Landsat-5 ETM (from 2005 to 2011), Landsat-7 ETM+ 

(from 2005 to 2019) and Landsat-8 OLI (from 2015 to 2019) Level 1C collection scenes [Wulder 

et al. 2019] covering the study area. Due to the low solar elevation angle, no scenes for January 
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and December were used. The same standardized pre-processing steps were applied to all scenes 

of all sensors. The Atmospheric Topographic Correction (ATCOR) software [Richter and Schläpfer 

2014] and the established FMask algorithm [Zhu and Woodcock 2012, Zhu et al. 2015] were used 

for atmospheric correction and for cloud, cloud shadow, and snow pixel detection. The SCMaP 

approach requires two thresholds for bare soil selection which are set based on the spatial and 

temporal behavior of vegetation index composites. The application of the two thresholds allows 

separating exposed soils from all other land cover types such as permanent vegetation (e.g., 

grasslands or forests) and permanent non-vegetated land cover types (e.g., urban or water). The 

derivation of the thresholds is based on an automated technique using constant landcover classes 

over time (CORINE Land Cover data) and is described in detail by Zepp et al. [2021 a]. 

 

2.2.2 Indices 

For the SRC generation, bare soil pixels were selected from the multitemporal Landsat 

database by calculating spectral index values. Originally, SCMaP was developed using an adapted 

vegetation index (PV+BLUE, equation (1)) extending the NDVI [Rouse et al. 1974]. The blue 

reflectance band of PV+BLUE was included to minimize the remaining haze effects not filtered 

adequately by the preprocessing steps [Rogge et al. 2018]. A wide variety of alternative spectral 

and/or vegetation indices to extract bare soil pixels are discussed in the literature. Here, we 

implemented two further indices in the SCMaP processing chain to test their influence on bare soil 

extraction and on the SOC modeling capabilities of the resulting SRCs. Equation (2) describes an 

alternative, NDVI based index (PV+IR2) [Heiden et al. 2022]. Instead of the blue reflectance band 

the second reflectance band, of the shortwave infrared wavelength region (SWIR) is used. 

Especially for soil analysis, the SWIR spectral ranges (1.300 – 2.500 nm) provide several 

important absorption features as here interactions between soil components and the infrared 

radiation occur [Ben-Dor and Banin 1995, Ben-Dor et al. 1997, Chabrillat et al. 2002, 

Bartholomeus et al. 2008, Gomez et al. 2008, Gholizadeh et al. 2021, Mzid et al. 2022]. Additionally, 

the Normalized Burn Ration II (NBR2, van Deventer et al. 1997) was implemented for SRC 

generation. The NBR2 (equation 3) is widely used for the derivation of bare soils for single scenes 

and the derivation of bare soil composites for soil modeling purposes [e.g. Dematte et al. 2018, 

Castaldi et al. 2019 a, Dvorakova et al. 2020, Safanelli et al. 2020].  

The indices are calculated regarding the following equations: 

𝑃𝑉 + 𝐵𝐿𝑈𝐸 =  
𝜌𝑁𝐼𝑅−𝜌𝑅𝑒𝑑

𝜌𝑁𝐼𝑅+𝜌𝑟𝑒𝑑
+

𝜌𝑁𝐼𝑅−𝜌𝐵𝑙𝑢𝑒

𝜌𝑁𝐼𝑅+𝜌𝐵𝑙𝑢𝑒
      (1) 

𝑃𝑉 + 𝑆𝑊𝐼𝑅𝐼𝐼 =  
𝜌𝑁𝐼𝑅−𝜌𝑅𝑒𝑑

𝜌𝑁𝐼𝑅+𝜌𝑟𝑒𝑑
+

𝜌𝑁𝐼𝑅−𝜌𝑆𝑊𝐼𝑅𝐼𝐼

𝜌𝑁𝐼𝑅+𝜌𝑆𝑊𝐼𝑅𝐼𝐼
     (2) 

𝑁𝐵𝑅2 =  
𝜌𝑆𝑊𝐼𝑅𝐼−𝜌𝑆𝑊𝐼𝑅𝐼𝐼

𝜌𝑆𝑊𝐼𝑅𝐼+𝜌𝑆𝑊𝐼𝑅𝐼𝐼
            (3) 

where 𝜌 is the reflectance [%] of the Blue, Red, NIR (near Infrared) and IR (shortwave infrared) 

spectral regions (LT04, LT05, LE07: Blue = Landsat Band (B) 1, Red = B3, NIR = B4, IR1 = B5, IR2 

= B7; LC08: Blue = B2, Red = B4, NIR = B5, IR1 = B6, IR2 = B7). 

For each index, the required set of thresholds for SRC generation was derived following the 

scheme described by Zepp et al. [2021 a]. 

2.2.3 Temporal Settings 

Different data setups for SRC compositing periods were prepared. First, all available scenes 

(February to November) for the compositing period 2015-19 (5Y) were used for SRC generation 
(SRCfull). Additionally, a seasonal SRC was processed comprising a combination of spring (March 
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to May) and autumn scenes (August to October), referred to as SRCspring/autumn. The SRCfull and the 

SRCspring/autumn were processed using all three indices (PV+BLUE, PV+IR2 and NBR2). In addition 

to the 5Y SRCspring/autumn, SRCs comprising a varying number of years were processed for the 

spring/autumn months. A 15-year period covering the years 2005 to 2019 (15Y), a 10-year period 

covering the years 2010 to 2019 (10Y), a seven-year period covering the years 2013 to 2019 (7Y), 

and a three-year period covering the years 2017 to 2019 (3Y) were prepared (Table 3.3.1). 

Table 3.3.1: Structure of temporal (3 to 15 years) and seasonal (full = February to November, spring/autumn 
= March to May and August to October) compositing setups per index (PV+BLUE, PV+IR2 and NBR2) for SRC 
generation. 

 full spring/autumn 

time period PV+BLUE PV+IR2 NBR2 PV+BLUE PV+IR2 NBR2 

2005-19 (15Y)    x x x 

2010-19 (10Y)    x x x 

2013-19 (7Y)    x x x 

2015-19 (5Y) x x x x x X 

2017-19 (3Y)    x x X 

 

The 5Y period was chosen from 2015-19 in line with Zepp et al. [2021 a] as this period was 

used here for validation of the resulting exposed soil mask to reference datasets for entire 

Germany. In addition, this period corresponds to the temporal coverage of the available validation 

data. Starting in 2019, the different composition lengths of three (2017-19), seven (2013-19), ten 

(2010-19), and 15 years (2005-19) were set backwards. 

 

2.3 Available bare soil dates and validation approach 

For the validation of the identified exposed soil dates, two different datasets were available. 

The Technical University of Munich provided a dataset, referred to as Ref1, containing specific 

sowing and harvesting dates of adjacent fields in Bavaria for the years 2016, 2017 and 2018. The 

locations were intersected with the SRCfull (2015-19) for identification of the fields covered by the 

SRC. For the resulting 43 fields, four SRC pixels were selected in each field, ensuring a location 

completely within the field border. For each field pixel set, bare soil dates were overlapped and 

all single occurrences were compared to the sowing and harvesting dates of the respective fields. 

The comparison was performed for all three indices. 

A second validation dataset was prepared using the phenological information of the German 

national meteorological service (Deutscher Wetterdienst, DWD). The DWD is responsible for the 

provision of meteorological and climatological services [Kaspar et al. 2019] and provides a long 

history of phenological reports since 1951 [Kaspar et al. 2015]. About 1,600 phenological phases 

of wild and cultivated plants are captured according to a standardized guideline for entire 

Germany [Kaspar et al. 2015], are publicly available [Kaspar 2019], and are often used for the 

extraction of phenological windows for any available year and user-defined region [Möller et al. 

2020]. Such kind of standardized information is relevant for a wide range of application in 

agricultural context [e.g., Gerstmann et al. 2016, Möller et al. 2017, Heupel et al. 2018, Möller et al. 

2019, Asam et al. 2022, Buchelli et al. 2022]. For the analysis, the phases sowing, start of growing 

season (emergence), and harvesting were selected as relevant classes. These phases mark periods 

when a field is likely to be bare (e.g. seedbed conditions after sowing). Additionally, the ripening 

was added, as from this point until harvesting non-photosynthetic active vegetation (NPV) is 

possibly visible from the satellite. For the six main crop types in Bavaria (winter wheat, sugar beet, 

corn, rape, winter barley and summer barley [Bayerisches Landesamt für Statisik 2021]), the 
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selected phenological phases of 60 stations equally distributed across the study area were 

extracted per crop type and year (2015 to 2019). The dates marking the begin and end of the 

selected phases between 2015 and 2019 of all 60 stations were averaged per crop type and year. 

Before the phenological phase of sowing and after the phases emergence and harvesting, a buffer 

of 14 days was empirically added to the periods of exposed conditions, as tillage before sowing 

and after harvesting create a bare soil. After emergence of the crops, still the majority of soil per 

pixel is visible from the satellite for a certain period of time.  

The above described prepared phenological dates are then used to prepare the validation 

dataset, referred as to Ref2. For this purpose, 30 fields equally distributed across the study area, 

were selected. Within the observed 5Y period, the fields have a crop rotation consisting of the six 

main crops in Bavaria listed above. The information about the crop sequence was derived from 

the Integrated Administration and Control System (IACS) database. The IACS dataset contains 

detailed information on the spatial distribution and the main crops grown in each field on a yearly 

basis. However, no information about cover crops between two consecutive crops was available. 

Therefore, the time between two crops is treated as likely fallow. However, the bare soil dates 

obtained during this period must be considered with special care.  

For all 30 Ref2 fields, four SRCfull (2015-19) pixels were selected ensuring a location completely 

within the field borders to avoid external influences and mixtures with other field crops or 

adjacent land covers. All bare soil date occurrences of the selected four pixels per field were 

intersected. To validate the extracted exposed soil dates, these were compared to the information 

of Ref2 when a field was likely to be in bare conditions based on the crop calendar. The 

comparison was comprised for all three indices. 

For the 30 Ref2 fields, we additionally investigated the behavior of the index and the derived 

thresholds responsible for the classification of a pixel as bare soil according to the phenological 

phases. As described in section 2.2.1 and in detail in Zepp et al [2021 a], within the SCMaP chain 

two thresholds are defined to select bare soil pixels. The minimum threshold (THmin) selects the 

bare soil pixels by differentiating between permanently vegetated pixels and pixels showing an 

alternating vegetation cover. In this regard, we further analyzed the behavior of the index ranges 

when a field is in bare conditions, covered by vegetation, in the ripening phase, and during the 

period in which the field is likely to be under fallow conditions (no available phenological 

information) linked to THmin. 

 

2.4 SOC modeling approach 

The SOC modeling approach was described in detail by Zepp et al. [2021 b]. A Random Forest 

Regression (RF) [Breimann 2001] algorithm was applied to model SOC contents in the cropland 

topsoils. The RF is a widely used technique in soil analyses [e.g., Wiesmeier et al. 2011, Ward et al. 

2019, Dharumarajan and Hegde 2020, Luo et al. 2022] and especially for SOC modeling [Castaldi 

et al. 2019 b, Vaudour et al. 2019 a, b, Möller et al. 2022, Zepp et al. 2021 b, Sakhaee et al. 2022]. 

The Scikitlearn machine learning library for Python [Pedregosa et al. 2011] was used. For each 

SRC period and index a RF was trained and validated and the hyperparameters n_estimators, 

max_features, max_depth, min_sample_split, min_samples_leaf and random_state were optimized 

individually.  

For SOC modeling, a legacy database of 1.385 soil samples was available. The database 

comprised soil samples collected between 1984 and 2016 by the Bavarian Environment Agency 

(LfU) and the Bavarian State Research Center for Agriculture (LfL). Additionally, topsoil cropland 

samples collected in the Land Use/Land Cover Area Frame Survey (LUCAS) [Fernandez-Ugalde et 

al. 2022] were used. A detailed description and the pre-processing can be found in Zepp et al. 
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[2021 b]. Per soil sample, the SRC reflectance and its eight neighboring pixel reflectances were 

averaged to minimize small scale disturbances. For all pixel clusters, a spectral / spatial filtering 

[see Zepp et al. 2021 b] was applied to exclude heterogenous pixel clusters as here the possibility 

of any external influence or data artefacts (e.g., mixed spectra of soil and portion of adjacent land 

cover) impacting the cluster is high. Filtering is especially important when intersecting EO data, 

which is characterized by a relatively large pixel size (Landsat = 30 m), with point data. This 

resulted in a soil database with 1.251 samples (Figure 3.3.1). 

The soil dataset was split into a calibration (70%) and a validation subset (30%). Widely used 

accuracy and performance measures were used to evaluate the model performances and to 

determine the influence of indices and compositing periods for SRC generation for SOC modeling. 

For this purpose, the coefficient of determination (R², from Python sklearn.metrics), the Root 

Mean Square Error (RMSE) and the Ratio of Performance to Derivation (RPD) were used. The RPD 

[Chang and Laird 2002], as a measure to estimate a model’s quality, is mainly provided to allow a 

comparison of the results with those in the literature.  

All SRCs (full and spring/autumn) were intersected with the soil database and the overlap of 

the points was used as input for SOC modeling. In a first step separate SOC models for SRCfull and 

SRCspring/autumn for the three indices (PV+BLUE, PV+IR2 and NBR2) for the 5Y period were trained 

and validated. Subsequently the capabilities of different time periods for all three indices based 

on spring and autumn scenes were compared (Table 3.3.1). As described above, besides the 5Y 

compositing period, 3Y, 7Y, 10Y and 15Y compositing periods were prepared and processed. For 

each period a separate RF model was trained and validated.  

 

3. Results 

3.1 Validation of exposed soil dates 

The comparison of bare soil dates with Ref1 is shown in Figure 3.3.2. Here, the periods between 

sowing and harvesting dates are marked in green. Additionally, the bare soil dates per index are 

visualized. For PV+BLUE, a total of 190 dates of bare soils were identified. In detail, 67 dates were 

observed within the period with photosynthetically active vegetation cover between sowing and 

harvesting. 146 dates were determined before sowing or after harvesting. For PV+IR2, a total of 

191 dates of bare soils were captured. Here, 67 dates were in the vegetation period between 

sowing and harvesting and 145 dates before sowing or after harvesting. For NBR2, in total 118 

bare soils dates were observed, which is less than using PV+BLUE and PV+IR2. 45 dates were 

identified within the growing season between sowing and harvesting and 73 dates before sowing 

or after harvesting. 

Also, the influence of the crop type was investigated. Winter wheat, corn and potato were 

cultivated on the fields in the available period. For the eleven winter wheat fields, only bare soil 

dates before sowing and after harvesting were identified. There was no bare soil observation 

during photosynthetically active vegetation cover. Except for field 1 for no other corn field there 

was a bare soil observation before the harvesting date. Mainly bare soils were identified before or 

shortly after the sowing date when the soils are likely bare. However, for field 8, 30 and 32 several 

bare soil dates between sowing and harvesting were captured, when the fields are likely to be 

covered by a growing crop and the visibility of bare soil from the satellite is unlikely. For the fields, 

where corn was cultivated more bare soil dates were identified after harvesting in comparison to 

the fields, where winter wheat was cultivated. Additionally, more bare soil dates were identified 

before or within a short period of time after sowing. For the fields 1, 3 and 7, where two 

consecutive crop periods were available, no bare soil occurrence was determined between a 
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winter and a summer crop (Figure 3.3.2). The bare soils were detected a few days after harvesting 

or before sowing when the soil is likely bare.  

 

Figure 3.3.2: Bare soil dates based on PV+BLUE, PV+IR2 and NBR2 for 43 sample fields of Ref1. The green bars 
mark the vegetation periods from sowing to harvesting dates for the cultivated crops winter wheat, corn and 
potato. The grey dots show the further derived bare soil dates in the observed time range, which are not related 
to the vegetation periods where sowing and harvesting dates were available. 

Table 3.3.2 lists the temporal distribution of the identified bare soil dates before and after 

sowing and harvesting in detail. For all three indices, a similar number of bare soil dates was 

selected before and directly after sowing. The majority of bare soil dates was identified after 

harvesting for all three indices. Within the first 14 days after harvesting, 13.2% of bare soil dates 

for PV+BLUE, 12.6% for PV+IR2 and 11.0% for NBR2 were observed. 11.6% of the identified bare 

soil dates for PV+BLUE, 11.5% for PV+IR2 and 11.0% for NBR2 between 15 and 21 days after 

harvesting. Additionally, more than 22 days after harvesting 21.1% of bare soil dates for 

PV+BLUE, 20.5% for PV+IR2 and 21.2% for NBR2 were captured. For PV+IR2 and NBR2 no scenes 

and for PV+BLUE only a small number of scenes was selected directly before harvesting, when the 

crops are in the ripening phase and the possibility of dry vegetation is high. 

Figure 3.3.3 shows the distribution of the predicted bare soil dates between 2016 and 2018. 

Per month the bare soil dates were summed for all 43 Ref1 test fields. Most of the bare soil dates 
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were detected in October (PV+BLUE: 38 dates (20.8%), PV+IR2: 43 dates (22.1%), NBR2: 26 dates 

(22.0%)). Additionally, a large number of bare soil dates was selected in the spring months (April, 

May and June) and in late summer (August and September). A small number of dates was observed 

in July and November and no dates were determined in February.  

Table 3.3.2: Number of bare soil dates before/after sowing and harvesting for the 43 Ref1 fields shown for all 
three indices. 

phase index < 14 days 15 – 21 days > 22 days 

before sowing 

PV+BLUE 19 3 15 

PV+IR2 17 4 18 

NBR2 12 3 7 

after sowing 

PV+BLUE 22 7 22 

PV+IR2 23 8 19 

NBR2 12 5 21 

before harvesting 

PV+BLUE 3 5 - 

PV+IR2 3 - 14 

NBR2 - - 7 

after harvesting 

PV+BLUE 25 22 40 

PV+IR2 24 22 39 

NBR2 13 13 25 

 

 

Figure 3.3.3: Summed monthly distribution of exposed soil dates for all 43 Ref1 test fields determined using 
PV+BLUE, PV+IR2 and NBR2 (no scenes were used for January and December). 

Overall, the comparison of extracted bare soil dates between 2015 and 2019 to the selected 

penological data of Ref2 shows similar patterns (Figure 3.3.4) as the comparison with Ref1 (Figure 

3.3.2). The majority of bare soil dates are detected when the field is likely to be in bare conditions 

and visible from the satellite. Most of the identified dates are at the beginning or end of the crop 

period, when the field is in seedbed conditions, until a few days after the emergence of the crops 

or directly after harvesting, when the soils are visible after tillage.  

PV+BLUE and PV+IR2 provide a similar number and distribution of extracted bare soil dates. 

Using NBR2, overall less bare soil dates were extracted. However, the dates based on NBR2 also 

predominantly correspond to the dates of PV+BLUE and PV+IR2 and were not selected on 

additional times during the year. Overall, 490 bare soil dates were identified for PV+BLUE, 460 

for PV+IR2, and 219 for NBR2 between 2015 and 2019. Due to the crop rotation, fallow land (or 

cover crops, unfortunately not documented in the census) of several months between winter and 
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summer crops occurred up to three times in the observed time (Figure 3.3.4). Here, several bare 

soils were extracted for all three indices. 

 

Figure 3.3.4: Bare soil dates based on PV+BLUE (purple), PV+IR2 (light blue) and NBR2 (orange) between 2015 
and 2019 in comparison to phenological information of Ref2. The different colored bares mark the time periods 
the fields are covered by vegetation (green, starting 14 days after emergence until ripening), the stage of 
ripening (yellow), the field is in bare conditions (brown, 14 days before sowing until 14 days after emergence 
and from harvesting until 14 days after harvesting) and the stages between two crops (no information about 
cover crop is given (grey)). 

For PV+BLUE 43.1%, for PV+IR2 46.3% and for NBR2 51.1% of the bare soil dates were within 

the periods the fields are likely uncovered (Figure 3.3.5). More precisely, 34.1% for PV+BLUE, 

35.0% for PV+IR2 and 37.0% for NBR2 of the bare soil dates were determined within 14 days 

before sowing until 14 days after emergence (Figure 3.3.5 – class sowing). 8.9% for PV+BLUE, 

11.3% for PV+IR2 and 14.2% for NBR2 of the bare soil dates were selected from harvesting until 

14 days after the harvesting date (Figure 3.3.5 – class harvesting). Due to the rotation of winter 

and summer crops 45.3% for PV+BLUE, 44.6% for PV+IR2 and 43.4% for NBR2 bare soils were 

identified in the period between two crops (more than 14 days before sowing and more than 14 
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days after harvesting) (Figure 3.3.5 – class fallow). Some bare soil dates were identified when the 

field is covered with photosynthetically active vegetation (Figure 3.3.5 – class veg). For PV+BLUE 

8.6%, for PV+IR2 6.5% and for NBR2 3.7% of the bare soils within 2015 and 2019 were extracted 

at least 14 days after emergence. However, none of the identified dates was at the end of the 

vegetation period, close to the ripening. The phenological phase between ripening and harvesting 

is a potential source of false positive bare soils as here, due to the multispectral sensor the 

undetected presence of non-photosynthetic active vegetation may occur, resulting in a 

misclassification of bare soils. A small percentage of bare soils were detected during the ripening 

phases. For PV+BLUE 3.1%, for PV+IR2 2.6% and for NBR2 1.8% of the bare soil dates were within 

the ripening phases before the harvesting date (Figure 3.3.5 – class ripening).  

 

Figure 3.3.5: Cumulated bare soil dates within the summarized phenological phases (sowing, veg = period with 
photosynthetically active vegetation cover, ripening, harvesting, fallow) of Ref2 for PV+BLUE, PV+IR2 and 
NBR2. 

 

Figure 3.3.6: Summed number of bare soil dates for PV+BLUE, PV+IR2 and NBR2 per month between 2015 and 
2019 for the 30 Ref2 test fields (no scenes were downloaded for January and December). 

Most of the bare soils between 2015 and 2019 were selected between August and October 

(August - PV+BLUE: 24.4%, PV+IR2: 26.9%, NBR2: 32.44%; September - PV+BLUE: 20.4%, 

PV+IR2: 19.4%, NBR2: 17.8%; October - PV+BLUE: 32.4%, PV+IR2: 17.8%, NBR2: 19.1%) (Figure 

3.3.6). For all other months less than 10% of bare soil dates were identified per month. The 

smallest number of scenes were selected for February, June and November (February - PV+BLUE: 

4.2%, PV+IR2: 3.2%, NBR2: 1.8%; June - PV+BLUE: 2.2%, PV+IR2: 1.7%, NBR2: 0.4%; November 

- PV+BLUE: 3.8%, PV+IR2: 3.4%, NBR2: 2.2%). In comparison to the validation of bare soil dates 

with Ref1 (see Figure 3.3.3) less bare soil dates were determined in the first half of the year 

compared to the second half of the year for the 30 Ref2 fields. This is related to the fact, that the 



Scientific Publication III 
 

83 
 

Ref2 fields contain more winter crops, while the 43 Ref1 fields are dominated by summer crops 

(mainly corn). 

Figure 3.3.6 shows the range of the indices (PV+BLUE, PV+IR2 and NBR2) of pixels when the 

fields are likely to be bare (sowing, harvesting), covered by photosynthetically active vegetation 

(veg), during ripening and under likely fallow conditions (between two crops). The dashed lines 

show the per index determined THmin, responsible for bare soil selection in the SCMaP chain. All 

occurrences below the THmin are included as bare soils and are averaged for the respective SRC. 

The periods show variable ranges for all three indices. The period with photosynthetic active 

vegetation cover was dominated by higher indices in comparison to the times when the fields 

show bare conditions (between sowing and emergence or after harvesting). During ripening, 

nearly all occurrences were above the THmin and are thus correctly not included into the SRC. A 
high proportion of dates of the bare periods (sowing, harvesting) fall below the respective THmin 

for PV+BLUE and PV+IR2. The NBR2 allows less data for the composite processing. However, this 

indicates that a higher proportion of uncovered soils were not selected as bare soils and were thus 

not included into the SRC. Even though, a large number of bare soils were detected in between 

two crops, Figure 3.3.7 indicates a good exclusion of these pixels, as the majority of pixels is not 

included to the SRC by THmin. 

 

Figure 3.3.7: Index ranges for PV+BLUE (indigo), PV+IR2 (light blue) and NBR2 (orange) for all cloudless 
scenes within the different summarized phenological phases. Shown are the 30 sample fields of Ref2 dataset. 
The dashed lines indicate the derived THmin used for bare soil definition of the respective index. All 
occurrences below THmin are included to the SRC generation. 

 

3.2 Influence of spectral indices and SRC setup on SOC modeling 

Although, the number of soil sampling sites between 2015 and 2019 depends on the index and 

the months included in the SRC, the distribution of the SOC contents were similar (Table 3.3.3). 

For all three indices the same minimal and maximal SOC contents (0.26% - 18.3%) are observed 

for SRCfull and SRCspring/autumn. The mean SOC contents for the different setups varied slightly and 

ranged from 2.09% (SRCfull – PV+BLUE) to 2.21% (SRCspring/autumn – NBR2). All indices and temporal 

settings provided a large number of intersecting soil samples with the respective SRC (n = 957 – 

1,021). The number of available samples for modeling based on SRCspring/autumn was slightly lower 

in comparison to SRCfull for all three indices. 

The different indices for SRC generation had a minor influence on the SOC modeling (Table 

3.3.3). For all three indices similar R² and RPDs were identified. The RMSE varied slightly. 

Furthermore, the use of SRCspring/autumn provided better model performances, which was indicated 

by increasing R² and RPD for the model validation. However, the model performances for SRCfull 

and SRCspring/autumn were comparable for the three different indices.  
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Table 3.3.3: Intersecting samples for modeling, SOC statistics and model performances based on SRCfull and 
SRCspring/autumn for the compositing period of 2015-2019 for all three tested indices. Shown are the R², RMSE and 
RPD values of model validation (30% of input data). 

2015-19 index samples 
SOC min 

[%] 
SOC max 

[%] 
SOC mean 

[%] 
R² 

RMSE 
[%] 

RPD 

 PV+BLUE 1,021 0.26 18.30 2.09 0.59 1.00 1.57 

SRCfull PV+IR2 1,018 0.26 18.30 2.15 0.59 1.22 1.57 

 NBR2 1,012 0.26 18.30 2.21 0.60 1.28 1.58 

 PV+BLUE 989 0.26 18.30 2.11 0.67 1.29 1.73 

SRCspring/autumn PV+IR2 957 0.26 18.30 2.14 0.66 1.23 1.71 

 NBR2 1,001 0.26 18.30 2.21 0.64 1.05 1.67 

 

3.3 Temporal influence on SOC modeling 

Overall, 15Y SRCspring/autumn based on different indices and compositing periods were built for 

SOC modeling (Table 3.3.4). The 3Y compositing period provided the smallest number of 

intersecting soil samples (total number of sample points is 932: PV+BLUE, 832: PV+IR2, 884: 

NBR2) and the 15Y period the largest number of soil samples for SOC modeling (total number of 

sample points is 1,095: PV+BLUE, 1,070: PV+IR2, 994: NBR2). However, still a valuable amount of 

soil samples (> 832: PV+IR2) was available for SOC modeling using the shortest compositing 

period. All periods and indices showed similar SOC distributions and were thus comparable. While 

the minimum and maximum SOC values were the same for all periods and indices, the mean SOC 

contents ranged between 2.1% (3Y – PV+IR2) and 2.6% (15Y – PV+BLUE).  

Table 3.3.4: Number of samples, SOC statistics and accuracy parameters for SOC modeling based on different 
compositing lengths using PV+BLUE, PV+IR2 and NBR. The given R², RMSE and RPD values represent the model 
validation based on 30% of the available samples. (In bold the best model per index is given). 

time 
period 

index samples 
SOC min 

[%] 
SOC max 

[%] 
SOC mean 

[%] 
R² 

RMSE 
[%] 

RPD 

 PV+BLUE 1,095 0.26 18.30 2.63 0.72 1.16 1.91 

15Y PV+IR2 1,070 0.26 18.30 2.20 0.71 1.04 1.87 

 NBR2 994 0.26 18.30 2.18 0.68 1.12 1.76 

 PV+BLUE 1,055 0.26 18.30 2.15 0.69 1.14 1.79 

10Y PV+ IR2 1,033 0.26 18.30 2.17 0.66 1.44 1.73 

 NBR2 1,008 0.26 18.30 2.18 0.61 1.34 1.61 

 PV+BLUE 995 0.26 18.30 2.14 0.65 1.09 1.68 

7Y PV+ IR2 981 0.26 18.30 2.16 0.61 1.42 1.60 

 NBR2 1,005 0.26 18.30 2.18 0.61 1.21 1.60 

 PV+BLUE 989 0.26 18.30 2.11 0.67 1.29 1.73 

5Y PV+ IR2 957 0.26 18.30 2.14 0.66 1.23 1.71 

 NBR2 1,001 0.26 18.30 2.21 0.64 1.05 1.67 

 PV+BLUE 932 0.26 18.30 2.09 0.56 1.19 1.51 

3Y PV+ IR2 832 0.26 18.30 2.05 0.61 1.29 1.60 

 NBR2 884 0.26 18.30 2.14 0.66 1.33 1.70 

 

Furthermore, the SOC model performances based on 30% validation data are given. Overall, 

PV+BLUE and PV+IR2 performed better in comparison to NBR2. Additionally, for PV+BLUE, 

PV+IR2 and NBR2 a longer compositing period resulted in better model performances. 

SRCspring/autumn 15Y allowed the most accurate modeling of SRC with the highest R² values 
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(PV+BLUE: 0.72, PV+IR2: 0.71, NBR2: 0.68). From 3Y to 15Y the R² and RPD values were mostly 

increasing with the acquisition period apart from the 7Y for PV+BLUE and PV+IR2. 

Using NBR2 for SRC processing showed variable modeling results without a trend of an 

increase of model performances with increasing length of the compositing period. However, the 

best model performances for NBR2 were observed for 15Y (R²: 0.68, RMSE: 1.12%) followed by 

3Y (R²: 0.66, RMSE: 1.33%). Even though, the RMSE for 3Y was relatively high in comparison to 

the other five longer compositing periods.  

 

4. Discussion 

4.1 Validation of exposed soil dates 

Most of the selected bare soil dates were located when field observations (Ref1) or the crop 

calendar (Ref2) show that the soil is likely to be exposed and visible from the satellite (e.g., when 

the field is in seedbed conditions, directly after sowing or tillage after harvesting). Similar results 

were obtained for a comparison of 73 fields in total with two different datasets across Bavaria 

where different crops (summer and winter) were cultivated (Figures 3.3.2, 3.3.3, 3.3.4, and 3.3.6). 

Furthermore, it was shown that the influence of different vegetation indices for bare soil selection 

was minor. However, NBR2 extracted less bare soil dates in comparison to PV+BLUE and PV+IR2. 

The temporal distribution of bare soil dates determined by NBR2 was comparable to the dates 

observed by PV+BLUE and PV+IR2. For all three indices the same standardized threshold 

determination was applied. The threshold determination for NBR2 in comparison to the two other 

tested indices results in a stricter limit for bare soil detection (Figure 3.3.7). The NBR2 threshold 

resulted in a lower number of exposed soil dates compared to the other indices. Castaldi et al. 

[2019 b] and Dvorakova et al. [2022] have shown, that the threshold for NBR2 can be a bit more 

relaxed for bare soil detection. These results can be taken as an indication to adjust the threshold 

determination for NBR2 in the SCMaP SRC generation process.  

Few bare soil dates were determined at the end of the growing season during the ripening 

phase, where the likelihood to find stubbles or NPV is high (Figure 3.3.5). Especially during the 

ripening phase, the risk for misclassification of NPV as bare soils is high. As also shown in Figure 

3.3.7 the thresholding method required for SRC generation indicates, especially for NBR2, a valid 

exclusion of scenes within the ripening phase (potentially influenced by NPV and crop residues). 

However, it has to be considered, that the ripening phase is the shortest phase and the chance for 

a cloudless Landsat observation is low due to the revisit time of 16 days. For the comparison with 

Ref1 (where only sowing and harvesting dates were available), a promising result is the fact, that 

only few bare soil dates were identified at the end of the vegetation period (before the harvesting 

date), when the possibility for a misclassification of bare soils and crop residues due to mature 

crops is high (Figure 3.3.2). A significant influence of the spectra of the resulting averaged SRC can 

thus be excluded. 

The comparison of Ref1 information to selected bare soil dates indicate that a separation of 

summer and winter crops was possible as the months, the bare soils were identified, were varying 

(Figure 3.3.2). Similar associations were found for the 30 Ref2 fields across Bavaria (Figure 3.3.4). 

Comparing bare soil dates to crop specific phenological phases, regimes of different crop types 

can be identified. Beside the clear separation of summer and winter crops, the scheme of the bare 

soil dates allows a separation e.g., between winter rape and winter wheat or winter barley as for 

rape the bare soil phase during tillage and seedbed preparation is earlier (Figure 3.3.8). The 

resulting regimes could be used for further analysis as e.g., crop type classification. However, the 

analysis also indicates that especially winter wheat is showing systematically misclassified bare 

soils in the months March to June when the fields are covered by vegetation. A comparison with 
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the results of other authors is barely feasible, since as i.e., Vaudour et al. [2022] point out, only 

very few papers provided details about surface condition, date of collection, crop types or crop 

rotations and management practices. An in-depth analysis of the behavior of bare soil selection 

has to be conducted in other regions to use the temporal distribution of bare soil dates for further 

classification. 

As shown by Vaudour et al. [2019 and 2021] and Dvorakova et al. [2021], the selection of the 

acquisition date is a co-determining factor for bare soil products as basis for SOC modeling. 

[Dvorakova et al. 2021] suggested the selection of scenes for bare soil detection following the 

greening up approach, when the vegetation index is about to exceed a certain threshold. According 

to this method, scenes detected immediately before an increase in NDVI are used. At this stage, 

the fields are in seedbed condition and the bare soils are visible from the satellite without any 

disturbances. The approach was developed for Sentinel-2 data in Belgium with temperate climate. 

However, as the revisit time of Sentinel-2 is higher, using Landsat too few scenes are available for 

this approach for change analysis or modeling purposes over shorter compositing periods. The 

periods would have to be significantly extended. Regarding the crop regime of the combination of 

winter and summer crops in Bavaria, scenes in spring and autumn provide the possibility of the 

mentioned approach. The scenes of the specific seasons potentially offer a high visibility of bare 

soils under optimal surface conditions, when an eventually occurring soil crust and crop residues 

have been plowed in and soils are in seedbed condition. Consequently, from March to May and 

August to September, the largest number of bare soils have been detected (Figures 3.3.3 and 

3.3.6). The months are representative for the season when the fields of summer and winter crops 

are prepared for sowing and the bare soil is likely visible from the satellite. 

Based on the above mentioned assumption, we summed the bare soil dates per combined 

phenological phases for 5Y SRCfull (Figure 3.3.9 a) and 5Y SRCspring/autumn (Figure 3.3.9 b) for the 30 

Ref2 test fields. Assuming that soils in the period with photosynthetically active vegetation cover 

(veg) or during the ripening phase are covered and not visible, bare soils selected in these phases 

are likely to be misclassified. A seasonal pre-selection of input scenes to the SRC reduces these 

numbers significantly (Figure 3.3.9 b). The amount of bare soil dates before the fields show 

vegetation cover (sowing) decrease slightly in comparison between SRCfull to SRCspring/autumn. A pre-

selection of scenes indicates a reduction of misclassified bare soil dates during the vegetative 

stage and ripening. 

During the period between a winter and a summer crop, several bare soil dates were selected 

(Figure 3.3.4). This was especially shown for the 30 Ref2 test fields. The combination of IACS data 

and large scale available phenological data did not provide a more precise identification of the 

field conditions in the periods between summer and winter crops. Information about cover crops 

cultivated between two consecutive crop periods was not provided, but would be a relevant 

information for the validation of the identified bare soils during the fallow periods. Additionally, 

information about cover crops is highly valuable and helps to understand the changes in SOC 

contents. As shown by Seitz et al. [2022], the use of cover crops can increase SOC storage in 

croplands. The pre-selection of spring and autumn scenes for bare soil identification reduces the 

bare soil occurrences during the fallow periods (Figure 3.3.9 b). Alternatively, the complete 

exclusion of the fallow periods based on IACS data for SRC processing is a possibility to reduce the 

potential misclassifications. It must be considered here, that especially for Landsat an exclusion 

of the relatively long fallow periods would imply a temporal decrease of potential input scenes for 

bare soil selection. The decision between too few data points and a good average of bare soil dates 

has to be analyzed further.  
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Figure 3.3.8: Bare soil dates based on PV+BLUE (purple), PV+IR2 (light blue) and NBR2 (orange) between 2015 
and 2019 in comparison to phenological information of Ref2 for the six main crop types. The colors mark the 
phenological phases, respectively the summarized periods, when the field shows bare conditions (brown), is 
covered by vegetation (green), during ripening (yellow) and between two crop periods when the field is likely 
under fallow conditions (grey). 
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Figure 3.3.9: Bare soil date for the summarized phenological phases (including temporal buffer) using a) all 
scenes for 5Y SRC generation and b) spring and autumn scenes for 5Y SRC generation for all three indices. 

Phenological phases as basis for the selection of time periods which are integrated to the 

SCMaP chain for SRCs processing can help to reduce the number of dates which are misclassified 

as bare soil. Here, we tested a pre-selection of seasons integrated to the SRC for the main crops in 

the study area. To transfer the local approach to different regions, the selection of seasons 

depending on the locally grown crops is too time consuming. Standardized datasets as input for 

SCMaP are required. For example, the PhenoWin approach [Möller et al. 2020], which provides 

spatially averaged phenological information for the common crop types in Germany, could be a 

valuable input. Per field the specific time periods, the field is showing bare conditions (i.e., 

visibility from the satellite), can be selected and only these scenes are then integrated to the 

SCMaP processing chain. However, an information about the spatial distribution of the crop types 
in the compositing period is mandatory, which is available at least for Sentinel-2 based crop 

species classifications since 2016 [Preidl et al. 2020, Asam et al. 2022, Blickensdörfer et al. 2022].  

 

4.2 Influence of spectral indices and seasonal SRC set up on SOC modeling 

Three indices (PV+BLUE, PV+ IR2 and NBR2) for SRC generation for the purpose of SOC 

modeling were tested and compared. The SRCs processed with the three indices showed minor 

influences on the accuracies and performances of the SOC models (Table 3.3.3). However, 

PV+BLUE showed the best model performances. Generally, for SOC modeling a reliable selection 

of bare soils integrated to the SRC is required and is controlled by a robust thresholding to 

separate bare soils from all other land cover classes. The results indicate, that the influence of the 

index for SRC generation thus influences the SOC modeling less than a valid selection of bare soil 

dates. As shown in the previous chapters, all indices extracted a similar distribution of bare soil 

dates integrated to the SRCs. Despite the fact that the NBR2, based on the thresholding strategy 

developed for SCMaP, more strictly selected bare soil dates, this appears not to be the decisive 

factor controlling SOC modeling. Also, the distribution of the dates is comparable to the NDVI 

based indices. However, Castaldi et al. [2019], Dvorakova et al. [2021], and Vaudour et al. [2021] 

reported better SOC modeling capabilities for stricter set NBR2 thresholds found for the use of 

Sentinel-2 data [Vaudour et al. 2022]. 

In line with the findings of other authors, that a pre-selection of scenes (i.e., through the crop 

calendar, soil moisture related, based on management practices) included in the bare soil 

detection benefits the SOC modeling, we demonstrated better model performances for 

SRCspring/autumn for all three indices (Table 3.3.3). In Bavaria due to the presence of summer and 

winter crops, there are two time periods during the year where the visibility of bare soils from the 
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satellite is highest. Hence, spring and autumn months are integrated into the SRC. The pre-

selection of scenes additionally reduces the processing capabilities, which significantly reduced 

the processing time for SRC generation. This is of particular value for the processing of multi-year 

composites with several hundred input scenes for an area-wide mapping approach.  

 

4.3 Influence of time period on SOC modeling 

For all three indices the 15Y SRC period provided the best SOC model performances. Overall, 

for PV+BLUE and PV+IR2 longer time periods provide better SOC predictions compared to shorter 

compositing periods (Table 3.3.4). In contrast, the NBR2 did not show this behavior. The better 

model performances might be linked to the number of cloudless scenes integrated to the SRC. For 

longer compositing periods more cloudless scenes per pixel are available (Table 3.3.5), which 

might influence the quality of the resulting composite in terms of resulting SOC model 

performances. Similar associations could already be observed by Dematte et al. [2020] and Zepp 

et al. [2021 a]. An increase in the number of cloudless scenes results in an increase of the number 

of bare soil dates per pixel, or in an improvement of the accuracy of the resulting exposed soil 

mask compared to reference data. Although the number of studies on Sentinel-2 time series is still 

limited, they all show that about ten bare soil observations are sufficient to stabilize the spectral 

variability of an SRC pixel [Heiden et al. 2022] and the uncertainty of the SOC prediction 

[Dvorakova et al. submitted]. Castaldi et al. [2021] showed a correlation between the bare soil 

count of different compositing lengths between one and three years and the respective SOC 

predictions. In all studies, the best model performances were obtained for the longest time range 

i.e., three years for Sentinel 2, for which the largest number of bare soil counts was detected. 

Table 3.3.5: Mean number of cloudless scenes for SRC generation for different compositing lengths. 

Compositing period 15Y 10Y 7Y 5Y 3Y 

Mean number of cloudless 
scenes per pixel 

127.8 86.4 58.3 53.1 32.8 

 

As Tziolas et al. [2021] point out, soil monitoring at a high spatial resolution over large 

geographical coverage is urgently needed. In terms of SOC monitoring we obtain, that the 3Y 

period is not advisable. The SOC prediction performances are not reliable enough (RPD = 1.51, 

PV+BLUE). However, a 10Y or 15Y compositing period may be too long to adequately detect SOC 

changes. Cropland soils usually have low and stable SOC contents in comparison to areas covered 

by permanent vegetation cover [Fließbach et al. 2007]. Changes in management practices can 

increase the SOC stocks, at least temporarily. E.g. the transition from conventional to organic 

farming systems has an increasing effect on SOC contents [Gattinger et al. 2012]. Land use changes 

are responsible for larger increases or decreases of SOC contents [Guillaume et al. 2021]. E.g., the 

transition from grassland to cropland can result in a significant decrease of SOC contents within a 

short period of time [Guo and Gifford 2022]. However, it can last several years (~ 20 y) to reach a 

new equilibrium in temperate zones [Poeplau et al. 2011]. In addition, in Bavaria as in several 

temperate climate zones, there is a declining trend of SOC in agricultural soils over the last 30 

years due to climate change [Guillaume et al. 2021]. The challenge is to define the shortest 

applicable compositing length to capture SOC changes and at the same time optimizing SOC 
prediction performances. Hence, the minimal compositing length for monitoring purpose has to 

contain at least five years (Table 3.3.4). In comparison to the 3Y results the model performances 

are significantly increasing for 5Y SRC (R²: 0.56 to 0.66). Expanding the compositing length (i.e. 

10Y or 15Y), the increase of the model performances is minor (R²: 0.69 (10Y), 0.71 (15Y)). 

However, this behavior has to be confirmed for other regions.  
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5. Conclusion 

The overall scope of the paper was to optimize the parameters for SOC monitoring purposes 

using Landsat data. We focused on the reliability of the selection of exposed soil dates based on 

different spectral indices. We first compared the extracted exposed soil dates to times, when a 

field is likely to be bare. In comparison to the crop calendar all three spectral indices allow a 

reliable extraction of bare soil dates. Due to the combination of summer and winter crops in the 

test area, a pre-selection of spring (March to May) and autumn scenes (August to October) allowed 

a reduction of misclassified bare soil dates. However, the selection depends on the crop types.  

We further analyzed the influence of the indices for topsoil SOC prediction in Bavaria using 

Landsat. Although, PV+BLUE for SRC generation performed almost always best, the indices 

showed a smaller influence on the model performances in comparison to a pre-selection of 
periods integrated into the SRC (e.g., built on crop calendar). Based on the results (the correlation 

of bare soil dates with phenological information), we suggest to use external data sets on 

phenology for SRC processing. The use of external data sets can enable a more robust selection of 

bare soil dates, which then correlates with better SOC model performances.  

We also evaluated which time period allows the most accurate prediction of SOC contents for 

monitoring purposes or SOC change analyses using Landsat images. For PV+BLUE and PV+IR2 

longer compositing periods (10Y / 15Y) showed better model performances. For NBR2 this was 

not as clear. For monitoring purpose based on SCMaP Landsat SRCs we propose a compositing 

length for at least 5Y. 
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4. Conclusion & Outlook 

 

The following chapter summarizes the main findings of this thesis. Furthermore, a synthesis 

and recommendations are given, how the Landsat SCMaP SRCs can be used for SOC estimation 

and (retrospective) monitoring purposes to enhance the spatial and/or temporal limitation/s of 

current soil maps, databases and monitoring approaches. 

 

4.1. Summary 

The aim of this thesis was to explore the capabilities of Landsat SRC for SOC estimation and 

(retrospective) monitoring of topsoil croplands in Bavaria, Germany. The three publications 

(chapter 3) present the analyses performed, the challenges that raised, the final results and their 

critical discussion. In the following, the key findings of the three publications are summarized in 

order to answer the ROs stated in chapter 2.  

 

RO1: Derivation and Validation of masks that contain exposed soil pixels from multi-year Landsat 

data stacks for Germany from 1984 to 2019. 

Publication 1 (chapter 3.1) focused on the complexity of methodological improvements of the 

index thresholding, which is a fundamental part of the SCMaP workflow, and on the validation of 

the spatial and temporal distribution of exposed soil pixels. A new automated sampling strategy 

for thresholding required for an area-wide application of the SCMaP methodology was developed 

to substitute the manual selection approach. Here, a random sampling of stable CLC pixels for the 

threshold definition and to separate exposed soils from all other LC classes in the SCMaP 

processing chain built the baseline. The newly developed sampling is a reliable workflow for the 

identification of the spatial and temporal distribution of exposed soils. We have chosen TAmin of 

0.831 and TAmax of 1.697 for the generation of the exposed soil masks. In particular the high 

correlation results (R² = 0.79 to 0.90) of exposed soil areas in comparison to two different 

reference datasets (Destatis and CORINE Land Cover) containing the spatial cropland distribution 

per federal state and on county level across time, prove the applicability of the new threshold 

definition. However, the presented results have shown the large dependencies of the vegetation 

index approach on environmental conditions (i.e., northwestern Germany). Thus, a 

regionalization of the parameter settings for, e.g., bio-geographical regions instead of counties or 

countries is recommended. The validation with two independent reference datasets confirmed 

the need for a regional differentiation of the thresholds (i.e., lower correlation accuracies for 

Lower Saxony). Additionally, the applied fixed percentile rule for the determination of THmax had 

to be adapted from 0.995 to 0.900. However, the results also indicate replacing the percentile rule 

by a more suitable and robust method according to the sampling scheme. Furthermore, the 

analyses have shown the importance of a reliable number of cloudless scenes per compositing 

period for the extraction of exposed soils. Time periods (2000-04 and 2005-09) composed of more 
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than 55 cloudless scenes per pixel enabled higher correlation coefficients (R² > 0.87). In contrast, 

weaker correlation coefficients (R² < 0.82) were identified for periods containing less than 45 

cloudless scenes per pixel. In summary, the exposed soil pixels derived from SCMaP based on the 

new automated and random sampling of landcover class pixels for the determination of 

thresholds is a reliable workflow and enables the identification of the distribution of exposed soils. 

Thus, it can be used as a temporally and spatially enhanced database, which also can be a valuable 

data source for land cover analysis in the future. 

 

RO2: Estimating the potential of the SCMaP SRC generated from Landsat images covering 30 years 

to derive a high-resolution map of SOC contents in Bavarian croplands. 

The 30-year SCMaP SRC was successfully used to model the spatial SOC distribution of exposed 

topsoils of croplands in Bavaria in publication 2 (chapter 3.2). For this purpose, the 30-year SRC 

was correlated with legacy soil point measurements to quantify SOC contents for an area-wide 

mapping approach to separate within field patterns. The analyses have shown, that a 

spatial/spectral filtering of the database, to exclude heterogenous pixel clusters, is a valuable 

approach linking soil samples to EO data with a pixel resolution of several meters (e.g., Landsat: 

30 m). Twice the standard deviation (STD) per band was selected as threshold. However, as the 

distribution of the cluster STDs per reflectance band is representing a non-gaussian behavior, this 

indicates using the median and quantiles for threshold determination is more appropriate for 

further investigations. The spatial/spectral filtering should also be considered for an 

implementation of higher temporal resolution data (e.g., Sentinel-2) or higher spectral resolution 

data (e.g., EnMAP) with similar spatial pixel size in the future. 

The results, highlight the successful use of a Random Forest Machine Learning approach to 

predict the spatial SOC distribution for an area-wide mapping. The reflectances in combination 

with spectral indices showed the highest performances and accuracies of the model validation 

using 30% of the input sample data base (R² = 0.67, RMSE = 1.24%, RPD = 1.77). The findings were 

confirmed by an external validation based on field data not included in the model calibration and 

validation process. The comparison between the measured and predicted SOC contents showed a 

mean difference of 0.11% SOC using the Random Forest model and the best data setup 

(reflectances and indices). The SCMaP SRC is a promising approach to predict the spatial SOC 

distribution over large geographical extents with a high spatial resolution (30 m). However, the 

long compositing range of 30 years should only be used in areas, where no SOC changes are 

documented or expected. For monitoring purpose or regions with a dynamic behavior of SOC 

contents, shorter compositing periods are required.  

 

RO3: Optimization of parameters for SRC generation for recurrent assessments of SOC contents using 

Landsat data, considering the reliability of the selection of exposed soil dates. 

In order to address the third objective, exposed soil dates integrated into the SRCs were 

validated and the influence of different parameters (i.e., vegetation indices, composition of 

compositing periods, and lengths) on SOC modeling were evaluated in publication 3 (chapter 3.3). 

First, the bare soil dates identified using different indices were compared to times when the field 

is likely to be bare. For this purpose, field observations and information based on the crop 

calendar were intersected with the bare soil dates. The analyses have shown that there is a reliable 

correlation between the SCMaP bare soil dates in comparison to reference data. This was proven 
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for all three implemented indices. Due to the typical combination of summer and winter crops in 

the investigation area, a pre-selection of spring (March to May) and autumn scenes (August to 

October) is recommended. Based on the pre-selection misclassified soils are reduced, during 

times when the fields are likely to be covered with vegetation or crop residues. Pursuing to 

transfer the approach to other climatic regions, the pre-selection should depend on regional crop 

types in the investigation area.  

Further, the influences of the vegetation indices for bare soil extraction, the pre-selection of 

months integrated into the SRC and the compositing length on SOC predictions were investigated. 

Although, the PV+BLUE index for SRC generation performed best for Landsat data (R²: 0.56 – 0.72, 

RMSE: 1.09% – 1.29%, RPD: 1.51 – 1.91), the indices indicated smaller impacts for SOC prediction 

in comparison to a crop type-based pre-selection of scenes for SRC generation. In general, the 

findings indicate that the use of external data sets on phenology to select input scenes integrated 

for SRC processing, provides a more robust selection of bare soil dates. This results in better SOC 

prediction performances (SRCfull: R²: 0.59 – 0.60, RMSE: 1.00% – 1.28%, RDP: 1.57 – 1.58 / 

SRCspring/autumn: R²: 0.64 – 0.67, RMSE: 1.05% – 1.29%, RDP: 1.67 – 1.73). As large-scale field 

observations are barely available statistical datasets with phenological information, as provided 

by the Germany’s National Meteorological Service (Deutscher Wetterdienst - DWD), can represent 

a suitable option for area-wide mapping.  

For monitoring purpose or SOC change analyses using Landsat images longer compositing 

periods (10 years / 15 years) showed better SOC prediction performances. However, such 

compositing lengths could be too long for monitoring purposes. Based on the findings, a 

compositing length of at least 5 years is purposed using SCMaP Landsat SRCs for analyzing 

(retrospective) SOC changes of topsoil croplands. 

 

Overall, the findings presented in the publications (chapters 3.1, 3.2, 3.3) demonstrated, that 

SCMaP SRCs generated with the updated index thresholding based on bio-geographical regions 

can be utilized for SOC predictions and (retrospective) change analyses. The use of SCMaP in 

combination with the newly standardized random selection of land cover pixels for threshold 

derivation enabled an area wide extraction of exposed soil areas and thus the processing of SRCs 

for SOC mapping within field patterns of topsoil croplands in Bavaria, Germany. In this context, 

the Random Forest regression approach to combine composite reflectances, derived spectral 

indices and SOC field measurements are a valuable approach for SOC estimation. A 

spatial/spectral filtering of heterogenous pixel clusters significantly increased the model 

capabilities. For monitoring purposes to capture SOC changes, compositing lengths of at least 5-

years are recommended for that purpose. Thereby, the pre-selection of scenes for SRC generation 

effected the SOC model performances more than in comparison different of spectral indices used 

for SRC processing. The knowledge obtained is highly relevant for fulfilling the rising 

requirements and needs proposed by the policy for high spatial and temporal SOC mapping and 

(retrospective) monitoring purposes of SOC developments as introduced in chapter 1.2.  

 

4.2. Outlook 

Due to the application of the Landsat SCMaP SRCs for SOC prediction, exemplarily for a test 

area in Germany and adjacent regions, the work successfully provided an operational approach 

for SOC estimation and retrospective monitoring of cropland topsoils not permanently covered 
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by vegetation. The human impacts on cropland soils were huge in the past and SOC as a key 

element for healthy and productive soils will also be an essential future research aspect. The 

developed methods indicate the potential to improve the understanding and knowledge of SOC 

developments and give an answer to the different political inquiries raised. SCMaP in combination 

with the developed automated index thresholding approach is a valuable method for SRC 

processing as input for cropland SOC predictions. With this work, some central aspects controlling 

the SOC modeling based on Landsat data were answered. However, during the analyses several 

assumptions were made requiring an in-depth proof. Additionally, further questions (se Figure 

2.1) emerged, which have to be investigated in the future. 

For further improvements, the spectral behavior of the SRCs should be investigated. So far, 

there was no validation of the SRC spectra and field measurements. A comparison of the temporal 

development of the SRC spectra of consecutive 5-year SRCs between 1984 and 2019 indicated a 

spectral stability. However, a comparison of the averaged SRC spectra with field spectroscopy data 

(e.g., airborne or field hyperspectral measurements) could enlarge the understanding for soil 

parameter modeling and minimize uncertainties. In this context, it has to be considered, that the 

comparison of a single field spectra to the averaged situation of several years could be biased by 

temporal differences in soil moisture or temporal tillage conditions. The validation data need to 

be carefully selected. Laboratory spectra as the reflectance measurements from the LUCAS dataset 

for validation are not suitable, as the samples are often prepared (i.e., dried and sieved) and 

measured under optimal conditions (i.e., illumination, vertical measurement). A potential 

validation approach could be enabled by comparing all bare soil pixel spectra, identified by the 

thresholds (before averaging to the SRC) to field spectra, representing different conditions (e.g., 

soil moisture, tillage). Here, the position of the field spectra whether these are within or outside 

the pixel spectral range can give more insights about the uncertainties.  

The model performances based on the SCMaP SRC were comparable to the SOC prediction 

capabilities presented by various authors (see chapter 3.2, publication 2, Table 3.2.1). However, 

in almost all studies, lower RMSE values were reported for the SOC prediction. The results 

provided showed relatively high model uncertainties in the investigation area (RMSE 1.24% for 

30-year SRC). However, here a high range of SOC contents occurs (0.26% - 18.3%). For analyzing 

the influence of such a high SOC variability, it could be considered to separate mineral and organic 

soils as the latter ones have naturally higher SOC contents. However, for this analysis a division 

was not considered due to the low amount of organic soil samples. Another step forward would 

be to transfer the modeling method to other soil parameters (e.g., soil texture distribution, iron 

content, pH). Several authors have already shown the feasibility of mapping e.g., clay (e.g., Diek et 

al. 2017, Sorenson et al. 2021), texture distributions (e.g., Safanelli et al. 2020, Mzid et al. 2022, 

Zhou et al. 2022), or other physico-chemical properties as Calcium Carbonate (CaCO3) (e.g., 

Safanelli et al. 2020, Castaldi et al. 2021) or pH (e.g., Ghazali et al. 2020, Safanelli et al. 2020) in 

different temperate regions using compositing approaches. Landsat SCMaP SRCs provide a 

reliable data source for topsoil content estimation and monitoring. The interaction of different 

soil parameters can enlarge the knowledge of the geosphere soil and provide more insights for a 

sustainable use of the resource. 

The most critical point using the presented compositing approach based on multispectral 

satellite imagery is related to the fact, that a clear separation of bare soils and dry vegetation (i.e., 

crop residues) is not unambiguous possible (Asner and Heidebrecht, 2002; Okin, 2007; Dematté 

et al., 2018). This issue was discussed in all three publications, as it could be a potential source of 

uncertainties in the model results. With regard to other publications, the successful separation of 
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NPV and soils represents one of the biggest challenges using multispectral EO data for soil 

parameter modeling. However, findings presented by other authors have shown, that a robust 

index thresholding is enabling a separation of NPV and soils. The findings of the third publication 

(chapter 3.3) can indicate a robust separation of bare soils and dry vegetation using the developed 

index thresholding approach. As shown, a small number of exposed soil dates was selected when 

the field is likely be covered with crop residues or at the end of the vegetative active phase, when 

the chance for drying vegetation is high (based on the crop calendar). At this point it must be 

brought up for discussion, that the methodological design of the operational SCMaP processor and 

the use of the resulting SRCs for soil parameter modeling are developed for an area-wide mapping 

approach covering the national or even broader spatial scales. This also includes the design of the 

index thresholding. The data-driven approach is dedicated to large-scale applications. However, a 

separation of NPV and soils is strongly affected by regional dependencies. A compromise between 

a reliable separation of soils and NPV and the applicability as an operational processor must be 

considered. In general, a spectral validation of the SRC data, mentioned above, would enable an 

in-depth proof of a successful separation. The recently launched hyperspectral spaceborne 

EnMAP (Environmental Mapping Analysis Program - Guanter et al. 2015) satellite could provide 

a valuable addition here. However, it has to be considered, that due to the mission architecture 

local limited areas can be observed for a small number of dates per year. The fusion of Landsat 

and EnMAP data can enable an in-depth analysis of the successful separation of NPV and soils and 

additionally benefit significantly the analyses. Hotspots identified with large-scale data-based 

approaches (Landsat) in combination with the high potential for hyperspectral in-depth analysis 

is a promising sensor combination for a more accurate understanding of SOC developments in the 

future. 

The proposed methods in this thesis contribute to a spatiotemporal enlarged knowledge about 

soils and an enhanced understanding of SOC predictions in view of monitoring purposes. 

Especially, the long history of Landsat imagery is a valuable database for SOC prediction and 

(retrospective) monitoring. It enables a comprehensive understanding, which is essential for 

future needs.  
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