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Abstract
Due to technical progress in sensor technology and computer power, observation and model data are
operationally available today with a high spatial and temporal resolution, suitable for thunderstorm detection
and prediction. However, nowcasting the remaining lifetime of an observed thunderstorm is still a challenge
to date. To improve nowcasting of deep convective cells, we developed the algorithm LOC-lifetime that
predicts the remaining lifetime of thunderstorms based on life-cycle signatures present in satellite, radar,
lightning and numerical weather prediction model data. We use the mathematical method “fuzzy logic” to
combine this multi-source input and to categorize the thunderstorm evolution into the life-cycle sets growth
and decay. We analyzed a data set of almost 1,800 thunderstorms that occurred during the summer months
June 2016, May, June, July 2017 and June 2018. The data reveal highly variable life cycles which make it
difficult to predict the remaining lifetime on basis of life-cycle statistics. Nevertheless, LOC-lifetime offers
an improved nowcasting quality compared to a simpler nowcasting method as it increases the probability
of correct prediction and reduces the root-mean-square error. Therefore, we propose the lifetime prediction
via LOC-lifetime as a useful tool in combination with other existing algorithms to nowcast and forecast
thunderstorms.
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1 Introduction

Lightning, hail, turbulence and heavy rain are only four
examples of dangerous weather phenomena associated
with thunderstorms having high impact on society and
safety (Brooks and Dotzek, 2008). For example, avia-
tion is especially affected by thunderstorms as they can
cause, e.g., icing of air plane turbines in the upper tro-
posphere consequently lead to malfunction (Tafferner
et al., 2008). Thunderstorm nowcasting can be used to-
day to optimize flight routes which results in reduced
delays, fuel savings and higher safety (Forster et al.,
2016). Since heavy thunderstorms will become more
frequent due to climate change (Sander, 2011; Rädler
et al., 2019), an improved nowcasting is gaining rele-
vance.

Besides the prediction of the onset of convection,
also nowcasting the remaining lifetime of an already
existing and observed thunderstorm may add a useful
feature to thunderstorm prediction in general. Here, we
present the structure and work flow of our new nowcast-
ing algorithm, named LOC-lifetime (Life cycle Of deep
Convection based lifetime nowcasting), that predicts the
remaining lifetime of detected thunderstorm cells.
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Raumfahrt, Institut für Physik der Atmosphäre, Münchener Str. 20, 82234
Weßling, Germany, e-mail: isabella.zoebisch@dlr.de

Most nowcasting methods today do not consider the
stage of development of a thunderstorm or use the in-
formation on life cycle characteristics. However, a va-
riety of thunderstorm nowcasting algorithms exist us-
ing single or multi data input for various methods to
predict the future size, position, development and/or in-
tensity of a thunderstorm (e.g., Wilson et al., 1998;
Mueller et al., 2003; Roberts and Rutledge, 2003;
Zinner et al., 2008; Hering et al., 2015; Goyal et al.,
2017; Leinonen et al., 2022). In case nowcasting is
based on only one data source, mainly satellite (e.g.,
Zinner et al., 2013; Goyal et al., 2017) or radar data
(e.g., Kober and Tafferner, 2009; Hering et al., 2015)
are used. For example, Zinner et al. (2008) use satellite
data to detect, track and nowcast thunderstorms based on
a pyramidal image matcher for lead times up to 60 min.
Goyal et al. (2017) predict cloud top brightness tem-
peratures for lead times up to 180 min via extrapola-
tion techniques on basis of satellite data. Kober and
Tafferner (2009) predict thunderstorms up to 60 min
on basis of radar data with the same method of the pyra-
midal image matcher as in Zinner et al. (2008) and
showed that extrapolation techniques based on a pyra-
midal image matcher outperform extrapolations based
on persistence. A prediction algorithm that is based on
a combination of different data sources is, for exam-
ple the Auto-Nowcast System ANC (Mueller et al.,
2003). In this approach, fuzzy logic is used to combine
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radar, satellite, sounding, mesonet, profiler and numer-
ical boundary layer data in addition to forecaster input.
The approach outperforms extrapolation and persistence
of lead times up to 60 min. Roberts and Rutledge
(2003) used satellite data in addition to radar data to
increase the lead time and accuracy of the nowcasting
of convective storm initiation and growth compared to
nowcasts based on radar data alone. James et al. (2018)
tracked and nowcasted thunderstorms up to 60 min by
combining radar products, lightning observations and
numerical weather prediction (NWP) model data and
improved the quality of warnings for severe convective
weather events (NowCastMIX) in this way. Cintineo
et al. (2018) developed Probsevere LightningCast, an al-
gorithm that predicts the next hour lightning activity us-
ing satellite data and a deep learning approach to pro-
vide early alerts for developing hazardous conditions.
Leinonen et al. (2022) designed a machine learning ap-
proach based on radar, satellite, lighting, NWP and dig-
ital elevation model data to predict lightning, hail and
heavy rain up to 60 min. They showed that lightning pre-
diction is robust to at least 60 min.

The prediction of thunderstorms is a well known
challenge due to complex interactions of dynamics and
microphysics during their life cycle. Most of the pre-
sented nowcasting tools were developed to predict the
convective initiation of thunderstorms or their severity,
in addition to their movement and/or local displacement.
No explicit lifetime nowcasting has been done yet, al-
though the information of the remaining lifetime of a
thunderstorm would be helpful for many applications,
e.g., flight route planing with regard to higher safety
and fuel savings. In this study, we combine information
on thunderstorm life-cycle characteristics from observa-
tional and model output sources as revealed in Zöbisch
et al. (2020) and a fuzzy-logic approach to predict re-
maining lifetimes after detection.

Many studies analyze life-cycle characteristics in dif-
ferent data sources such as satellite, radar, lightning or
NWP model data. Thus, characteristic signatures were
revealed for the life cycle stages. For instance, a growing
thunderstorm is characterized by an increasing optical
thickness and an increasing cloud top height (Roberts
and Rutledge, 2003; Mecikalski et al., 2011; Zöbisch
et al., 2020). The lightning activity intensifies until it
reaches its maximum during the maturity stage (Rigo
et al., 2010; Mattos and Machado, 2011; Jurkovik
et al., 2015). During decay, the updraft intensity is re-
duced until its supply diminishes (Byers and Bra-
ham Jr., 1948). Other studies analyzed the correlation of
the thunderstorm lifetime with certain observational pa-
rameters, showing that the lifetime correlates positively
with the coverage area (e.g., Machado et al., 1997;
Mathon and Laurent, 2001; Feng et al., 2012), the
thunderstorm maximum reflectivity (e.g., Davini et al.,
2012; Zöbisch et al., 2020) and the lightning occurrence
(e.g., Rigo et al., 2010; Wapler, 2021).

The thunderstorm definition and the detection meth-
od, used for this study, are presented in Section 2.

The data sources and used parameters are described in
Section 3. The fuzzy-logic based nowcasting algorithm
LOC-lifetime is presented in a case study in Section 4.
We verify the nowcasting algorithm via cross-validation
in Section 5. For the purpose of validation, a simpler
nowcasting method is designed to evaluate the gain in
nowcasting quality. At the end, results are summarized
and discussed (Section 6).

2 Thunderstorm definition

We define a thunderstorm as a deep moist convective
region. To locate these regions we use the algorithm
Cb-TRAM (Zinner et al., 2008; Zinner et al., 2013)
which detects, tracks and nowcasts convective objects
in satellite data. Cb-TRAM distinguishes between three
convection categories: early development, rapid devel-
opment and maturity. Early development is described by
a strong vertical and/or horizontal growth in the lower
troposphere indicated by a rapid cooling visible in the
IR10.8 channel and an intensifying reflectivity signal in
the HRV channel. Rapid development is detected in case
of strong cooling in the upper troposphere (WV6.2).
Maturity is represented by a specific difference between
the WV6.2 and IR10.8 channels indicating a high cloud
top connected with moisture close to or already in the
stratosphere, in addition to a turbulent appearance of the
cloud top (e.g. overshooting top; visible in a strong tex-
ture in HRV – day times or WV6.2 – night times). To
exclude thin cirrus, the difference between T10.8 and
T12.0 is used. In this study we define the thunderstorm
lifetime as the period of Cb-TRAM detections. Further,
we consider only life cycles with at least one maturity
time step.

One advantage of thunderstorm detection using satel-
lite data is that already convective initiation can be de-
tected. However, this is only possible in an environment
without overlaying clouds. When the developing thun-
derstorm in the lower troposphere is covered by (cirrus)
clouds at higher levels, the convective cell will be de-
tected only after its top has punched through the sur-
rounding cirrus shield.

The thunderstorm detection via Cb-TRAM is exem-
plarily presented in Figure 1. It shows a Cb-TRAM de-
tection of a relatively isolated stationary thunderstorm
cell ‘1315’ over the Breisgau region (Southwestern Ger-
many) on the 17th of June 2016. This thunderstorm cell
is detected for 90 min (12:23–13:48 UTC) in 5-min in-
tervals. At the first detection step, it is categorized as
a rapid developing cell (orange) since its cloud top is
already relatively high (at 8 km height, not shown). As
seen one time step before (12:18 UTC), cloudiness can
already be identified in this region, however, the thresh-
olds for a detection via Cb-TRAM are not reached yet.

After the thunderstorm is detected as rapid devel-
opment for four time steps (20 min), the next three
time steps (15 min) are categorized as early develop-
ment (yellow). Hence, the specific thresholds for an
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Figure 1: 180× 180 km detail of a satellite HRV channel and the corresponding detection via Cb-TRAM of the thunderstorm cell “1315”
(no parallax correction) over the Breisgau region (Southwestern Germany) on the 17th of June 2016. The thunderstorm cell is detected
for 90 min every 5 min (12:23–13:48 UTC). The colors yellow, orange and red represent the convection categories early development, rapid
development and maturity. The turquoise letters “F” and “S” show the locations of the cities Freiburg and Stuttgart.
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Figure 2: Lifetime frequency distribution of thunderstorms with
lifetimes between 5 and 140 min that occurred over Germany during
the months June 2016, May, June and July 2017 and June 2018.
The colors yellow, orange and red indicate the proportion of the
convection categories early development, rapid development and
maturity which the thunderstorm showed at the first detection step.

early development are reached here. After 35 min de-
tection (12:58), the thunderstorm reaches the relevant
thresholds for maturity (red) for the first time. A cir-
rus shield developing eastwards of the thunderstorm ob-
ject is not part of the thunderstorm detection. During the
last 20 min of the thunderstorms lifetime, the area de-
creases – probably due to a weakening updraft, until it
diminishes completely and the thunderstorm detection
ends. Although the thunderstorm detection ends, its high
cirrus shield – the anvil – exists further (13:53 UTC). As
we use Cb-TRAM, we focus on the detection of regions
with deep moist convection including strong updrafts,
that are most dangerous and for instance highly relevant
for aircraft safety.

In this study, we consider almost 1,800 thunder-
storms that occurred over Germany during the sum-
mer months June 2016 (700 thunderstorms), Mai (213),
June (189), July 2017 (311) and June 2018 (345). The
lifetime frequency distribution of all considered thun-
derstorms with lifetimes between 5 and 140 min is pre-
sented in Figure 2. Additionally, the information of the
convection stage detected via Cb-TRAM at the first de-
tection step (colors) is shown. The development stage at
the first detection indicates if convective initiation (yel-
low), rapid growth (orange) or mature (red) is detected.
A mature event at the first detection indicates that the
beginning of the life cycle is missed due to, e.g., over-
laying clouds resulting in a first detection of an already
well-developed thunderstorm. In general, the frequency
of thunderstorms decreases with an increasing lifetime.

The figure reveals that longer lifetimes contain less
well-developed thunderstorms (red) at the first detec-
tion, as well in absolute numbers as in relative share. We
identify a high number of thunderstorms with lifetimes
of 5 min containing only mature developments. Thun-
derstorms with 10 and 15 min also show mainly mature
development at the first detection, contrary to other short
lifetimes, they are strikingly rare.

Most likely, very short lifetimes represent incom-
plete life cycles. A manual evaluation reveals that in
case of 10 and 15 min lifetimes, the detection of a well-
developed thunderstorm mostly ends rapidly due to a

merging event. As a consequence, we assume that the
decay of most of these short-lived thunderstorms is not
detected. Also, short lifetimes often contain incomplete
life cycles with regard to the beginning of their life cy-
cle. We assume that the early development is missed due
to, e.g., splitting events or higher cloud cover impeding
a satellite-based detection. Correspondingly, long ob-
served lifetimes are more likely to contain early devel-
opment stages. We conclude that it is more likely to find
complete life cycles only among the longer lifetimes in
our data set.

3 Data sources

Parameters from satellite, radar, lightning detection
and NWP model are considered in LOC-lifetime. In
Zöbisch et al. (2020), several parameters are analyzed
by means of potential skill for nowcasting thunder-
storms. There a parameter is defined as one with an ap-
propriate nowcasting skill for the lifetime prediction, if
it indicates the actual life cycle stage and/or the total life-
time (short or long) of the detected thunderstorm. The
resulting relevant parameters are presented in Table 1
and described briefly here. They are introduced in detail
in Zöbisch et al. (2020).

3.1 Geostationary satellite

We use satellite parameters from the geostationary Me-
teosat Second Generation satellite (MSG, Schmetz
et al., 2002) with a temporal resolution of 5 min and a
spatial resolution of 3× 3 km at the sub-satellite point.
We use the parameters minimum Brightness Temper-
ature (BTmin), minimum cloud optical thickness (τmin)
and Area of the Cb-TRAM cell (Acb) for the lifetime
nowcasting as a measure of the vertical and horizontal
extent of the thunderstorm object. On basis of the vis-
ible and infrared channels, the parameters Brightness
Temperature (BT) and cloud optical thickness (τ) are
calculated via the “Algorithm for the Physical Inves-
tigation of Clouds with SEVIRI” (APICS, Bugliaro
et al., 2011) and the “cirrus optical properties derived
from CALIOP and SEVIRI algorithm during day and
night” algorithm (COCS, Kox et al., 2014). The param-
eters BTmin and τmin represent the mean of the pixels
with the lowest 10 % of BT inside the thunderstorm ob-
ject as detected by Cb-TRAM to focus on the most ac-
tive regions. The parameter Acb describes the horizontal
extent of the detected thunderstorm object. As presented
in Zöbisch et al. (2020) the parameter BTmin shows high
values at the beginning of long-lived thunderstorms and
a distinctive decrease during growth. Therefore, the ab-
solute values and temporal changes of BTmin are con-
sidered in the lifetime prediction. Since the parameters
τmin and Acb show prominent temporal evolution in the
beginning and end (sharp in- and decrease) of the life
cycle, LOC-lifetime considers the temporal variations.
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Table 1: Parameters used for lifetime nowcasting with LOC-lifetime. The letters ‘a’ and ‘t’ indicate whether the absolute value and/or the
temporal change over 5 min of the parameters are used for nowcasting.

source parameter abbrev. unit a, t

MSG minimum Brightness Temperature BTmin K a, t
minimum cloud optical thickness τmin – t
Area of the Cb-TRAM cell Acb km2 t

Radar maximum Vertically Integrated Liquid water VILmax kg m−2 a, t
LINET Lightning detection during 5 min Li # 5 min−1 t
COSMO maximum Convective Available Potential Energy CAPEmax J kg−1 a

Relative Humidity at 700 hPa RH % a

3.2 Ground-based radar

We also use the 3D radar product Vertically Integrated
Liquid water (VIL) provided by the DWD (German Me-
teorological Service). The parameter VIL is calculated
with data from the volume scan of the polarimetric
doppler C-band radar system operated by the DWD.
The volume scan of each of the 17 radar systems of
the DWD network is available ever 5 min with a hor-
izontal radius of up to 180 km and a vertical extent
of 10 km. The calculation of VIL is described in Greene
and Clark (1972). The parameter maximum Vertically
Integrated Liquid water (VILmax) represents the mean of
the 10 % pixels with the highest VIL values inside the
thunderstorm object to focus on the most convective re-
gion and reduce the influence of outliers. The life cycle
analyses in Zöbisch et al. (2020) showed a distinctive
increase at the life cycle beginning and a decrease during
the decay for long-lived thunderstorms as well as a pos-
itive correlation between absolute values and lifetimes.
Therefore, absolute values and the temporal variations
of VILmax are used in LOC-lifetime.

3.3 Ground-based lightning

Lightning data are provided from the nowcast GmbH
which operates the “European ground-based LIght-
ning NETwork” (LINET, Betz et al., 2009) that is
based on the very low frequency (3–30 kHz) and low
(30–300 kHz) lightning detection technique. The param-
eter Lightning detection during 5 min (Li) used in LOC-
lifetime that represents the sum of lightning detections
that occurred inside the thunderstorm cell up to 5 min
before each detection. Since the life cycle study showed
that the lightning activity of long-lived thunderstorms
increases/decreases strongly during the growth/decay
phase, the temporal variation of Li is used for the life-
time nowcasting.

3.4 NWP model

Parameters from the Consortium for Small-Scale Mod-
eling (COSMO) model operated at the DWD (Bald-
auf et al., 2006) are used in LOC-lifetime to de-
scribe the environmental conditions. In May 2018,
the COSMO-DE model was replaced by COSMO-
D2. The COSMO-DE/-D2 model has a spatial reso-
lution of 2.8/2.2 km and is separated vertically into

50/65 model layers. Forecasts are updated every 3 hours
and available with an interval of 1 hour until 21 hours.
The latest available forecast is used for the nowcast-
ing. The hourly output from COSMO is interpolated
to a 5 min resolution similar to the temporal reso-
lution of the observational data. The model parame-
ter information inside a box of 50 km radius around
the thunderstorm object (hereinafter referred to as: en-
larged thunderstorm object) is considered to minimize
the effect of an incidentally matching modelled thun-
derstorm (which would completely change the envi-
ronmental conditions). The mean of 10 % pixels with
highest Convective Available Potential Energy (CAPE)
values inside the enlarged thunderstorm object is cal-
culated for the parameter maximum Convective Avail-
able Potential Energy (CAPEmax) to focus on the high-
est potential of thunderstorm development and to re-
duce outliers. The mean of all pixels inside the en-
larged thunderstorm cell is calculated for the parame-
ter Relative Humidity at 700 hPa (RH). The predictable
skill of CAPEmax and RH has been analyzed and con-
firmed by several studies (Kuligowski and Barros,
1998; Kaltenböck et al., 2009; Kahraman et al.,
2017). Accordingly, the life cycle study Zöbisch et al.
(2020) reveals that long-lived thunderstorms are likely
to contain high/low CAPEmax/RH values. Consequently,
the absolute values of the model parameters are used for
the nowcasting with LOC-lifetime.

4 Nowcasting method
The fuzzy-logic-based nowcasting algorithm LOC-life-
time is developed to predict the remaining lifetime of
detected thunderstorm cells. The method fuzzy logic,
which was introduced by Zadeh (1965), is well estab-
lished in weather prediction and used, for example, for
marine forecasting (Hansen, 1997), forecasting temper-
ature and icing on streets (Hertl and Schaffar, 1998),
forecasting cloud top ceiling height and horizontal visi-
bility at airports (Hansen, 2007), as well as for nowcast-
ing convective initiation (Stich, 2013) and future thun-
derstorm occurrence (Li et al., 2020).

The basic principle of fuzzy logic is the use of mem-
bership degrees in which values between 0 and 1 are
provided for several fuzzy sets. Via fuzzy logic, the in-
formation of different types of parameters can be com-
bined to describe a condition defined by any number of
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Figure 3: Scheme of the fuzzy-logic-based lifetime nowcasting algorithm LOC-lifetime.

fuzzy sets. In Figure 3, the scheme of LOC-lifetime is
illustrated. The method is described step by step by the
nowcasting of the thunderstorm cell over the Breisgau
region (shown in Figure 1).

4.1 Input

The parameters in Table 1 provide the input set for
LOC-lifetime. At the first detection step, only absolute
values ‘a’ are used. From the second detection step on,
all parameters (absolute values ‘a’ as well as temporal
variations ‘t’) are taken into account.

4.2 Fuzzified input

Via fuzzy logic, we categorize the development stage
into two fuzzy sets describing the life cycle stages:
growth and decay. The parameters are assigned to the
fuzzy sets with values between 0 and 1 (membership de-
gree). The transition area between growth and decay is
comparable to the life-cycle stage maturity where thun-
derstorm growth stops and the decay process has not
started yet. The membership degree is calculated via
membership functions. The thresholds of the member-
ship functions are determined as described before in
Zöbisch et al. (2020).

The membership functions convert the parameter
values (input set) into a fuzzified input. Now, values
inside the interval [0, 1] are assigned to the fuzzy sets
growth and decay for every parameter.

In Figure 4, the temporal evolution (black line) of
each parameter of Table 1 is shown with its correspond-
ing calculated fuzzy input values for the fuzzy sets
growth (dashed, blue) and decay (solid, red) for cell
“1315” presented in Figure 1. A smoothing function is
used (mean of two consecutive time steps) to reduce
noise and to focus on the dominant signatures describing
the life cycle stages.

General features of the early thunderstorm case
over Breisgau can be noted: Three parameters (ΔAcb,

VILmax, ΔVILmax) reveal a “growth-mature-growth-
mature-decay” cycle. Two parameters (BTmin, ΔBTmin)
emphasize initial growth and the final decay. The tem-
poral development of ΔLi shows a clear growth at the
beginning of the second half of the life cycle and a decay
at end of the life cycle. A clear growth is also revealed
in Δτmin during the first half of the life cycle, followed
by alternating decay and growth phases. The parame-
ter CAPEmax shows decay during the whole life cycle
(red line/decay equals 1 and blue line/growth equals 0)
and is in this case of limited use. To detect growth, a
value of 750 J/kg or higher is necessary as shown for
long-lived thunderstorms in Zöbisch et al. (2020). Fi-
nally, RH indicates initial decay and final growth.

In the early first half of the life cycle, the thunder-
storm grows vertically (seen in a decreasing BTmin). At
the beginning, the cloud top is already relatively high
at around 8 km (240 K). Some lightning activity is de-
tected and VILmax values are relatively high leading to
the assumption that the early convection stage has been
missed. The increasing Acb, τmin and VILmax in addition
to the decreasing BTmin at the beginning of the life cycle
indicate an intensively growing thunderstorm.

In the late first half around 12:55, we identify sig-
natures of reduced growth compared to the early life
cycle in six parameters, becoming more indifferent and
therefore indicating a mature stage and partly containing
characteristics of a decaying thunderstorm. The cloud
top reaches low temperatures (low BTmin values), starts
to sink slightly (positive ΔBTmin values) and grows again
shortly afterwards. Additionally, the horizontal extent
(Acb), τmin values and VILmax values are decreasing. The
absolute values of VILmax are lower compared to the
early life cycle. The lightning activity ΔLi reveals still
alternating characteristics of growth and decay as al-
ready seen for the early life cycle.

In the early second half of the life cycle (after 13:03),
vertical growth stops as BTmin stagnates at 12:58 UTC.
This is the time when Cb-TRAM detects maturity
stage. Five parameters indicate a second growing phase.
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Figure 4: Temporal course of the parameters averaged over two time steps as (black) used in lifetime nowcasting with LOC-lifetime and
corresponding fuzzy functions for fuzzy sets growth (blue, dashed) and decay (red, solid) for the thunderstorm case over the Breisgau region
(in UTC) in Figure 1.

The ΔVILmax values as well as Δτmin values are again
increasing. At around 13:13 UTC, Li, Acb and VILmax
reach their maximum. Leading to the assumption that
the thunderstorm reaches its maximum intensity at the
beginning of the second half of the detected life cycle.

In the late second half, the life cycle is dominated by
a decrease in Li, VILmax and Acb indicating a decaying
thunderstorm cell.

4.3 Fuzzified output

The fuzzy-logic input, that is calculated for every pa-
rameter and fuzzy set, is combined to one fuzzy output
value. This combination is done by (see Figure 3 step B)

x =

∑N−1
i=0 Gi −

∑N−1
i=0 Di

N
(4.1)

where the difference of the average of each fuzzy set
(G, growth and D, decay) is calculated and divided
by the number of parameters N. The result is a single
value, referred to as fuzzy output, inside the interval
of [−1, 1] indicating whether a thunderstorm is more
likely to grow (0, 1] or to decay [−1, 0).

Figure 5 (top) displays the fuzzy output for the
case study which is calculated for every detection
step. In general, the fuzzy output value decreases as

Figure 5: Top: Fuzzy values calculated via LOC-lifetime for every
detection step for the thunderstorm over the Breisgau region. Bot-
tom: The remaining lifetimes predicted with LOC-lifetime for the
thunderstorm over the Breisgau region with the corresponding ob-
served remaining lifetimes. A perfect prediction is illustrated by the
dashed line.

the life cycle progresses but we can again identify a
“growth-mature-growth-mature-decay” cycle as was al-
ready dominating in the single parameters in Figure 4.
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4.4 Output

We use life cycle statistics of a large data set to defuzzify
the fuzzified output to obtain the remaining lifetime. We
compare the calculated fuzzy output value to the life
cycle statistics that include averaged fuzzy output values
for various remaining lifetimes and detection steps and
generate the lifetime prediction.

For example, the fuzzy output value of the thunder-
storm of the case study is approx. 0.38 at 12:28 UTC.
Additionally to the fuzzy output value, we have the in-
formation that the thunderstorm has been detected for
one time step. To determine the remaining lifetime of
the thunderstorm, we compare this fuzzy output value to
the average values of the life cycle statistics for thunder-
storms that were predicted for one time step. In this case,
a fuzzy output value of 0.38 at a detection step of 5 min
is closest to the average fuzzy output value of thunder-
storms with a total lifetime of 120 min. As the thunder-
storm already has been detected for 5 min, the predicted
remaining lifetime is 115 min.

In Figure 5 (bottom), the remaining lifetime is shown
for every detection step for the thunderstorm case over
the Breisgau region. In general, the predicted remain-
ing lifetime (solid line) decreases during the life cy-
cle except for observed remaining lifetimes between
45 and 35 min. As expected, the relatively high fuzzy
output values during this period (as seen in Figure 5,
top) are leading to a prediction of remaining lifetimes
higher than observed. We see a very good correlation
of observed (grey dashed line) and predicted remain-
ing lifetimes for observed remaining lifetimes between
60–45 min and 25–5 min.

5 Verification

5.1 One dimensional lifetime frequency
distribution

In this section all thunderstorm cases of the analyzed
period are used to derive skill values for LOC-lifetime.
No other lifetime nowcasting of thunderstorms exists so
far, therefore, the reference model RNDM (random life-
time nowcasting based on lifetime frequency statistics)
as a fair orientation to rate any improvement introduced
by LOC-lifetime is designed. This simpler straight for-
ward nowcasting method randomly predicts the remain-
ing lifetime based on the lifetime frequency statistics of
thunderstorms for the analyzed period. That means, for
each detected case a random remaining total lifetime is
picked from the real observed lifetime distribution. This
guarantees that the RNDM prediction is limited to the
climatology of real lifetimes.

In total, 75 thunderstorm days were counted during
the five summer months including 1,758 thunderstorms
and 16,288 detection steps. In Figure 6, the frequency
distributions of the lifetimes of all thunderstorm cases
are depicted by LOC-lifetime prediction (blue), RNDM

Figure 6: Frequency distribution of observed remaining life-
times (grey), remaining lifetimes predicted with RNDM (light blue)
and predicted with LOC-lifetime (blue) for thunderstorms that oc-
curred during the analyzed period (June 2016, May, June and
July 2017 and June 2018).

prediction (light blue) and the observation (grey). It is
obvious that all three data sets (LOC-lifetime, RNDM
and observed) share the same overall distribution. On a
closer inspection it can be seen, that the observed fre-
quency decays monotonously with the remaining life-
time, while a non-monotonous behaviour can be no-
ticed for both prediction methods. We find a slight
underestimation for short and medium remaining life-
times (< 60 min) and an overestimation for long remain-
ing lifetimes (> 60 min) in the LOC-lifetime algorithm
compared to the observation.

This is due to the fact that single months contain dif-
ferent mean fuzzy-logic values. For instance, an over-
estimation of very long lifetimes occurs due to predic-
tions of thunderstorms in June, July 2017 and June 2018
(not shown). As life-cycle statistics used for the now-
casting of these months include data from June 2016 and
May 2017 that contain lower fuzzy-logic values than av-
erage, long lifetimes (relatively high fuzzy values) are
predicted more often for thunderstorms in these months.
We assume that a larger data set would help to calcu-
late life-cycle statistics more equal to the climatological
mean as the influence of a single month is reduced.

On average, LOC-lifetime-predicted lifetimes are
more often longer than observed (52.4 %) resulting in
a longer average mean lifetime of 47 min compared to
observed 41 min.

5.2 Contingency table

The nowcasting is validated via cross validation. This is
done to guarantee independent data sets, as data of the
month to be nowcasted are excluded for the calculation
of the life cycle statistics. This is done for each month.
Hence, for example, the fuzzy output values of the case
study in June 2016 are compared to life cycle statistics
of thunderstorms that occurred in May, June, July 2017
and June 2018. The validation contains predictions of
every detection step for thunderstorms detected during
the analyzed period.

We use contingency tables to calculate verification
indices for LOC-lifetime and RNDM. The probability
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Table 2: POD values of LOC-lifetime and RNDM for different exemplary sizes of tolerance intervals [min].

tolerance interval [min] 0 ±5 ±10 ±15 ±20 ±25 ±30 ±35 ±40 ±45

POD LOC-lifetime 9.2 22.9 35.0 45.5 54.2 61.8 68.5 74.2 79.0 83.3
POD RNDM 5.9 16.7 26.6 35.7 43.7 50.8 57.1 63.5 68.9 73.5

of detection

POD =
hits

hits + misses
(5.1)

is used to determine the ratio of the correct prediction.
The perfect score is 1.

We calculate the false alarm ration

FAR =
false alarms

hits + false alarms
(5.2)

to determine the amount of false predictions. It is cal-
culated by means of false alarms and hits. The perfect
score is 0. In contrast to a miss (where missed observed
remaining lifetimes are relevant), the incorrect predicted
remaining lifetimes are considered in the false alarms.
For instance, if LOC-lifetime predicts 90 min for an ob-
served remaining lifetime of 65 min, a miss is assigned
to 65 min and a false alarm to 90 min.

To determine general overestimation (> 1) or under-
estimation (< 1) of the remaining lifetimes the BIAS

BIAS =
hits + false alarms

hits + misses
(5.3)

is calculated. The perfect score is 1.
We calculate the root mean squared error to de-

termine the distance between observed remaining life-
time (O) and predicted remaining lifetime (P)

RMSE =

∑N
i=1(Pi − Oi)2

N
(5.4)

as a measure of quality. The perfect score is 0.
A reliable prediction to the minute is hard to achieve

with respect to the high variable life cycles. However,
depending on the application of the nowcasting, a pre-
diction to the minute is not indispensable and a predic-
tion range is tolerable. We calculated POD values for
various tolerance intervals. In Table 2, tolerance inter-
vals from 0 to 45 min were used to calculate POD values
of LOC-lifetime and RNDM. As expected, the POD val-
ues increase with an increasing tolerance interval. Addi-
tionally, we can identify that the POD of LOC-lifetime
is higher than the POD of RNDM, regardless of the size
of the tolerance interval. Especially for small tolerance
intervals, we see a relatively high increase of POD. The
trade-off between tolerable prediction range and POD
values depends on the individual nowcasting applica-
tion. In the following analyses, we use a tolerance inter-
val of ±10 min as this tolerance interval shows a com-
paratively strong increase in POD while the predictions
counted as correct are still in temporal vicinity to the real
remaining lifetime.

If we use one contingency table for all lifetime pre-
dictions, LOC-lifetime shows higher skill in quality
(POD = 35.0, RMSE = 34.9) than RNDM (POD = 26.6,
RMSE = 42.5); note that FAR− 1 equals POD as every
false alarm is counted as miss for the observed lifetime.
The prediction-quality measures POD, FAR, RMSE and
BIAS, calculated for each lifetime separately, are shown
in Figure 7 for LOC-lifetime and RNDM predictions.
The variability from thunderstorm to thunderstorm is re-
flected in the shaded area (minimum and maximum val-
ues of the individual months).

In general, we identify a gain in nowcasting qual-
ity when using the LOC-lifetime algorithm, since the
POD/FAR values are higher/lower for all lifetimes com-
pared to RNDM predictions. Both methods reveal sim-
ilar signatures in POD and FAR: POD first increases
for lifetimes up to 15 min and decrease for lifetimes
beyond 15 min. FAR shows the inverse signature. The
increase of quality for lifetimes between 5–15 min is
caused by the tolerance interval of 10 min.

The BIAS values confirm the findings from Fig-
ure 6: short lifetimes up to 45 min are underestimated
(BIAS < 1) whereas lifetimes longer than 70 min are
overestimated in LOC-lifetime (BIAS > 1). Please note
that we excluded the BIAS value for lifetimes of 140 min
and more as it is of limited use due to the accumulation
effect. As RNDM predictions are based on the lifetime
frequency statistics of the observed remaining lifetimes,
its BIAS is near 1 for all lifetimes.

The RMSE values of LOC-lifetime predictions are
relatively constant for lifetimes up to 70 min but increase
afterwards. RMSE values of RNDM predictions show
a decrease first until lifetimes of 40 min and then also
increase. This minimum around 40 min reflects the av-
erage lifetime of RNDM predictions of around 41 min.
On the other hand, the relatively constant RMSE values
for lifetimes between 5–70 min for LOC-lifetime pre-
dictions reflect the increase in quality gained with the
LOC-lifetime algorithm. In summary, for all lifetimes,
LOC-lifetime predictions show RMSE values equal to
or lower than those of RNDM predictions.

5.3 Two-dimensional lifetime-frequency
distribution

A more detailed view on the lifetime-frequency distribu-
tion is provided when a predicted lifetime is compared
to the observed remaining lifetime separately for every
detection step, leading to a two-dimensional lifetime-
frequency distribution of Figure 8. It shows the predicted
remaining lifetimes (rows) with the corresponding ob-
served remaining lifetimes (columns) relative to the fre-
quency of each observed remaining lifetime (row at the
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Figure 7: Prediction verification indices POD, FAR, BIAS and RMSE for LOC-lifetime (black solid line) and RNDM (grey dashed line)
for a tolerance interval of ±10 minutes. Minimum and maximum values of the indices for the single months are represented by the shaded
areas.

Figure 8: Remaining lifetimes predicted with LOC-lifetime (rows) with the corresponding observed remaining lifetimes (columns) relative
to the frequency of each observed remaining lifetime (row at the bottom of the figure). The area inside the dark gray borders represents the
tolerance interval of ±10 min.
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bottom of the figure). Thus, the sum of each column
equals 100 and we can estimate the frequency distribu-
tion independently of the absolute number of remaining
lifetimes. The intensity of the color indicates the value of
the relative number of thunderstorms. In the case of only
correct predictions, we would see deep green cells inside
the gray borders (which represent the tolerance interval
of ±10 min) running diagonally from the top left to the
bottom right corner.

For example, we now can identify that 5 % of thun-
derstorms with an observed remaining lifetime of 95 min
are predicted to have a remaining lifetime of 100 min.
As 262 thunderstorms were analyzed with an observed
remaining lifetime of 95 min, this corresponds to a num-
ber of 13 thunderstorms. The figure also reveals the POD
values as presented in Figure 7, as they can be obtained
by a column-wise accumulation of the values inside the
grey borders. For instance, observed remaining lifetimes
of 95 min show a POD value of 31 % (6 + 6 + 8 + 5 + 6)
for a tolerance interval of ±10 min.

Short observed remaining lifetimes (up to 40 min)
are predicted mainly as short remaining lifetimes (deep
green cells in the upper left corner). However, we also
see slightly shorter and longer predicted remaining life-
times since deep green cells are found outside but close
to the borders. As the colors in the columns fade from
short predicted remaining lifetimes (top) to long pre-
dicted remaining lifetimes (bottom), we can conclude
that for observed short remaining lifetimes, longer pre-
dicted remaining lifetimes are less frequent although
they do occur.

Medium observed remaining lifetimes (approx. be-
tween 40 and 90 min) are mostly predicted as medium
and short-to-medium remaining lifetimes (area above
the diagonal). The decreased nowcasting quality can be
seen in a colored diagonal that becomes fuzzier and
widespread for medium lifetimes. As for the short ob-
served remaining lifetimes, we can again identify a re-
duced frequency for longer predicted lifetimes. This pat-
tern can also be identified for much shorter predicted
lifetimes (< 40 min). Thus, shorter lifetimes are pre-
dicted less frequently.

Long observed remaining lifetimes are predicted as
short-to-medium, medium and long remaining lifetimes
(approx. between 40 and 140 min). The diagonal is now
even more fuzzy as predicted remaining lifetimes be-
come more inaccurate for long observed lifetimes. Very
short remaining lifetimes are predicted rarely.

In general, the figure enables a more detailed view
than RMSE analysis on the remaining lifetime fre-
quency distribution, which is especially valuable to ana-
lyze incorrectly predicted remaining lifetimes.

6 Conclusion

We present a new algorithm, named LOC-lifetime, to
predict the lifetime of detected thunderstorm cells based
on life-cycle information of a large number of thun-
derstorms. We use a fuzzy-logic approach to combine

data from satellite, radar, lightning and NWP model dur-
ing five summer months. In order to assess the features
and quality of LOC-lifetime, we compare its output to
the output of a simpler, climatologically correct random
choice approach RNDM, where the remaining lifetimes
are predicted based on the lifetime frequency statistics
of the thunderstorms in the analyzed period.

The analysis reveals that the average remaining life-
time predicted via LOC-lifetime is 47 min. This is 6 min
longer than the observed time of 41 min. The over-
prediction is also reflected in the tendency of LOC-
lifetime to predict longer lifetimes (52.4 %) more fre-
quently than shorter lifetimes (38.5 %) compared to the
observed remaining lifetimes. On the other hand, we
see a gain in nowcasting quality in terms of a reduc-
tion of RMSE of about 17.8 %, an increase in POD of
about 31.6 % and a decrease in FAR of about 11.4 %,
compared to the RNDM approach in case a tolerance
interval of ±10 min is used. In general, we identify a
gain in nowcasting quality when using the LOC-lifetime
algorithm, but these improvements are relatively mod-
est. This could be expected as the prediction of thunder-
storms is a well-known challenge due to complex inter-
actions of dynamics and microphysics during their life-
time, reflected, for example, in the different types of or-
ganization.

We do not distinguish between the different organi-
zation types of thunderstorms (e.g., single cells or multi
cells) since our aim is an automated nowcasting of thun-
derstorms and no automated method to separate these
types is available yet. However, as the most frequent
type of development are multi-cell thunderstorm sys-
tems, events like splitting and merging lead to high vari-
ability between single life cycles and the corresponding
fuzzy values.

Since these life cycles build the basis for the life cy-
cle statistics used for prediction, they affect nowcasting
of the remaining lifetime. Potential improvements could
be achieved via a larger data set to obtain an average
life cycle that is closer to the actual climatological mean
as well as via a modification of the fuzzy logic set up.
A possible improvement could be achieved when using
individual weights for the different data sources, regard-
ing their relevance. First analyses showed that especially
satellite and radar data are relevant for the lifetime now-
casting of LOC-lifetime. However a detailed analysis is
planned. These preliminary results are in coincidence
with existing studies as, for instance, Leinonen et al.
(2021) who analyzed the influence of satellite, radar,
lightning and NWP model data to the quality of thunder-
storm nowcasting in a machine learning based approach.
They showed that especially radar as well as satellite pa-
rameters are relevant for the nowcasting. It can be antici-
pated that the quality of LOC-lifetime predictions can be
improved by adding different weighting functions to the
fuzzy logic set. More suitable thresholds and weighting
functions could be identified, e.g., via machine learning.

We defined a thunderstorm here as a detection by
the satellite based algorithm Cb-TRAM. Other thun-
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derstorm definitions based on other automatic detection
algorithms as for example, Rad-TRAM are not tested.
However, we assume that the nowcasting can be used
in combination with other detection algorithms than
Cb-TRAM since the nowcasting is based on physical
characteristics valid generally for thunderstorm evolu-
tion.

Last but not least, the algorithm can be combined
with algorithms to forecast thunderstorms beyond the
nowcasting scale as, for example, Cb-fusion (Li et al.,
2020), where observed thunderstorm objects are forecast
up to 6 h on basis of observational and NWP data. The
predicted remaining lifetime from LOC-lifetime can be
used as an additional ingredient to calculate the future
thunderstorm likelihood during the next two hours.
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Acronyms

Acb Area of the Cb-TRAM cell

BT Brightness Temperature

BTmin minimum Brightness Temperature

CAPE Convective Available Potential Energy

CAPEmax maximum Convective Available Potential
Energy

Cb-TRAM Cumulonimbus Tracking And Monitoring

HRV High Resolution Visible channel

IR Infra-Red channel

Li Lightning detection during 5 min

LINET European ground-based Lightning Net-
work

NWP Numerical Weather Prediction

O observed remaining lifetime

P predicted remaining lifetime

RH Relative Humidity at 700 hPa

SEVIRI Spinning Enhanced Visible and Infra-Red
Imager

τ cloud optical thickness

τmin minimum cloud optical thickness

VIL Vertically Integrated Liquid water

VILmax maximum Vertically Integrated Liquid
water

VIS Visible channel

WV Water Vapor channel
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