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Abstract 

Crossroad assistance has the potential to contribute to a fair distribution of road space and 
increase the safety of all road users. This paper presents an infrastructure-based control approach to 
support crossroad assistance by implementing remote-controlled turning maneuvers on a test track. 
The approach involves several steps, including the detection of traffic events using camera- based 
object recognition, inserting dynamic objects into the simulation via V2X transmission, adding lanes 
and traffic signal phases through V2X data forwarding to a high-precision simulation map, trajectory 
prediction of all dynamic objects in the simulation, sending a trajectory list to the test vehicle, and 
providing feedback through the vehicle’s response to the trajectory list and re-detection of objects. 

 

 

1 Introduction 

Intersection assistance systems will emerge as a 
crucial component in preventing accidents and 
enhancing road safety. These systems aim to provide 
intelligent assistance at intersections. This paper 
explores the possibilities of an intelligent intersection 
assistance by creating a virtual representation of the 
real-time traffic conditions and continuously 
predicting the trajectories of all road users. By doing 
so, it can optimize driving patterns and, more 
importantly, proactively prevent accidents with timely 

interventions. The intersection assistance service 
acts as a comprehensive solution, aggregating all 
available information, applying traffic management 
measures, and actively influencing the traffic flow. 
Depending on the implementation and level of 
authority, this approach could potentially shift the 
responsibility of decision-making from the vehicle or 
driver to the local assistance system. For instance, in 
the case of automated vehicles, the intersection 
assistance system may dictate maneuvers, thus 
transferring responsibility from the vehicle's 
operator to the local assistance system.
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2 Motivation 

The study faced some difficulties in reliably tracking 
objects over several time steps due to issues such as 
occlusion and blind spots at the intersection. Simple 
approaches, such as applying a Kalman filter to 
extrapolate an object’s motion vector, are not sufficient 
in more complex scenarios such as crossroads. 
Traditional methods may fail to identify an object with 
its previous ID after occlusion if the object has changed 
direction during the occlusion, which frequently 
occurs during turning maneuvers. Tracking supported 
by a microscopic traffic simulation tool, such as SUMO 
(Alvarez Lopez et al. 2018), can address this problem 
because the simulation knows the mentioned 
directional changes and driving lanes. 

3 System Framework and 
Implementation 

The use of Collective Perceptive Messages (CPM) for 
transmitting object lists makes the simulation 
independent of the deployed sensors. Thus, it is 
possible to replace or extend the object detection 
system with another solution. This infrastructure- 
based approach can support crossroad assistance by 
improving traffic flow and increasing the safety of all 
road users. 

3.1 System constraints 

In this research, several software components, 
developed at DLR’s institute of transportation systems, 
have been extended to improve the overall 
functionality of the system. 

3.1.1 BOB Traffic Monitoring 

BOB (Building Blocks) is a DLR software framework 
that handles sensory inputs and provides higher level 
outputs. Specifically, in the context of this paper, BOB 
serves the function of camera-based object recognition 
and object tracking. To achieve seamless integration, 
BOB leverages the capabilities of the ROS (Robot 
Operating System). 

In this setup, rather than a direct interface, V2X 
(Vehicle-to-Everything) messages are employed to 
facilitate the transportation of essential information 
from BOB to the Sumo interface TraCI via ROS. This 
approach ensures efficient and effective 
communication, enhancing the overall traffic 
monitoring process.V2X Framework 

The Vehicle- to-Everything (V2X) framework 
(Bottazzi, Wesemeyer, Bargmann, & Ruppe, 2021) 
plays an important role in the infrastructure-based 
control approach. It is responsible for transmitting 
messages between the simulation and the test vehicle. 

To support the crossroad assistance system, the V2X 
framework has been extended with a project-specific 
MCM (Maneuver Coordination Message) V2X 
message. The extension has been implemented for 
both the air interface and the interface to ROS. 

The MCM message extension includes two 
functions. The first function is the 
VehicleCapabilities container, which allows the test 
vehicle to communicate its limiting characteristics. 
These consist of the tolerated distance to the front 
and rear, the tolerated maximum and minimum 
speed, and the maximum tolerated acceleration in 
longitudinal and lateral di- rections. This data is 
necessary because different vehicles require very 
different control requirements. For example, a sports 
car may turn faster than a bus. In- formation about 
the external dimensions of the objects to be 
controlled will be obtained through object recognition 
or evaluation of CAM messages and is not part of the 
MCM extension. 

The second function is the VehicleAdvice 
container, which has been extended with the 
TrajectoryAdvice fields. This allows the trajectory 
calculated in the simulation to be transmitted to the 
vehicle. It is a list containing Delta Position, Delta 
Time, Speed, and longitudinal acceleration. 

By extending the V2X framework with these 
functions, the infrastructure-based control approach 
can communicate critical information to the test 
vehicle in real-time. The vehicle can then use this in- 
formation to execute precise turning maneuvers and 
increase the safety of all road users. 

3.1.2 Sumo traffic simulation 

The traffic simulation is a critical component of the 
infrastructure-based control approach. It is 
responsible for simulating the traffic conditions at 
the inter- section and providing trajectory 
predictions for all dynamic objects in the simulation. 
To support the crossroad assistance system, the 
TraCI interface of the SUMO traffic simulation has 
been extended to receive CPM object data from Bob 
Traffic Monitoring and SPAT, MAP, CAM, and MCM 
messages for- warded from ROS. The interface has 
also been ex- tended to send MCM messages to the 
ROS system. 

The trajectory prediction of dynamic objects is a 
challenging problem due to the complexity of traffic 
conditions at intersections. The infrastructure-based 
control approach addresses this problem by using a 
combination of object recognition, V2X transmission, 
and trajectory prediction in the SUMO traffic 
simulation. By predicting the trajectory of each 
dynamic object in the simulation, the system can 
provide ac- curate trajectory lists to the test vehicle, 
which can then execute precise turning maneuvers. 
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3.1.3 Selection of the demo intersection 

The developed intersection assistance system is to be 
implemented in Brunswick, Germany, as part of the 
research. The Tostmannplatz is an ideal 
demonstration location due to its status as a research 
and innovation intersection of the DLR. Its 
topographic conditions are already well known from 
several other projects. MAPM (Map Message) and 
SPAT (Signal Phase Message) messages are available. 
Additionally, this intersection is equipped with a 
hemispherical camera and object detection hardware, 
which is a requirement for this project. 

3.1.4 Generating test data 

To evaluate the effectiveness of the infrastructure- 
based control approach, test data was generated at 
the Tostmannplatz intersection in Brunswick. The 
object detection system was put into operation, and 
CAM (Cooperative Awareness Message), MAPM, and 
SPATEM messages available on the air interface were 
transferred to ROS. Several turning maneuvers were 
manually performed at Tostmannplatz with the test 
vehicle to generate data that resembles the use case. 
This provided a recording of all on-site conditions that 
can be played back virtually as often as desired during 
further development of the simulation and control. 

In addition, the camera used for object detection was 
calibrated using geo-referenced points from a satellite 
image. The calibration involved manually transferring 
the geo-coordinates to the camera image and 
calculating the camera angle and distortion resulting 
from the fisheye lens. The resulting systematic errors 
were based on inaccuracies in the compensation of lens 
curvature and the assumption that the road is a 
completely flat surface. Overall, the localization 
accuracy with a systematic offset of a maximum of a 
few centimeters is sufficient for the project. 

The intersection assistance system uses the estimates 
of the tracking pipeline to initialize and up- date a 
traffic simulation. The tracking pipeline consists of a 
detector, a data association algorithm, and a Kalman 
filter. The detector identifies objects within the camera 
image, and the data association algorithm as- signs 
unique IDs to each object and tracks their movement 
over time. The Kalman filter is used to predict the 
future position of the objects based on their cur- rent 
position and velocity. 

To test the effectiveness of the tracking pipeline, the 
test vehicle was driven through the intersection 
multiple times while performing different turning 
maneuvers. The resulting object lists and trajectory 
predictions were compared to ground truth data 
obtained through manual annotation. The results show 
that the tracking pipeline is effective in reliably tracking 
objects over multiple time steps, even in complex 
scenarios such as crossroads. 

 

3.2 Calibration of Object Detection 
and Limits of Localization 
Accuracy in the Existing System 

The camera calibration is based on easily identifiable 
geo-coordinates from a satellite image. These are 
manually transferred to the camera image, and the 
camera angle in height and the distortion resulting 
from the fisheye lens of the camera are automatically 
calculated. The resulting systematic errors are based 
on inaccuracies in the compensation of lens curvature 
and the assumption that the road is a completely flat 
surface. Overall, the localization accuracy with a 
systematic offset of a maximum of a few centimeters 
is sufficient for the project. 

3.3 Localization Estimations by the 
Tracking Pipeline 

The intersection assistance system uses the 
estimates of the tracking pipeline to initialize and 
update a traffic simulation. The following sources of 
errors exist in tracking: 

 

• False associations: The trajectory of an object 
may be falsely assigned detections of another 

Figure 1 Comparison of CAM based trajectories and 
trajectories from CPM (CAM red, CPM vehicles in blue) 
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object, especially when traffic is dense and the 
viewing angle is flat. 

• Fragmentations: Due to partial occlusions of the 
traffic participants, a trajectory can be fragmented 
into several pieces. 

• ID switches: It frequently happens that a traffic 
participant is tracked with an ID and later receives 
a different ID, e.g., because the trajectory could not 
be continued due to missing measurements 
(occlusion) and a new ID is later assigned. 

 

The influences of errors are summarized in a quality 
metric, the so-called MOTA. The MOTA of the tracking 
algorithm used is around MOTA ∼= 77.1 [?]. Thus, it 
is necessary to develop strategies for implementing 
intersection assistance that can handle errors that are 
still unavoidable according to the state of the art. 

3.4 Trajectory Prediction through 
Simulation 

The prediction of trajectories through simulation is a 
promising approach for enhancing the performance of 
autonomous vehicles (AVs). AVs rely on real-time 
sensor data to detect and respond to the movements of 
surrounding traffic participants, such as adjusting 
their speed and acceleration. However, the available 
information is limited by the capabilities of the 
vehicle’s sensor system. The application of V2X 
communication is one way to expand the local 
information scope, enabling better route planning at 
decision points such as intersections, junctions, and 
turning areas. Prediction of future movements of local 
traffic participants using a vehicle external simulation 
is a feasible way to fore- cast trajectories when 
corresponding real-time input data is available. The 
predicted trajectories and sub- sequent trajectory 
proposals can then be used by AVs for proactive 
trajectory planning and speed control, such as early 
lane changes and energy-efficient speed management. 

One of the objectives of this research is to develop an 
interface for extracting the classes, trajectories, 
speeds, and destination directions of traffic participants 
from a given data source and inserting them into the 
simulation at the respective time stamps. As 
simulations can run faster than real-time events, 
simulated trajectories can be used as predicted 
trajectories for AVs. To achieve this, video data 
collected from the camera at the Tostmannplatz 
research node in Brunswick was utilized as the data 
source, and the DLR’s microscopic traffic simulation 
suite SUMO was used as the simulator. The overall 
process of the simulation is illustrated in Figure 2. 
This paper first describes the network preparation 
work and available video data in Rosbag format, 

followed by an explanation of the conducted work 
and considered points. Finally, a summary of the 
current research outcome is presented. 

3.5 Object Alignment 

The implementation of the proposed method was 
carried out using Python and SUMO 1.11. The focus 
was on (1) setting up the processing interface be- 
tween the simulation and video data source and (2) 
publishing simulated (predicted) vehicle trajectories 
in a ROS topic. The processes were implemented for 
online and offline applications, as shown in Figure 
2. For each subscribed message, a simulation is 
started for 30 timestamps (3 seconds) in response to 
the given AP requirement. Objects in each message 
are parsed and inserted into the simulation network 
at the first timestamp. Then, matching objects are 
simulated, and the corresponding data is published 
at each timestamp until 30 timestamps are reached. 
The entire process runs continuously until it is 
interrupted for online application or all messages in 
a specific rosbag file are processed for offline 
application. The processing time for each cycle is 
currently under 0.1 seconds for the example rosbag 
file mentioned in Section 1.2, meeting the given 
requirement. The following sections describe how 
objects can be matched and inserted into the 
simulation. 

 
In this study, the process of aligning object data 

with the simulation in the context of trajectory 
planning is described. The object data is first parsed 
and stored in a timestamp-based map, which is then 
used in conjunction with the TraCI application to 
start the simulation. The position of each object is 
matched with the nearest lane in the simulation at 
defined time intervals, with a search radius of 1 me- 
ter. Only cars are currently considered due to the 
accuracy limitations of the tracked object positions. 
If the corresponding lane is valid for the object class, 
such as a passenger, the alignment is deemed 
successful. The distance from the matching point to 
the start of the matching lane is also calculated and 
used to insert the object at the precise location in 
the simulation network. Each object in the 
simulation requires a destination. If there is no 
information available on the object’s movement 
direction or destination for objects with matching 
lanes and positions, an estimate is made and assigned 
to the respective object. Possible target edges for 
lanes approaching or near the Tostmannplatz 
intersection are predefined in a map based on 
allowed turning marks in practice. If multiple target 
edges exist, a target edge is randomly selected. When 
adding an object to the simulation, the object ID, 
speed, start position, start lane ID, start and target 
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edges are specified. The corresponding route is then 
calculated by invoking the TraCI function 
rerouteTraveltime, as SUMO requires route 
information. Currently, added objects are only loaded 
into the simulation at the next timestamp. The 
corresponding time adjustment for inserting objects is 
also considered. If an object is already in the 
simulation, its speed and target are updated at each 
respective timestamp based on extracted object data 
such as position and velocity. If there is no extracted 
data available for a particular inserted object the 
updated object list is returned to BOB, and the process 
repeats for the next time step. By incorporating 
feedback from the simulation, the prediction can be 
refined and the object persistence improved. This 
pipeline is currently under development and will be 
tested in future work.  
 

 
Figure 2 Process of the simulation 

3.6 Latency Considerations 

In order for the intersection assistance system to 
calculate a valid trajectory for the vehicle, several 
latency-prone steps are involved in the processing 
chain. The camera operates with a temporal 
resolution of 15 frames per second. Changes in the 
traffic scenario that occur in a time frame below 1/15 
seconds cannot be detected by the system in principle. 
Additionally, there are other delays such as object 
recognition, transmission to the SUMO interface, and 
calculations within the simulation itself. Even after 
the generation of the trajectory through the trans- 
mission as MCM, latencies of several milliseconds are 
expected. Finally, the delays in the test vehicle’s system 
itself cannot be underestimated. 

3.7 Tracking Objects Reliably 

In Section 3.2 and 3.3, it was shown that tracking 
objects reliably over several time steps is challenging. 
Problems can arise, for example, due to obstruction 
and blind spots at the intersection. Simple 

approaches, such as applying a Kalman filter to 
extrapolate the motion vector of an object, are 
insufficient in more complex scenarios, such as an 
intersection. For example, in the conventional 
method, an object cannot be tracked with its 
previous ID after an obstruction if it has changed 
direction during the obstruction, which frequently 
happens during a turning maneuver. A tracking 
method supported by SUMO can provide a solution 
here, as the aforementioned direction change and 
driving lanes in the simulation are known. 

3.8 Structure of the Pipeline for 
Object Recognition 

 
Figure 3 Planned structure of the pipeline for object 
recognition with improved object persistence through 
feedback of the prediction. 

In the proposed system, BOB initiates the process 
by creating an object list from the camera image at 
time (t) and subsequently converts it into a CPM. 

Secondly, a trained neural network attaches its 
prediction for the direction of travel to each object 
(the development of the neural network for travel 
prediction is out of scope for this paper). It sends this 
prediction together with the CPM to the SUMO 
simulation. SUMO adds the objects to its simulation 
and assigns the driving directions from the prediction 
to the objects, SUMO simulates the progress of the 
traffic scenario for the time (t + 1) and writes a CPM 
for time (t + 1). This CPM is converted back into the 
format of an object list that BOB requires. Finally, 
BOB compares the new camera image at time (t +1) 
with the prediction from SUMO and assigns the 
objects with the same object ID as in the previous 
loop. This matching should be greatly improved since 
we now have a precise prediction to where object have 
moved in between two timesteps. CPM to Transmit 
Object lists. 

By using CPM to transmit the object lists, the 
simulation can be kept independent of the sensors. 
This configuration allows, for example, BOB to be 
replaced or extended with a commercial object 
recognition solution or other new approaches for 
generating object lists.  

By transmitting an optimized trajectory through 
MCM to one or more vehicles, the system creates a 
secondary feedback loop. At time t+1, the object 
recognition can be compared with the simulation's 
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prediction, and additionally, the advised trajectory of 
the test vehicle can be compared to its actual 
trajectory. It is anticipated that the time required for 
a test vehicle to respond to a suggested trajectory is 
significantly longer than one timestep in the object 
detection loop. Further research will determine 
whether this system is inherently self-stabilizing or 
necessitates substantial tuning of the test vehicle's 
input.

 
Figure 4 shows a system consisting of a fast simulated and 
a slow real-world feedback loop for trajectory advice 

3.9 Further development 

The DLR Institute of Transportation Systems has 
been at the forefront of research and development in 
the field of automated driving for several years. 
Leveraging our extensive expertise and knowledge, we 
have successfully integrated external sensor input to 
enhance the capabilities of automated vehicles 
(Lapoehn, Heß, Böker, Böhme, & Schindler, 2021). 
Building on this strong foundation, our ongoing efforts 
aim to pave the way to meet the requirements of 
German level 4 automated driving regulations, 
specifically focusing on the advancement of remote-
operated driving. 

As automated driving technologies rapidly progress, 
the concept of remote-operated driving emerges as a 
promising solution to address certain challenges 
associated with fully autonomous vehicles. Remote 
operation allows for human intervention and 
oversight, providing an additional layer of safety and 
control during complex driving scenarios or in 
situations where the vehicle encounters 
unprecedented obstacles. Furthermore, it enables 
seamless transition from autonomous mode to 
remote control, thus ensuring a smooth and efficient 
driving experience. 

The research presented in this paper serves as a 
critical stepping stone towards the development and 
implementation of remote-operated driving. By 
utilizing trajectories generated from advanced 
simulation techniques, we aim to bridge the gap 
between virtual environments and real-world driving 
scenarios. These simulated trajectories are carefully 
crafted to mirror real-world conditions and intricacies, 
allowing us to test and validate automated vehicles 
extensively in controlled test scenarios. 

 With the successful integration of simulation-
generated trajectories into the operation of 
autonomous vehicles, we expect to achieve significant 
advancements in the accuracy, safety, and reliability of 
automated driving systems. This research opens up 

new avenues for optimizing vehicle control 
algorithms and decision-making processes, 
ultimately leading to a higher level of autonomy and 
enhanced performance in a wide range of driving 
situations. 

In conclusion, the findings presented in this paper 
provide a solid foundation for the continued 
development of remote-operated and infrastructure-
assisted driving. We are confident that our research 
will inspire further studies, collaborations, and 
innovations in the field. 
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