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A B S T R A C T

In the avionic software domain, application development pace
is comparatively slow while verification cost is high. Moreover,
through reliance on expensive standards and software, entering
the market is connected with a significant burden. This work
explores the establishment of a practical APEX (ARINC 653) devel-
opment platform. Improving the overall development experience,
pace, safety, openness as well as code reusability are the goals in
this endeavor implemented in the Rust programming language.

A Rust native APEX API was designed, assuring compatibility
to C-language based hypervisors along with Rusts safety guaran-
tees. Further, grouping APEX functionality into a set of traits, an
APEX port extension library was developed for ascertaining pow-
erful extensibility. For fast prototyping and the exploration of the
APEX API, an already partially ARINC 653 part 4 compliant hy-
pervisor was developed. It relies solely on Linux kernel features
for uncomplicated usage and features built-in support for our
Rust native APEX API. As a last step, partitions were developed
utilizing our APEX API and extension library. By executing them
on our as well as the proprietary XNG hypervisor, portability was
demonstrated.

Demonstrating portability of generic extensions libraries and
partitions, the potentiality of code-reuse is shown. Likewise,
our hypervisor displayed functionality equaling SKE whereas
requiring less setup. Enforcing memory safety related practices
by default, Rust especially lends itself to a safety critical domain
like avionics. These results suggest that a Rust based platform
for avionic development may serve as the entry point for a
flourishing ecosystem.
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Z U S A M M E N FA S S U N G

Die Entwicklungsgeschwindigkeit ist in der Domäne von Avio-
nik Software vergleichsweise gering, zeitgleich sind aber die Kos-
ten für Verifizierung hoch. Hinzu kommt, dass der Zugang zum
Markt durch teure Standards und Softwarelizenzen erschwert
wird. Um diesen Hindernissen entgegenzuwirken untersucht
diese Thesis Möglichkeiten, eine praktische, auf APEX (ARINC
653) ausgerichtete Entwicklungsumgebung zu schaffen. Ziel die-
ser ist, eine bequeme zu nutzende Entwicklungsumgebung anzu-
bieten, mit der in kurzer Zeit Code von einer hohen Güte (erreich-
te Sicherheit) erzeugt werden kann. Des Weiteren soll die für und
in Rust gemachte Entwicklungsumgebung das Erstellen von wie-
derverwendbarem Code vereinfachen und die Entstehung eines
offenen Ökosystems begünstigen.

Für dieses Ziel wurde zuerst eine APEX API in Rust entworfen,
die trotzdem auch Kompatibilität mit Hypervisoren welche
in C geschrieben sind ermöglicht. Nicht nur wurde diese
API so entworfen, dass sie möglichst viele von Rust’s safety
properties ausnutzt, auch wurden die APEX Methoden in Traits
gruppiert. Dadurch werden mächtige Erweiterungen ermöglicht,
was am Beispiel einer Kommunikationsbibliothek aufgezeigt
wird. Um eine schnelle Feedbackschleife zu ermöglichen wurde
des Weiteren ein Hypervisor entwickelt, der jetzt bereits große
Teile von ARINC 653 Part 4 erfüllt. Dieser Hypervisor greift
auf Primitive des Linux Kernel zurück um temporale und
spatiale Isolation zu erreichen und dabei die oben erwähnte
Rust APEX API zu implementieren. Zuletzt wurde ein Satz
Beispielpartitionen entwickelt, welcher sowohl die APEX API als
auch die eingangs benannte Kommunikationsbibliothek nutzen.
Die Ausführung der Partitionen, sowohl auf unserem Linux
Hypervisor wie auch auf dem proprietären XNG Hypervisor,
zeigen die Portabilität unseres Ansatzes.

Nicht nur dass, sondern auch die Code-Wiederverwendbarkeit
wird dadurch aufgezeigt. Gleichermaßen zeigt sich, dass unser
Hypervisor ähnliche Fähigkeiten wie SKE besitzt. Durch das Er-
zwingen von memory-safety drängt sich Rust geradezu als Spra-
che für die Implementierung von Software in sicherheitskriti-
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schen Domänen auf. Unsere Ergebnisse legen nahe, dass eine
Rust basierte Plattform für Avionik Entwicklung ein guter An-
gelpunkt für ein aufblühendes Software-Ökosystem ist.
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1
I N T R O D U C T I O N

Nowadays, new technologies are adopted at an exceptionally
slow pace in avionics software[1]. What might be considered
well established in IT, may only find usage decades after. While
this makes sense for a domain where safety is the greatest good,
new additions to the safety tool belt of developers get the same
treatment, resulting in subpar incorporation of well researched
technologies and methodologies.

Two aspects are of great importance for avionics software
development here – Process and Platform. With the develop-
ment process being strictly regulated, through for example DO-
178C[2], the established Waterfall Model is usually employed, res-
ulting in slower than necessary time to market[3]. Improving on
this, more agile approaches like DevOps are sought after, which
are already put to the test by the US Air Force[4]. As for the plat-
form, with Integrated Modular Avionics (IMA), isolation needs to
be guaranteed for allowing software of mixed criticality to run on
the same system. For this, introduced in the broadly used ARINC
653 standard[5], the APplication EXecutive (APEX) is provided,
an API for partitioning and isolation of software components.

In years to come, the most impactful addition to the platform
related tool belt could be the Rust programming language. Rust
is a promising candidate for the future of safe systems’ software.
Not only does it contribute by enforcing various safety related
constraints through its linear type-system, one of its greatest val-
ues lays in enabling (near) zero-cost abstractions such as compat-
ibility layers via its composable trait system. But how can Rust
be connected to established software landscape of avionics? Is it
possible to maintain compatibility with legacy software relying
upon its proven dependability while also incorporating Rust’s
safety mechanisms? And when done, can the result remain man-
ageable and approachable i.e. is a sustainable developing experi-
ence achievable?

In this work we introduce building-blocks for a platform
that empowers developers to write avionic applications faster,
without compromising on safety while also promoting code-
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reuse within partition. For this, in Chapter 4, we explore
existing software ecosystems which already achieved significant
upscaling and community building. Following this, we identify
problems with the APEX API, which ultimately hinder it in
terms of hypervisor independence and safety. To address these
problems, we then propose apex.rs, our own re-imagined
APEX API in Chapter 5. It is implemented in Rust with a
focus on ARINC 653 compatibility, safety and extendability.
Complying with ARINC 653 part 4 and implementing apex.rs,
we finally introduce our Rust based and Linux native hypervisor
in Chapter 6. Demonstrating hypervisor independence and
extensibility, in Chapter 7 we put our proposed platform to the
test.

Therefore, in the following background chapter we start
by providing an overview of the technologies used, such as the
ARINC 653 standard and the Rust programming language.
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B A C K G R O U N D

P AP

Partition 1

P

Partition 2

AP

Partition 3

APEX OS

Hardware

Figure 2.1: ARINC 653 Example Architecture
P: Periodic Process AP: Aperiodic Process

2.1 runtime for airborne software : arinc 653

ARINC 653 is an avionics standard for isolated partitioning of
applications in a real-time context, published by Aeronautical Ra-
dio, Incorporated (ARINC)[5]. It introduces the APplication EXec-
utive (APEX), an Application Programming Interface (API) which
specifies data types and functions (referred to as “services”).
The ARINC 653 standard is split into multiple parts, with the
required services being distributed into three of them:

▷ ARINC 653 Part 1: Standard Services [6]
▷ ARINC 653 Part 2: Extended Services [7]
▷ ARINC 653 Part 4: Subset Services [8]

Here ARINC 653 part 1 marks the standard services required,
with ARINC 653 part 4 being a subset and ARINC 653 part
2 being a superset of them. In theory, all of these feature sets
are compatible with each other, as long as the APEX partition
developer follows compatibility recommendations. This means
that a partition written for ARINC 653 part 4 can run on a
hypervisor implementing ARINC 653 part 1 or part 2 without
any problems. As for the remaining parts of the ARINC 653

3



4 background

standard, part 0[5] gives a basic overview of the standard and
part 3a[9] and 3b[10] specify conformity tests for hypervisors. In
the following subsections, most information is taken from the
ARINC 653 standard and hence references to it are omitted.

2.1.1 Architecture

A very basic exemplary structure of an ARINC 653 compliant
system is shown in Fig. 2.1. An APEX API implementing and
ARINC 653 compliant OS is running on top of some hardware.
Hosted on top of the ARINC 653 OS are partitions, which
together build an ARINC 653 module. Partitions are temporally
and spatially isolated from each other. Spatial isolation means
that partitions can not access nor corrupt the memory of another
partition[5, 11]. Furthermore, temporal isolation guarantees that
partitions can not consume more CPU resources than they are
assigned. Through this an environment is constructed in which
partitions can not harm the execution of each other[5, 11]. For
what is executed inside a partition, the limited ARINC 653 part
4 allows for up to two processes, one of which is considered as
the background process, running indefinitely and aperiodically.
The other is the foreground process, which is started with each
partition time window’s (ptw) start.

2.1.2 Scheduling

t0 mafduration

Partitions 1 2 3 1 1 2 3 1

Frame Major Frame 1 Major Frame 2

(a) Major Frames

t0 ptwduration

Partition 1 Periodic Aperiodic Periodic Aperiodic

Partition 2 Periodic Periodic

Partition 3 Aperiodic Aperiodic

Window Partition Time Window 1 Partition Time Window 2

(b) Partition Time Window

Figure 2.2: ARINC 653 Scheduling
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An ARINC 653 part 4 implementing hypervisor is only
expected to utilize a single processor core. Moreover, allowing
for only two processes inside of partitions, scheduling is kept
simple.

major time frame In a schedule, to all partitions, a period,
duration and offset is assigned. These values need to allow for a
disjoint scheduling of partitions, which fits into the given major
frame (maf) duration. Fig. 2.2a depicts APEX’s largest scheduling
primitive – the major frame. The period of a partition is for
specifying the absolute time between consecutive starts of a
partition’s time window. This means that in this example, the
set period for partition 1 is half the maf duration. This can be
inferred since the time window of partition 1 appears twice in
the maf. On the other hand, partition 2 and 3 both have a period
equal to the maf duration, because they only have a single time
window in each maf. The offset is for setting the start time of the
ptw in relation to the start of the maf. In our example, this would
mean an offset of zero for partition 1 and an offset larger than
zero but smaller than half the maf duration for partition 2 and
3. For their duration that defines the length of the ptw, we can
say that partition 1 and 2 are identical, with partition 3 running
longer than both of them.

partition time window As already mentioned, up to
two processes are allowed in an ARINC 653 part 4 compliant
hypervisor. The foreground process (periodic) is scheduled for
the start of every ptw and once it stops, the background process
(aperiodic) takes over. Contrary to the scheduling of partitions,
the scheduling inside is neither static nor does it grant temporal
isolation. As a result, the periodic process is allowed to run as
long as it wants, potentially not leaving time for the background
process. Because the deadline for the periodic process should
always be equal to the ptw, failure to finish will result in a
health monitor event being emitted. Fig. 2.2b shows the potential
scheduling of processes within 3 different partitions. The first
one represents a partition with both a periodic and an aperiodic
process. Once the periodic process declares that it wants to
wait for the next ptw, the aperiodic process is executed. The
example’s second partition only contains one periodic process.
When it finishes its work, no process is scheduled for the rest
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of the ptw. The periodic process in partition 1 and 2 run for
different durations in each ptw, displaying the arbitrariness of
intra-partition scheduling. Lastly, partition 3 contains a sole
aperiodic process, always running during the entire ptw.

2.1.3 Channel

For inter-partition communication, ARINC 653 part 4 specifies
two types of unidirectional channels - Sampling and Queuing
ports. Due to them overstepping partition boundaries in a sense
(one partition can now influence another one), they need to
be statically defined at system design-time, allowing solely for
predefined interaction between partitions. Moreover, to decouple
the partitions, they may not know the destination nor source of
a port – only the boundaries and name are known.

sampling port Realizing one-to-many communication, the
sampling port allows a single message to be multicasted to any
number of partitions. At system design-time, the boundaries,
namely source, destinations as well as name and maximum
message size for each sampling port need to be defined.
Additionally, during runtime destination-partitions may set an
individual refresh period with the initialization of their sampling
destination port. This refresh period is then used for providing
a validity flag with every read message. Should the age of the
message be within this defined period, the message is considered
valid and vice versa. Due to this, the sampling port is especially
suitable for sensor data. A partition, responsible for periodically
reading a sensor can read its data and then write it to the
sampling port. During design-time, all partitions relying on the
data of the sensor can then be declared as destinations of the
port. Setting a tight refresh period, reliant partitions may quickly
notice if the sending partition did not send new data. This
information may then be used for failover to a redundant data
source.

queuing port Queuing ports allow for one-to-one commu-
nication only, but with the added capability of sending multiple
messages at once. Similarly to sampling ports, source, destin-
ation, name and maximum message size need to be specified
at design-time, with the addition of the maximum number of



2.1 runtime for airborne software : arinc 653 7

queued messages. Further on, due to the existence of an upper
limit for the number of queued messages the send operation can
fail if the queue is already full. This means that with queuing
ports, the destination partition can affect the source partition by
not reading from the port. Therefore, the source partition should
be able to deal with this situation.

2.1.4 Health Monitor

ARINC 653 considers three error levels:
▷ Process: May affect any number of processes in a single

partition
▷ Partition: May affect a single partition
▷ Module: May affect all partitions

Sources of process level errors include the explicit raising
of an error through the APEX raise_appliation_error service,
execution errors like memory access violation and deadline
misses. Partition level errors are mainly raised due to faulty
partition configurations or erroneous system functionality. Lastly,
module level errors can also originate from faulty configurations
and system functionality as well as for example power failures.
All of these error sources are examples and are ultimately
hypervisor implementation dependent.

For recovery actions, ARINC 653 part 4 handles process level
errors as partition level errors. While available recovery actions
are hypervisor dependent as well, popular recovery actions
involve ignoring the error, stopping or restarting the partition.
These recovery actions are then set for the available error types
and are accordingly applied. This means the recovery action of
a partition initialization error may restart the partition, and a
module initialization error may restart the module.

2.1.5 Intra-Partition Execution Flow

Partitions can be in one of four modes - COLD_START, WARM_START,
NORMAL and IDLE. When a partition is scheduled for the first time,
it is in the COLD_START mode. While the condition for starting
into the WARM_START mode is hypervisor dependent, both start
modes are for initializing the partition, processes and channel.
Even though the start modes are for initialization of the partition,
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all APEX services may be used during either start mode. But
since during both start modes no process may be eligible for
scheduling, the mode should be changed to NORMAL through the
set_partition_mode service after initialization.

2.2 modern systems programming language : rust

Rust is a young and promising safety focused systems program-
ming language, which enjoys great popularity among developers
and organizations alike[12]. Because of its safety benefits, the
Rust programming language is already considered for safety crit-
ical systems[13, 14]. But lacking a certified toolchain, the usage of
Rust code in safety critical systems is aggravated[15]. Confirming
Rust’s potential for safety critical systems, the renowned Ada-
Core team joined the endeavour of the Ferrous Systems GmbH in
developing a qualified Rust toolchain which adheres to current
standards[13].

Rust provides safety through multiple ways. Extensive com-
pile time checks combined with a linear type system cause many
errors to be caught at compile-time. A borrow checker uses life-
times to ensure no unsafe memory operations occur. Finally, a
correctness driven API design is implemented with a rich mix-
ture of compile-time and run-time checks to catch errors early,
often already during compile-time. While there is much more to
say about these approaches regarding safety, we focus on Rust’s
handling of pointers only for the scope of this section.

2.2.1 Pointer

Rust utilizes the concept of ownership for its data, effectively
constructing a powerful abstraction over the concept of point-
ers[16, 17]. With ownership the owner of data is always clear to
the compiler, effectively allowing for only two ways of passing
data - surrendering ownership and borrowing[16, 18]. For enfor-
cing this concept, Rust employs the borrow checker at compile-
time, a tool for static analysis of data lifetimes[16, 18]. Through
this, the compiler knows exactly how long pointers to data live
compared to how long the data itself lives, raising a compile-time
error in case of incompatibility[16, 18]. Not only does this relieve
Rust of requiring garbage-collection for automatic memory man-
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agement, many error classes related to referencing data can be
identified at compile-time as well[17]. Use-after-free errors for
example are made unattainable through this concept, prevent-
ing dangling pointer bugs[17]. Another facet of ownership is the
differentiation between mutable and non-mutable data[16]. This
allows the compiler to also prevent race-conditions, as the bor-
row checker allows either for a single mutable borrow to some
data or multiple non-mutable borrows to exist at any given time,
which are always safe to access simultaniously[17].

Compared to pointer usage in the C programming language,
ownership as an abstraction over pointers is a lot more restrictive.
But in C, pointers are also used for contiguous sequences of
data, like for example arrays, where pointer arithmetic is used
to access the data. In Rust, this is done via the slice primitive,
which internally holds a pointer and a length, representing a
reference to a contiguous sequence of variables[16, 17]. Among
other already mentioned errors, this abstraction over an indexing
pointer further prevents i.e. index out of bounds errors which
could lead to writing data to unintended addresses[17].

2.2.2 Extension Traits

Rust as a programming language mandates the separation of
data and functionality, as it urges “Composition over Inherit-
ance”[19]. This separation manifests especially in Rust’s means
of realizing interfaces – Traits. Like with interfaces, traits define
a set of functions which need to be provided by the imple-
mentor[16, 19]. Moreover, similar to templates in C++, these
traits can be implemented for generic types as well. As Rust
allows to constrain these generic types to implement specific
traits (trait bounds), contrary to templates, generics are fully
type-checked[20]. This means that a successfully compiling im-
plementation of a trait for a constrained generic type is guar-
anteed to work[20]. Through this, the concept of extension traits
is made possible. As a simple example for extension traits, List-
ing 2.1 may be used. Here we define the Shout-trait, defining the
shout-function, which returns an all-uppercase string. Then in
line 4 we implement this trait for all generics T that implement
the ToString-trait. In line 6 we then call the to_string-function on
self, followed by the String implemented function to_uppercase.
Only because we constrained the generic T to implement the
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Listing 2.1: ToString extension

1 pub trait Shout {

2 fn shout(&self) -> String;

3 }

4 impl<T: std::string::ToString> Shout for T{

5 fn shout(&self) -> String{

6 self.to_string().to_uppercase()

7 }

8 }

ToString-trait, we are allowed to call the to_string-function on
self here. Otherwise, the compiler would complain that T is not
guaranteed to provide a function with this name. By doing this,
every type implementing the ToString-trait now also offers the
shout-function.
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R E L AT E D W O R K

3.1 selective middleware

The approach introduced in ’Selective Middleware’[21] describes
an alternative to current IMA architectures which focuses on
control algorithms, called – the law. A platform is provided that
given a distributed computer system and a set of laws (where the
law is described as simplex) can configure a system to deploy the
law on the hardware while fulfilling various desired redundancy
patterns. The patterns (such as N-modular redundancy) are
implemented using set of platform management tools and
a middleware allowing to develop the law independent of
redundancy without having to opt out of it. In a nutshell we
understand this work to be an (ARINC 653 part 4 compatible)
redundancy library combined with a set of tools to configure
a system of systems. While this work touches many of the
same aspects as ours, it focuses on control engineering (the
law) and redundancy patterns. In the meantime we consider the
development experience of applications running in the system,
as opposed to the orchestrations of them.

3.2 arinc 653 hypervisor

In this section we want to introduce the current state-of-the-
art surrounding ARINC 653 compliant hypervisors. For this,
we take a look at existing type-1 and type-2 hypervisors, with
type-1 hypervisors directly running on bare-metal and type-2
hypervisors requiring an underlying OS[22, 23]. Since we aim
to provide our own ARINC 653 compliant type-2 hypervisor,
the main focus lies on type-2 hypervisors. For the sake of
completeness, prominent type-1 hypervisors are mentioned here
briefly.

Offering memory isolation along fixed scheduling for parti-
tions, fentISS’s XtratuM Next Generation (XNG) is the most ba-
sic type-1 hypervisor we want to mention[3, 24]. XNG can run
on System on a Chip (SoC) devices like the Xilinx Zynq Ul-

11
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traScale and will be used by us to exercise our avionic plat-
form. While XNG itself is not ARINC 653 compliant, fentISS
also provides LithOS, a guest OS extending XNG with ARINC
653 APEX functionalities[11]. Moreover, fentISS offers an emu-
lator product called SKE[3, 25], which will be further discussed
in Sec. 3.2.2.1.

Other noteworthy ARINC 653 compliant type-1 hypervisors
are SYSGO’s PikeOS[26], Wind Rivers VxWorks 653[27], Green
Hills’ INTEGRITY1, DDC-I’s Deos2 and Lynx’s LynxOS3. Both
are commercial hypervisors, offering ARINC 653 and POSIX
compliance[28]. The latter of which enables them to be used as
the underlying Operating System (OS) in POSIX based ARINC 653

solutions.

3.2.1 ARINC 653 on POSIX

POSIX ARINC 653
Event driven execution Cyclic based execution
Pre-emptive priority scheduling Fixed time slices for partitions &

Pre-emptive priority scheduling for
processes

No temporal partitioning Temporal partitioning
Sockets & IPC Sampling and queuing ports

Table 3.1: Comparison of POSIX and ARINC 653[29]

In 2004, Airbus already explored the possibility of Linux in
civil avionics, starting with a comparison between POSIX and
ARINC 653[29]. Part of this comparison can be seen in Table 3.1,
highlighting differences. The most severe difference is that POSIX
does not offer any way of enforcing temporal isolation[29]. While
sampling & queuing ports can be mapped to sockets & IPC,
temporal isolation, as it is required in ARINC 653, can not
be reproduced. This restricts POSIX based solutions to be used
solely on top of Partition Operating Systems (POSs), where the
scheduling strategy also matches ARINC 653[29]. The POSIX
interface providing OS must then enforce temporal isolations for
its partitions.

1 https://ghs.com/products/rtos/integrity.html
2 https://www.ddci.com/products_deos_do_178c_arinc_653/
3 https://www.lynx.com/products/lynxos-posix-real-time-operating-system-rtos

https://ghs.com/products/rtos/integrity.html
https://www.ddci.com/products_deos_do_178c_arinc_653/
https://www.lynx.com/products/lynxos-posix-real-time-operating-system-rtos
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One POSIX based solution is realized through the Portable
APEX[30]. The Portable APEX is an interface which implements the
APEX API via the POSIX API[30]. Through this, any POSIX compliant
OS can attain APEX compliance. When the Portable APEX was
developed, it was specifically made with the AMOBA simulator
in mind[30, 31]. With the main goal of providing means for
testing and verification of ARINC 653 partitions, the AMOBA
simulator claims to do so on any POSIX compliant system[31].
Because actual partitions scheduling is not possible with only the
POSIX API, the Portable APEX may only be used inside of partitions.

3.2.2 ARINC 653 on Linux

As previously mentioned, Airbus already considered to use
Linux in civil avionics[29, 32]. Reasons named for Linux are
readily available packages and drivers, freeing developers from
the need to reinvent the wheel as well as a simple development
process[32]. But also acknowledging issues with Linux, usage in
safety critical systems is complicated through the absence of real-
time capabilities[32–34], and the enormous effort required for
certification.

Next, we outline some solutions from the lots of research
available regarding ARINC 653 compliance in Linux.

3.2.2.1 Without Isolation

Missing isolation forbids full ARINC 653 compliance, thus non-
isolating hypervisors may be considered emulators[5, 6]. These
still can be used for simple functional testing of ARINC 653

applications[3, 31]. SKE is one example of this; it provides an API
similar to that of XNG, but it executes the partitions as normal
process in Linux[3]. While its temporal behaviour is not at all
accurate the semantics of inter-partition communication are[25].
Therefore, its use-case is primarily testing of partition code
for functional correctness. Since the temporal behaviour is not
accurate SKE allows to emulate a hypervisor configuration faster
than real-time[25]. This is used for example to test for overflows
and other errors which only occur after extended runtime of an
application[3]. In this context, emulation of the XNG hypervisor
entails that fentISS’s ARINC 653 compliant LithOS also runs on
SKE, allowing it to be used for testing of ARINC 653 applications.
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3.2.2.2 With Isolation

With most research surrounding the usage of Linux in avionics,
targeting full ARINC 653 compliance, isolation must be guaran-
teed[5, 6]. While all approaches we investigated differ in terms of
final architectural design, the means for attaining compliance al-
ways involved writing Linux kernel modules or rewriting of the
kernel itself[29, 35–37]. As a representative of these approach we
want to briefly mention Han and Jins ‘Full virtualization based
ARINC 653 partitioning’[35]. For their approach an ARINC 653

kernel module was developed for the Linux kernel[35]. Through
this, APEX services requests can be done via Linux system calls
provided by the new kernel module[35]. Partitions are then ex-
ecuted in type-2 virtualization environments i.e. VMware or Vir-
tualBox, providing temporal and spatial isolation[35]. Although
their approach does not allow for inter-partition communica-
tion yet, partitioning and APEX service requests were implemen-
ted[35].

3.3 assurance at the language level

3.3.1 MISRA-C

Through MISRA-C, guidelines are specified for usage of the C

programming language in safety critical systems[38]. Because of
its provided safety benefits, the 1998 first published MISRA-C
guidelines have found adoption in many industries, including
automotives and avionics[14]. With Rust already providing
safety through its compiler, it is to no surprise that Rusts
compliance with these guidelines was investigated already[14,
39]. While we do not intend to go into too much detail about
Rusts compliance to established coding standards like MISRA-C,
we would like to give an example at least. In Pinho, Couto and
Oliveira’s ‘Towards rust for critical systems’[14] some MISRA-
C rules, which are already guaranteed by Rust, are listed. One
of which is part of Rule 21.1, where minimization of runtime
failure is to be attained through i.e. static code analysis, which
Rust already provides through the borrow checker[14]. Newton’s
interactive Rust project MISRA-Rust[39] also investigates which
rules are already satisfied by Rust. For this, Rust tests were
written, for explicitly breaking MISRA-C rules. As a result of
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these tests, Newton found that 108 of 143 MISRA-C rules can be
enforced through Rust’s compiler[39].

3.3.2 Tightness driven development

Regarding safe API design with the Rust programming lan-
guage, the blog article Tightness Driven Development in Rust[40]
by Mansanet, explores methods that use Rust type system to
enforce sound usage of data types. Defining “tightness” as “the
proportion of invariants that are upheld in the type definition
as opposed to its methods”[40], the idea of invariant driven de-
velopment[41] is improved upon. By passing as many invariant
checks as possible to the type definition, the compiler guaran-
tees inexpressibility of invalid states, reducing uncertainties at
runtime[40]. As an extreme example, the Shape type in Listing 3.1

Listing 3.1: non-tight example: Shape

1 pub struct Shape {

2 is_circle: bool,

3 is_square: bool,

4 dimension: i32,

5 }

illustrates what it means for a type to be tight. For the type’s
value to be valid, it must either be a circle or a square and
the dimension may only be zero or positive, as it is used for
representing either radius or side length. Evaluating how many
expressible states of this type are valid, we are left with 25%,
as only half of the boolean combinations and half of the values
for dimension are valid[40]. The Shape type in Listing 3.2 on the

Listing 3.2: 100% tight example: Shape

1 pub enum Shape { Square(u32), Circle(u32) }

other hand is 100% tight, with no possibility for it to express
an invalid state[40]. With the help of Rusts enum primitive, the
type may either represent a circle or a square, and through using
u32 instead of i32, the dimension is restricted to zero or posit-
ive values. The blog goes as far as declaring that “unless your
type’s sole responsibility is to restrict the values of its fields, it
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can always be 100% tight”[40] which one should always strive
to achieve. Since complete tightness of a type restricting the
value of its field may not always be achievable, it is acceptable
for these types to be runtime checked. For demonstration, with

Listing 3.3: Value restricting BatteryPercent

1 pub struct BatteryPercent(u8);

Listing 3.3 a type is shown, representing battery level in percent.
Considering the maximum value (255) for the internal u8 and the
maximum value for the battery level (100), BatteryPercent only
achieves a tightness of about 39%, requiring constructor meth-
ods for runtime invariant checks. What we gain from this is that
higher order types, for example MobilePhone or ElectricalCar, can
now utilize this type for attaining 100% tightness themselves[40].
In that regard, tightness is more about delegating responsibility
for runtime invariant checks to lower level types[40].
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A R I N C 6 5 3 : A P E X A P I

The APplication EXecutive (APEX) was implemented with one
thing in mind: creating a standard platform for the development
of airborne software[42]. Through defining a ubiquitous OS
interface but leaving the implementation of the OS open, the
foundation of a software ecosystem was build. Nowadays, there
are multiple commercial vendors[24, 27] as well as a handful of
open source projects[43, 44] that offer a (to varying degree) APEX
compatible OS.

4.1 case study : flourishing software ecosystems

4.1.1 OCI

A notable software ecosystem from a totally different domain is
the world of containerization, which is also established around a
ubiquitous software interface – Open Container Initiative (OCI).

The OCI defines several specifications regarding containers and
their runtime environment. One of which is the OCI runtime-
specification[45]. Adopting it, many pre-existing as well as newly
developed container runtime environments could join the grand
landscape of containerization, competing in features rather than
vendor-locked interfaces[33].

On the other side of the interfaces are the containers, defined
through the image-specification[46]. Following it, virtually any-
one can build containers which can be executed inside any
compliant runtime environment. Furthermore, the specification
defines a layered layout for containers, promoting reuse as the
layers of a pre-existing container may be used as the base lay-
ers of a newly created one. While this only allows for one-
dimensional dependencies, well-established and tested ground-
work may be build upon instead of being reinvented.

The creation of a container offering a generic static website
may be used for illustrating this kind of dependency-layers.
While a working Linux and Web server could be added by the

17
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container architect manually, a premade container like nginx4

could be used as the base-line instead, already setting up a
working Web server. The official nginx container in turn depends
on a Debian container, building upon already made efforts again.

4.1.2 embedded-hal

Another noteworthy software ecosystem is centred around the
embedded-hal5 – a Rust native Hardware Abstraction Layer
(HAL) library which acts as the cornerstone for inter-compatible
software design for Rust on embedded devices. It offers inter-
faces for various embedded-native interfaces i.e. I/O-pins, I2C,
SPI, Serial and even CAN bus. With this it exactly defines which
functionalities are expected by these interfaces, composing a
standard platform allowing for inter-compatible application soft-
ware and high-level driver development.

4.2 shortcomings of the apex api

Enabling hypervisor agnostic usage of partitions has always
been a major goal of APEX as the certification process of avionic
software makes up for a majority of the development cost[47]. It
would not be unthinkable for some application/partition to be
verified and used with different APEX compliant hypervisors in
different hardware-environments. In that regard, APEX already
attempts to become the pivot for the interchangeable usage of
hypervisors and partitions alike. Unfortunately, due to some
problematic parts of the ARINC 653 standard, the APEX API may
not be used in that manner without reservations.

4.2.1 Implementation Dependant Types

The first problem we want to address are hypervisor dependent
types. ARINC 658’s sole constraint towards identifier types used
throughout the APEX API is that they are expected to be integer
types[6]. Both 32 and 64-bit integer types may be used for
identifiers, the choice is up the implementer of a hypervisor[6].
Furthermore, the identifier type used is not expected to be

4 https://hub.docker.com/_/nginx
5 https://github.com/rust-embedded/embedded-hal

https://hub.docker.com/_/nginx
https://github.com/rust-embedded/embedded-hal
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consistent across interfaces. The ID of a sampling port may use a
32-bit integer, while queuing ports expect 64-bit ones to be used.
This implementation dependant detail alone results in the loss of
inter-compatibility of most APEX defined functions.

4.2.2 Unconstrained Attribute Order

Listing 4.1: Rust C-binding MUTEX_STATUS_TYPE

1 #[repr(C)]

2 pub struct MUTEX_STATUS_TYPE {

3 pub MUTEX_OWNER: PROCESS_ID_TYPE,

4 pub MUTEX_STATE: MUTEX_STATE_TYPE,

5 pub MUTEX_PRIORITY: PRIORITY_TYPE,

6 pub LOCK_COUNT: LOCK_COUNT_TYPE,

7 pub WAITING_PROCESSES: WAITING_RANGE_TYPE,

8 }

Another hurdle for inter-compatibility is the implementation
dependent ordering of parameters in APEX structs[6]. This means
that there is no guarantee for any type used with the APEX API
to adhere to any form of structure other than what attributes
need to be included[6]. The MUTEX_STATUS_TYPE struct shown in
Listing 4.1 may use any ordering, breaking Application Binary
Interface (ABI) compatibility. There is also the fact that MUTEX_

STATUS_TYPE includes a process ID which may either be 32 or 64-
bit, further adding to the problem.

4.2.3 Unchecked Buffer Length

Listing 4.2: Rust C-binding READ_BLACKBOARD function

1 pub fn READ_BLACKBOARD(

2 BLACKBOARD_ID: BLACKBOARD_ID_TYPE, // In

3 TIME_OUT: SYSTEM_TIME_TYPE, // In

4 MESSAGE_ADDR: *mut APEX_BYTE, // In

5 LENGTH: *mut MESSAGE_SIZE_TYPE, // Out

6 RETURN_CODE: *mut RETURN_CODE_TYPE, // Out

7 );
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One last APEX design decision we want to discuss does not
degrade portability but greatly affects memory safety. APEX
functions reading or receiving messages only require a pointer
to the starting address of the buffer to write into[6]. An example
is the READ_BLACKBOARD function in Listing 4.2. While a LENGTH

parameter is provided, it is not used for restricting the length
of the buffer[6]. After this functions successfully returned, the
LENGTH solely reports how many bytes were written to the
provided buffer[6]. It is entirely possible for this number to be
larger than the actual length of the provided buffer6, resulting
in uncertain consequences as well as potentially undefined
behaviour.

4.3 opportunities

As we now established, the APEX API specified in the ARINC
653 standard does not allow for hypervisor independent usage
of partitions because of its inherent flexibility and lack of tight-
ness. Although portability of partition implementations can be
achieved through hypervisor dependent C header files, declaring
identifier types and parameter ordering of structures, the need
for re-certification may not always be averted completely[47].
Due to this, one of APEXs main objectives is harmed. In the next
chapter, we are going to introduce our Rust based APEX library,
addressing some of the aforementioned issues as well as allow-
ing for hypervisor independent code reuse and extensibility.

6 Can never be larger than the max message size of the blackboard
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Solving some of APEXs issues, apex.rs aims to improve on
memory safety as well as hypervisor independence to some
degree. This is expected to be achieved through providing an
easily implementable API for any APEX compliant hypervisor.
As with the aforementioned embedded-hal ecosystem, a set
of portable traits should build the baseline for an extendable
ecosystem, promoting re-use of driver and feature-libraries.

5.1 advantages of using rust

For attaining the goal of simple integration with APEX compli-
ant hypervisors, Rust functions with signatures compatible to
ARINC 653 were defined. While this would have been sufficient
for a usable system, we opted for wrapping most functions in
more Rust befitting equivalents.

5.1.1 Uncertain Results

Listing 5.1: Rust C-binding GET_SAMPLING_PORT_STATUS function

1 pub fn GET_SAMPLING_PORT_STATUS(

2 SAMPLING_PORT_ID: i64, // In

3 SAMPLING_PORT_STATUS: *mut STATUS_TYPE, // Out

4 RETURN_CODE: *mut RETURN_CODE_TYPE, // Out

5 );

The GET_SAMPLING_PORT_STATUS function, shown in Listing 5.1,
may be used for illustrating one advantage of slightly changing
the ARINC 653 defined functions. As the function is defined
here, it would be perfectly compatible with any hypervisor
following the reference header files provided with the ARINC
653 standard. Hence, it would reduce the implementation effort
for any compliant hypervisor to just map from a Rust C-binding

21
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to this function. The disadvantage lays in the lack of tightness
and lifetime guarantees[40].

Dependent on the value of RETURN_CODE we are allowed to use
the value of SAMPLING_PORT_STATUS. This leaves us in a situation
where we either care for a non-zero RETURN_CODE or the SAMPLING_

PORT_STATUS.

Listing 5.2: Rust get_sampling_port_status function

1 pub fn get_sampling_port_status(

2 sampling_port_id: i64,

3 ) -> Result<ApexSamplingPortStatus, ErrorReturnCode>;

As shown in Listing 5.2 this uncertainty is easily solved
by using the Rust built-in Result type. This way, the
ApexSamplingPortStatus is returned on success and a non-zero
ErrorReturnCode is returned on failure.

5.1.2 Compiler Guarantees

Listing 5.3: Rust C-binding WRITE_SAMPLING_MESSAGE function

1 pub fn WRITE_SAMPLING_MESSAGE(

2 SAMPLING_PORT_ID: i64, // In

3 MESSAGE_ADDR: *mut u8, // In

4 LENGTH: i64, // In

5 RETURN_CODE: *mut RETURN_CODE_TYPE, // Out

6 );

Another advantage of the decision to use more Rust-like
functions can be demonstrated with the WRITE_SAMPLING_MESSAGE

function, as it can be seen in Listing 5.3. The problem is
that the function shown takes two mutable pointers as inputs,
which are then changed during the function call. Usually Rust’s
compiler would guarantee that mutable references to objects
live as long as the objects themselves, but here pointers are
used which the compiler can make no guarantees for[16, 17].
This means that the mutable object whose pointer was handed
to this function could already have been freed, resulting in
undefined behaviour[17]. Additionally, there is no guarantee that
the MESSAGE_ADDR parameter points to an array of LENGTH bytes[17].
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Listing 5.4: Rust write_sampling_message function

1 pub fn write_sampling_message(

2 sampling_port_id: i64,

3 message: &[u8],

4 ) -> Result<(), ErrorReturnCode>;

In Listing 5.4 Rust’s solution to this problem is presented,
the primitive slice type. Moreover, through the usage of a
referenced slice, the implementer and caller of the function
get all guarantees Rust’s borrow checker can provide[17]. One
such guarantee is that the content of the slice is not going
to change throughout this function’s execution, since a non-
mutable reference is used[17].

5.1.3 Unsafe

The functions we looked at so far demonstrate how following
Rust’s philosophy can grant us certain guarantees as well as
raise our overall code quality. But there is one type of functions,
required by the ARINC 653 standard, which we can not declare
as safe – Receive/Read functions. The RECEIVE_QUEUING_MESSAGE

Listing 5.5: Rust C-binding RECEIVE_QUEUING_MESSAGE function

1 pub fn RECEIVE_QUEUING_MESSAGE(

2 QUEUING_PORT_ID: i64, // In

3 TIME_OUT: i64, // In

4 MESSAGE_ADDR: *mut u8, // In

5 LENGTH: *mut i64, // Out

6 RETURN_CODE: *mut RETURN_CODE_TYPE, // Out

7 );

function in Listing 5.5 serves as an example for this. Just like
the WRITE_SAMPLING_MESSAGE function in Listing 5.3, the parameter
MESSAGE_ADDR and LENGTH are defined, but the length is a mutable
pointer instead[6]. Indeed, taking a look at the RECEIVE_QUEUING
_MESSAGE service request definition in the ARINC 653 standard
it becomes apparent that the defined LENGTH parameter is not
intended as an input, but an output[6]. This means that there
is no way of checking whether the received message will fit into
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the provided buffer at the address defined in MESSAGE_ADDR or
not. Because of this it is entirely possible for this function to

Listing 5.6: Rust receive_queuing_message function

1 unsafe fn receive_queuing_message(

2 queuing_port_id: i64,

3 time_out: i64,

4 message: &mut [u8],

5 ) -> Result<i64, ErrorReturnCode>;

write into memory locations which do not belong to the provided
message buffer. Listing 5.6 presents our implementation of this
function. Again we use a referenced slice for the message buffer,
which grants more guarantees and information to the function
implementer. It is declared as mutable since we intend for it to
be written to, and because of it being a slice, information on
the buffer length is also provided. Something which is different
compared to the previously defined functions is the unsafe

keyword which explicitly declares this function as not memory
safe.

Not memory safe does not inherently mean that this function
should not be used. According to Rust’s documentation it can be
used for declaring that there are API contracts which the compiler
can not check, requesting additional care of the programmer[16].
In our case the user of this function is required to guarantee that
the received message is not larger than the provided message
buffer. This may be done by either knowing the maximum
length of next incoming message or by providing a buffer of the
maximum message size defined for the requested queuing port.

5.1.4 Language Independence

As we now established, using more Rust-like functions, instead
of function signatures closely following the service requests
defined in the ARINC 653 standard, yields additional compile-
time guarantees as well as more certainty regarding return types.

Now, one could argue that we make implementing apex.rs
for APEX compliant hypervisors harder. Our response to this
would be that the Rust programming language was specifically
designed for safe systems programming and compatibility with
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the C programming language[16]. By maximizing the usage of
idiomatic Rust types and patterns we ultimately make using the
APEX interface more safe and secure. Furthermore, though types
like core::mem::MaybeUninit7 and the Foreign Function Interface
(FFI)8 it is fairly simple to interact with external C functions[16].

One disadvantage of doing so is that there is usually no
way around using unsafe functions and code-blocks. While
we can not prevent this, interfacing Rust functions is almost
always possible without unsafe. Indeed, this is the desired design
process in Rust; providing safe abstractions even over unsafe
code. This means that the Rust native hypervisor, we are going to
present in Chapter 6, can implement apex.rs with fewer unsafe

code, relying on the Rust compiler’s guarantees as much as
possible.

5.1.5 Opt-in Features

For apex.rs we decided to adopt the grouping of functions in the
ARINC 653 standard, where for example sampling port related
functions are combined in the “Sampling Port Services”[6]. Each
of these service groups was made into a Rust trait for apex.rs
which an hypervisor can implement in its compatibility library,
called “shim”. While some service groups are defined in each
part of the ARINC 653 standard, they are always arranged in a
super/sub-set relation, as previously mentioned in Sec. 2.1. This
means that even though the number of functions in a service
group defined in different ARINC 653 parts (P1, P2 and P4) can
be different, they are conflict-free composable.

Our defined sampling port traits in Listing 5.7 demonstrate
this relation. As it can be seen, ApexSamplingPortP4 builds
the basis for sampling ports with only three required func-
tions. ApexSamplingPortP1 then requires two additional func-
tions while also requiring that ApexSamplingPortP4 is implemen-
ted. Lastly, ApexSamplingPortP2 introduces three more required
functions while entailing the existence of functions defined in
ApexSamplingPortP1 and ApexSamplingPortP4.

Sampling ports are an example of a service group which gets
extended by every feature set level defined in the ARINC 653

7 https://doc.rust-lang.org/core/mem/union.MaybeUninit.html
8 https://doc.rust-lang.org/nomicon/ffi.html

https://doc.rust-lang.org/core/mem/union.MaybeUninit.html
https://doc.rust-lang.org/nomicon/ffi.html
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Listing 5.7: Sampling Port traits

1 pub trait ApexSamplingPortP4 {

2 fn create_sampling_port(..) -> ..

3 fn write_sampling_message(..) -> ..

4 unsafe fn read_sampling_message(..) -> ..

5 }

6 pub trait ApexSamplingPortP1: ApexSamplingPortP4 {

7 fn get_sampling_port_id(..) -> ..

8 fn get_sampling_port_status(..) -> ..

9 }

10 pub trait ApexSamplingPortP2: ApexSamplingPortP1 {

11 unsafe fn read_updated_sampling_message(..) -> ..

12 fn get_sampling_port_current_status(..) -> ..

13 unsafe fn read_sampling_message_conditional(..) -> ..

14 }

standard[6–8]. But there are also examples of service groups
whose corresponding trait only appears in a single feature
set level, most noteworthy the ApexPartition trait which is
introduced in part 4 and never extended[8].

By grouping the required functions into separate traits per
service group/feature set level, we gain a few things. Foremost,
hypervisors which offer a richer feature set for certain service
groups can simply offer the additional functions to the partition
developer. Feature deprived hypervisors, on the other hand, can
only implement whatever service group they offer, basically
allowing for a sub-set to even part 4. Our Rust native hypervisor
presented in Chapter 6 may be used as an example of a feature
deprived hypervisor which does not even satisfy part 4.

Another advantage we gain is that of extension libraries which
are only tightly coupled to that part of the apex.rs API which they
actually interact with.

5.2 abstractions

Though Rust like functions were defined for all APEX service
requests, most of the used types were kept as is. While this
keeps implementation overhead low for hypervisor compatibility
libraries, the partition developers are stuck with types which
Rust offers more suitable ones for. One promise we made for
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apex.rs is extendability, which we already build upon within
apex.rs itself, implementing more suitable types and functions
for interacting with the APEX API.

5.2.1 Types

Various APEX required types were abstracted over for enhanced
usability of the APEX API. An example is the ApexSystemTime type.

Listing 5.8: ApexSystemTime

1 pub type ApexLongInteger = i64;

2 pub type ApexSystemTime = ApexLongInteger;

According to the ARINC 653 standard, the system time type is a
64-bit signed integer which corresponds to nanoseconds since a
defined t0. The −1 value identifies an infinite time value but for
compatibility reasons all negative values should be interpreted
as infinity.

Since 2015, Rust offers the Duration type in both the core

and std library. The Duration type represents a zero or positive
time and its smallest unit is nanoseconds. Because of this, it is
especially fit as the system time type for APEX, since ARINC 653

smallest time unit is also that of a nanosecond[6]. The only thing
missing is that Duration does not allow for an infinite time value.
For that reason we introduced the enum presented in Listing 5.9,
as the system time abstraction. It offers two variants, one for
the infinite time and one for zero or positive time values. Other
than the two functions directly implemented for SystemTime in
line 7 and 10, various convenience From traits were implemented
as well. Through them into and from functions are provided,
converting for example from Option<Duration> to SystemTime. In
this case, None is converted to SystemTime::Infinite and Some(

Duration(10s)) ends up as SystemTime::Normal(Duration(10s)).
Unfortunately, the introduced SystemTime comes with a cost

in form of a higher memory consumption. The base APEX type
equivalent ApexSystemTime requires exactly 8-bytes of memory.
Rust’s Duration type on the other hand requires 16-bytes of
memory and through using an enum which requires a tag for
identifying the variant, another 8-bytes are added. This nets us
24-bytes for Systemtime which is trice as much as the ARINC 653
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Listing 5.9: SystemTime

1 pub enum SystemTime {

2 Infinite,

3 Normal(Duration),

4 }

5 impl SystemTime {

6 // For getting a SystemTime from a ApexSystemTime

7 pub fn new(time: ApexSystemTime) -> SystemTime { .. }

8 // For getting the inner Duration easily

9 // Panics if this is SystemTime::Infinite

10 pub fn unwrap_duration(self) -> Duration { .. }

11 }

12 impl From<Duration> for SystemTime { .. }

13 impl From<SystemTime> for Option<Duration> { .. }

14 impl From<Option<Duration>> for SystemTime { .. }

15 impl From<ApexSystemTime> for SystemTime { .. }

16 impl From<SystemTime> for ApexSystemTime { .. }

defined system time type demands. While this may be a problem
for some systems, the convenience, tightness and compatibility
to other high level Rust types may outweigh the extra memory
required[40]. This is an example of a non zero-cost abstraction.

In this fashion, types like ApexName and ErrorReturnCode re-
ceived sensible abstractions and trait implementations which can
be seen in Listing A.1.

5.2.2 Services

Using the newly abstracted types, higher level abstractions were
introduced by us for all APEX required services. For illustrating
the abstraction treatment all services received, our abstraction for
blackboards is used. In Listing 5.10 the previously defined trait
ApexBlackboardP1 is partially shown. What becomes apparent is
that the blackboard ID always appears either as an input or
an output. This is because the ARINC 653 standard expects
blackboards and other services to be used solely through IDs[6].
One disadvantage of doing this is that all the IDs used in the
APEX API are type aliases on the same integer type[6]. This
implies that there is no type safety between for example the ID
of a blackboard and the ID of a sampling port. They could be
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Listing 5.10: ApexBlackboardP1 trait

1 pub trait ApexBlackboardP1 {

2 fn create_blackboard( Name, Size ) -> Result<Id, Error>;

3 fn display_blackboard( Id, Msg ) -> ..;

4 unsafe fn read_blackboard( Id, .. ) -> ..;

5 fn clear_blackboard( Id ) -> ..;

6 fn get_blackboard_id( Name ) -> Result<Id, Error>;

7 fn get_blackboard_status( Id ) -> ..;

8 }

used interchangeably without any warning being emitted by the
compiler at all. One way of circumventing this issue would be
to wrap the ID types into their own distinctive structs as an
abstraction. While this works, it is not in the sense of object-
oriented programming where a type is initialized and then its
member functions are called. Hence, we opted for introducing
a Blackboard struct which can be initialized and called with all
functions expected of an ARINC 653 blackboard.

Listing 5.11: Blackboard abstraction

1 pub struct Blackboard<const MSG_SIZE: usize,

2 B: ApexBlackboardP1> {

3 id: BlackboardId,

4
_b: PhantomData<B>,

5 }

6 impl<const MSG_SIZE: usize, B: ApexBlackboardP1>

7 Blackboard<MSG_SIZE, B> {

8 pub fn new(..) -> ..

9 pub fn from_name(Name) -> ..

10 pub fn id(&self) -> ..

11 pub const fn size(&self) -> ..

12 pub fn display(&self, ..) -> ..

13 pub fn read(&self, Buffer, ..) -> ..

14 pub unsafe fn read_unchecked(&self, Buffer, ..) -> ..

15 pub fn clear(&self) { .. }

16 pub fn status(&self) -> ..

17 }

The required data stored inside a potential Blackboard struct
includes the blackboard ID and the allowed max message size.
Furthermore, some means of calling the APEX base functions
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must be provided as well. Listing 5.11 depicts how the Blackboard

struct was eventually designed. Internally two variables are
used, the ID for the blackboard and some zero-sized PhantomData

for the used hypervisor. Moreover, two generic parameters are
utilized for constraining the blackboard at compile-time. The first
one is for the max message size specified for this blackboard
instance. We opted for a const generic here since blackboards
are initialized during the cold/warm start of a partition and
therefore their size should be fully known from the start. The
other generic is for the used hypervisor, and it is required to
implement at least ApexBlackboardP1. Through this, all functions
expected in the ApexBlackboardP1 trait can be used on the generic
type B inside the struct.

Other than introducing member functions for all functions
provided through the APEX API, we also offered some extra
functions. One small addition are getter for the generic max
message size and internally stored ID, but the more important
addition is a safe read function. Revisiting the ApexBlackboardP1

trait in Listing 5.10 we notice the unsafe keyword in front of the
read_blackboard function. This is due to read/receive functions
specified in the ARINC 653 standard not being memory safe
because of the absence of a length parameter for the provided
buffer. But as a result of Blackboard’s const generic specified
max message size we can grant the required safety constraint
for safely calling read_blackboard. Internally, the length of the
provided buffer is checked against the fixed maximum message
size and an error is returned, should the length be insufficient.

In this manner, all services are abstracted over, aiming to offer
a more struct centred approach while also reducing the need to
call unsafe functions.

5.3 extendability : (de-)serialization for apex .rs

The only data that ports in the APEX API are expected to transfer
are byte sequences of predefined max length[6]. While this
allows for sending basically anything over these ports, some
form of parser logic is required to utilize them for sending
custom types. Furthermore, not all data can be safely interpreted
as byte data. Especially heap allocated data like strings may
not simply be cast to bytes, as only the pointer may be cast
accidentally. But since many data types are safely serializable
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an extension library offering exactly this – sending and receiving
only serializable data – was developed for apex.rs.

Through the importance of serialization in various software
domains, a generic serialization/deserialization framework es-
tablished itself in the Rust ecosystem - Serde9. Offering the traits
Serialize and Deserialize, any implementing type may be serial-
ized and deserialized from and to Rust native types. On the other
side of the equation serializers exist for various target formats
like JSON10, TOML11 and YAML12. But there are also compatible
serializers for non-human-readable serialization. One of which
is Postcard13 which aims to, among other things, be #[no_std]14

compatible as well as resource efficient with regard to memory
usage and CPU time.

With the existence of an established serializer framework in
addition to a serializer which is optimized for embedded use-
cases, the idea to utilize both of them for sending advanced data
types over APEX ports presents itself.

5.3.1 Implementation

To illustrate how apex.rs can be externally extended we will
implement a set of functions for queuing and sampling ports
which will allow for sending and receiving serializable data
types. As the Rust programming language endorses the principle
of composition over inheritance, extension libraries can extend
the functionality of foreign types. This means that a trait
introduced in our extension library can be implemented for the
SamplingPortSource struct which is declared in apex.rs.

Listing 5.12 contains the declaration of the
SamplingPortSourceExt trait. This extension trait features only a
single function – send_type. That function takes a generically
typed payload as an input and returns a Result. The payload
type is bound to implement the Serialize trait, which enables
us to serialize it using the Serde framework.

9 https://crates.io/crates/serde
10 https://crates.io/crates/serde_json
11 https://crates.io/crates/toml
12 https://crates.io/crates/serde_yaml
13 https://crates.io/crates/postcard
14 Rust attribute, pledging that only platform-agnostic parts of the standard

library are used

https://crates.io/crates/serde
https://crates.io/crates/serde_json
https://crates.io/crates/toml
https://crates.io/crates/serde_yaml
https://crates.io/crates/postcard
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Listing 5.12: SamplingPortSourceExt trait

1 pub trait SamplingPortSourceExt {

2 fn send_type<T>(&self, payload: T)

3 -> Result<(), SendError>

4 where

5 T: Serialize;

6 }

Our example implementation of SamplingPortSourceExt is
shown in Listing 5.13. Here we first had to define a buffer which
Postcard serializes the given input into. Through the usage of
the const generic MSG_SIZE set for this SamplingSource instance,
we are guaranteed to adhere to the message size limit set. This
way we can successfully serialize the given input only if it fits
into the used sampling port, otherwise an error is returned –
SerializeBufferFull.

Listing 5.13: SamplingPortSourceExt implementation

1 impl<const MSG_SIZE: MessageSize, Q: ApexSamplingPortP4>

2 SamplingPortSourceExt for SamplingPortSource<MSG_SIZE, Q>

3 where

4 [u8; MSG_SIZE as usize]:,

5 {

6 fn send_type<T>(&self, p: T)

7 -> Result<(), SendError>

8 where

9 T: Serialize,

10 {

11 let buf = &mut [0u8; MSG_SIZE as usize];

12 let buf = postcard::serialize_with_flavor

13 ::<T, SerSlice, &mut [u8]>

14 (&p, SerSlice::new(buf))?;

15 self.send(buf).map_err(SendError::from)

16 }

17 }

Other than the SamplingSourceExt trait, our Postcard extension
for APEX ports also features a SamplingPortDestinationExt trait.
This trait introduces a recv_type function which can then be
used by the receiving end of the sampling port for deserializing
incoming messages into advanced types. Should this function
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fail during the deserialization process, the received byte array
is returned instead, for the developer to attempt other type
deserializations.

Equivalent traits and implementations are provided for
queuing ports as well. All of this can be found in Appendix B.

5.3.2 Shortcomings

5.3.2.1 Uncertain Message Size

Because serialization generally allows for dynamically structured
and sized types, the size required for a serialized variable can not
always be deducted at compile-time. Due to this limitation, send
function calls fail when the port’s max message size is exceeded.

As an alternative extension, bytemuck15 may be used for
sending types over ports. Bytemuck is a crate for safely casting
between byte types. This means that a bytemuck compatible type
may be cast to a byte array of fixed size and back. Through
this it would be possible to know at compile-time if a type fits
into a port or not without unexpected side effects. The caveat
is that a bytemuck compatible type is any type implementing
bytemucks marker trait - Pod. This trait is explicitly marked
as unsafe and annotated with a strict set of requirements for
retaining safety. Only if these requirements are guaranteed to
be upheld, the trait may be used on user defined types. Due
to this restriction we opted for implementing a Postcard based
port extension first, still mentioning bytemuck as a possible
alternative to serialization.

5.3.2.2 Nightly Toolchain

This library introduces two functions – send_type and recv_type

– for every possible sampling and queuing port in apex.rs.
While doing so, it successfully uses the channel provided const

generic MSG_SIZE for the buffer length used for serialization by
Postcard. The caveat with this is that for generically specifying
the size of an array from const generics, an unstable Rust feature
is required - generic_const_exprs16. Unstable features generally

15 https://crates.io/crates/bytemuck
16 https://github.com/rust-lang/rust/issues/76560

https://crates.io/crates/bytemuck
https://github.com/rust-lang/rust/issues/76560
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require Rust’s nightly toolchain which includes potentially
unsafe features which are subject to breaking-changes.

5.4 partition development

Because APEX partitions require somewhat large code segments
for initialization, development may feel discomfiting. Likewise,
through the requirement of a hypervisor shim library, which is
used for all types in apex.rs, the code gets more bloated and
harder to read. For providing a more ergonomic development
experience Rusts proc-macros are employed.

Listing 5.14: Barebone APEX partition proc-macro

1 #[partition(HypervisorShim)]

2 mod partition {

3 #[start(cold)]

4 fn cold_start(ctx: start::Context) {

5 ...

6 }

7 #[start(warm)]

8 fn warm_start(ctx: start::Context) {

9 ...

10 }

11 ...

12 }

Other than the C preprocessor which only performs text ma-
nipulations, Rust’s macro system is based on compiler plugins.
These plugins operate on the token stream of the compiler, allow-
ing for compile-time reflection of types, arbitrarily rewriting of
code sections all while being much more hygienic than the C pre-
processor. With Rust macros offering means of code generation,
we introduce convenience proc-macros hiding away bloated code
segments while making the development process more access-
ible. Listing 5.14 depicts the minimum required code necessary
for an APEX partition when using our proc-macros. The partition
needs to be located inside a module (mod) that is annotated with
the partition-attribute. Inside this attribute the hypervisor shim
for the underlying hypervisor needs to be specified. Other than
that, start functions for cold and warm start are necessary, which
need to be annotated with start-attributes. As a provided para-
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meter, start::Context is handed to each start function, offering
the hypervisor’s API, plus initialization functions for APEX prim-
itives. All the required logic, like entry function for the partition
and partition state based selection of either warm or cold start is
done via code generation in the background.

5.4.1 Channel

Listing 5.15: APEX channel proc-macro

1 #[sampling_out(msg_size = "10KB")]

2 struct SamplingOutExample;

3 #[sampling_in(refresh_period = "110ms")]

4 #[sampling_in(msg_size = "1200B")]

5 struct SamplingInExample;

6 #[start(cold)]

7 fn cold_start(ctx: start::Context) {

8 ctx.init_sampling_out_example().unwrap();

9 ctx.init_sampling_in_example().unwrap();

10 }

Listing 5.15 illustrates how channels can be specified when
using our proc-macros. Via either attaching a sampling_out or
sampling_in-attribute to a struct, APEX channel can be defined.
Further, sampling ports require a specified message size and the
destination also requires a maximum age for received messages
(refresh_period). Any missing fields result in a compiler error

Listing 5.16: apex.rs proc-macro misuse

error: Missing field ‘msg_size‘

-> tests/partition.rs:13:5

13 | struct SamplingInExample;

| ^^^^^^

explicitly stating what is missing (Listing 5.16). In this manner
duplicate definitions and usage of wrong types are also pre-
vented. As for the initialization of channels, init-functions are
automatically provided with the start::Context parameter of the
start functions for every defined channel. Because the ARINC 653

standard explicitly states the existence of an upper (per partition)
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limit for initialized channels the init-functions may return an
error. For individual handling of the init-result, the calling is for
the developer to do.

5.4.2 Processes

Listing 5.17: APEX process proc-macro

1 #[aperiodic(

2 time_capacity = "Infinite",

3 stack_size = "100KB",

4 base_priority = 1,

5 deadline = "Soft"

6 )]

7 fn aperiodic_example(ctx: aperiodic_example::Context) {

8 loop {

9 ctx.report_message(b"Ping").unwrap();
10 sleep(Duration::from_millis(1));

11 }

12 }

13 #[start(cold)]

14 fn cold_start(ctx: start::Context) {

15 ctx.init_aperiodic_example().unwrap();

16 }

Likewise, proc-macros exist for the creation and usage of APEX
processes. As shown in Listing 5.17, the aperiodic-attribute may
be used, but the periodic-attribute also exists. Like with APEX
channels, processes also need to be manually initialized in the
start functions and similar to the start functions, a ctx-parameter
is provided. Again, this context offers functionalities of the
underlying hypervisor, while also yielding defined channels.
If the SamplingInExample sampling port from Listing 5.15 also
exist here, the aperiodic_example::Context contains a field named
sampling_in_example. The field would then be of type Option<

SamplingPortSource<_>> containing the port if the init-function
was successfully.



6
L I N U X H Y P E RV I S O R

Figure 6.1: Standards[48]

Most compilation artifacts are not actually released but only
tested inside a development environment. Therefore, one can
infer that the usability and accuracy of a development execution
environment is highly relevant. Over the past, approaches
towards achieving this kind of development environment have
been attempted. In Sec. 3.2 we already talked about SKE[25] and
AMOBA[31] whose purpose is to assist during the development
process.

In this chapter we are now going to present our approach
towards advancing the state of the art (Fig. 6.1).

6.1 objectives

Building a Linux native hypervisor, we aim to provide a tool for
fast, simple and dependency free prototyping of modules and
partitions in the sense of ARINC 653. Through relying solely
on Linux kernel features, the hypervisor should work with any
Linux running a recent kernel version, relinquishing any further
dependencies. With these objectives already being plenty, we also
want the hypervisor to be fully functional, even when executed
by an unprivileged user.

37
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6.2 temporal and spatial isolation primitives in

linux

Since the Linux kernel already offers various means of isolation,
we attempt to use them for providing spatial as well as temporal
isolation capabilities to our hypervisor[33, 49].

6.2.1 Temporal Isolation

The first isolation requirement towards our hypervisor is that
partitions are isolated temporally. This means that a partition
should never be able to monopolize on CPU resources more
than configured during design-time[5, 11]. In the ARINC 653

standard, execution of partitions is stated to be done through
a fixed schedule in which partitions can freely utilize assigned
CPU cores during their respective time windows[6]. Outside their
declared time windows, partitions are not allowed any CPU
resources at all[5]. As a result, defective and malicious partitions
can not obstruct the execution of well-behaving ones[5, 11].

In our hypervisor we are going to use Linux’s cgroups to
achieve this. They grant us the ability to group together processes
or threads into a cgroup and suspending the execution of them
with a single syscall[49]. Further, cgroups cpuset controller allows
allocating a cgroup exclusive access to a CPU core. This not only
constraints the cgroup to only run on a selected group of CPU
cores, but also prevents processes from other cgroups17 to utilize
said CPU cores, i.e. the allocation is truly exclusive. Because of
these capabilities, cgroups are fit for implementing ARINC 653s
scheduling, enforcing temporal isolation, even against the rest of
the system[49].

6.2.2 Spatial Isolation

At its core, spatial isolation boils down to that a partition
can not affect the memory of other partitions[5, 11]. Also, a
partition may only use memory allocated to during design-
time[5]. This is a very important property: running out of
memory is a typical cause of system failure which in cases like

17 unless those other cgroups are children of the cgroup exclusively allocated with
cores
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small memory leaks may not be found easily by testing. The
temporal isolation causes these kinds of failure to be contained
inside the originating partition. The ARINC 653 standard also
speaks of “Robust Resource Partitioning” which is thought of
as a superset of spatial partitioning[5]. It further requires that
failures of hardware used only by a single partition, may not
affect other partitions[5]. With spatial isolation being complex
compared to temporal isolation, multiple Linux feature need to
be utilized for an attempt at covering it fully.

6.2.2.1 Resource Limits

For limiting memory as well as enforcing obedience of partitions,
cgroups and tmpfs file systems together with namespaces can be
used.

cgroups The cgroup memory controller can grant us the
ability to specify an upper limit for RAM consumption of an
entire cgroup subtree[49]. Should the limit be exceeded, all
processes inside the cgroup are killed immediately. While this
behaviour is not exactly desired, there is currently no other way
of limiting RAM consumption for a process or group of processes.

tmpfs file system The Linux kernel allows for the creation
of tmpfs file systems which reside entirely in the RAM. Due to
that fact, files in these file systems are volatile and lost when
closing the tmpfs. The advantage is that on partition error related
restarts, all used memory is completely wiped offering a fresh
start. Additionally, created from inside a partitions cgroup, the
same RAM limits specified through the cgroups memory controller
apply, limiting file system usage too.

mount namespace One of Linux’s namespaces is the mount
namespace, which offers the possibility to mount and unmount
file systems inside of mount namespace separate from the rest
of the system[49]. Hence, adding a partition to its own mount
namespace, all file systems can be unmounted, leaving only the
tmpfs file system of the partition. Even the root file system may be
unmounted as long as no file from the root file system is opened
inside the mount namespace. Prior to unmounting the root file
system, the root of the partition needs to be replaced with a new
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one, for example the tmpfs created for the partition. Doing this,
all memory accessible by a partition is in the RAM and therefore
limited by the cgroups memory controller, offering strict resource
limits for partitions.

6.2.2.2 Resource Isolation

Isolation of memory, as in restricting access to specified re-
sources, can be realized through namespaces and memfd.

namespaces As mentioned before, mount namespaces can
be used to unmount all file systems that a partition should not
access. While this prevents a partition from browsing these file
systems from inside its mount namespace, a partition can still
open some files opened by other processes. In /proc/{pid}/fd all
open file descriptor of every process are listed. Using the fopen

syscall on them opens the file, this especially holds for volatile
files which are not located on any filesystem, but are located in
the RAM. Because this can be used to break isolation between
partition, the process namespace is used as well.

Processes inside their own process namespace are isolated
from outer processes – outer processes are not listed in Linux’s /

proc folder. This way partitions inside their individual process
namespaces are further isolated from each other, especially
preventing access to namespace external files.

memfd Not only requiring inaccessibility to external re-
sources, another facet of resource isolation involves restricting
write permission to shared memory. APEX sampling ports for ex-
ample provide means of inter-partition communication, where
source and destination are clearly defined. While a source needs
to be able to write to a sampling port, the destination parti-
tion may only read the port. The recommended Linux feature
to employ for realizing shared memory is the memfd_create sy-
scall, which creates an anonymous volatile file in RAM. The most
important part about files created with create_memfd is that they
can be sealed against future write-enabled memory mappings.

This allows us to create a memfd and send a write-enabled
memory mapping of it to partitions, granted write access.
Afterwards we can seal it against further write-enabled memory
mappings and send it to all partitions with read-only access.
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This sealing is necessary because like with other files, they
can be reopened through their file descriptors in /proc. Process
namespaces isolate from external processes files, but under /proc

/self/fd the processes own file descriptors are still accessible.
As a result of sealing the memfd against future write-enabled
memory mappings, we prevent a process from reopening the
memfd file descriptors with write-flag set.

6.2.3 Unprivileged Isolation

Another noteworthy Linux namespace is the user namespace.
Even though an unprivileged user can not gain root user level
access to the system, a process can still gain access to privileged
operations inside user namespaces[49]. While these privileges
can not breach out of the user namespace, not allowing for
example reading of protected files, they allow for creation of
other namespaces like process and mount namespaces, which
usually requires privileges.

In that regard, user namespaces synergize exceptionally well
with mount namespaces. Because privileged operations exerted
inside user namespaces may not reach out of it, mount opera-
tions are not permitted as they would affect the whole system.
A mount namespace created from within the user namespace on
the other hand becomes part of its domain allowing for mount
and unmount syscalls as they solely affect internals of the user
namespaces. Besides, using mount namespaces without backing
user namespace requires privileges for creating the namespace,
mounting and unmounting, rendering it completely unusable in
an unprivileged context.

cgroups are already usable without privileges, while not
without reservations. Through their hierarchical structuring the
root level cgroups are accessible by privileged users only, with
branches also existing for user level cgroups. It is by utilization
of these user accessible branches that unprivileged user can also
create cgroups.

The caveat is that for a cgroup controller to be available, it must
be activated by every branch from the root to the target cgroup.
The cpuset controller, used for exclusively assigning CPU cores
to cgroups, is a controller which is usually not propagated to
unprivileged cgroups. Using this feature, a privileged user has
to either activate the cpuset controller for all cgroups from the
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root to the target group or create a user accessible group directly
on top of the root level.

6.2.4 Isolation Hardening

Although not directly required by the ARINC 653 standard,
it is desirable to limit access to Linux-syscalls, -features and
other information in order to improve isolation. Furthermore, it
is important to disable means of communication not foreseen
by ARINC 653. This way, adherence to the communication
primitives provided by APEX is enforced.

6.2.4.1 Other Namespaces

To achieve this, the remaining unused namespaces may be
utilized. The network and IPC namespace for example can help
further isolating a partition from the outside[49]. As freshly
created network namespaces always start out empty, not a single
networking interface of the system is usable by the processes
inside it[49]. Also, the IPC namespace isolates in terms of IPC
resources such as POSIX message queues.

Besides these two, there are also the time and UTS namespaces
which can restrict access to information[49]. The UTS namespace
allows for changing the hostname and NIS domain name.
Moreover, the time namespace provides the means for altering
monotonic and boot time clock[49]. Hence, both allow for hiding
information of the host system, they could however be used for
providing relevant information to each partition like partition
name or partition start time.

The last namespace we want to address is the cgroup
namespace. Changing the root of visible cgroups to the cgroup
of the namespace creating process, it restricts both, information
of the host system and Linux feature accessibility.

6.2.4.2 Seccomp

Probably being the most powerful tool in terms of restricting ac-
cess to Linux functionalities, Secure Computing Mode (seccomp)
can be used for disallowing (or better specifically allowing) sy-
scalls[49]. Should a process, restricted by seccomp, attempt to
perform a forbidden syscall anyway, a predefined action is per-
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formed. The most important one are immediate termination of
the offending process and the return of a preset error code[49].
Using seccomp, the processes of a partition can be denied usage
of all unnecessary syscalls, ultimately benefitting isolation.

6.3 linux native apex services

Since our hypervisor is supposed to be executable on Linux
with minimal effort, offering a custom kernel is out of the
question. Because of this as well as the constraint of unprivileged
execution, we are stuck with execution in userspace. Where a
normal hypervisor would introduce kernel level primitives for
the realization of APEX services, we need to make use of Linux
primitives from within userland.

6.3.1 Ports

For inter-partition communication ARINC 653 part 4 defines the
two port types, sampling and queuing ports[8].

sampling port Providing one-to-many communication and
retaining only the last sent message, sampling ports are a
prime candidate for appliance of shared memory. Unfortunately,
sampling ports additionally require information about the age of
the contained message. Due to this requirement, the same shared
memory may not be handed to source and destination, as the
source could lie about the age of the message. For solving this,
two stages are used. The source writes some data to the shared
memory and the hypervisor recognizes this as a sampling port
send operation. Afterwards, the trustworthy hypervisor writes
the data to the destinations shared memory, adding the current
time for age calculation by the receiver.

queuing port Queuing ports are offering unidirectional one-
to-one communication of a set maximum number of buffered
messages. Because of the max buffered messages limitation,
Linux communication channels such as POSIX message queues
and Unix sockets can not be used here. As an alternative, we
propose the use of a ring buffer on shared memory. Similar
to our solution for sampling ports, two stages are used, with
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the hypervisor passing the data to the shared memory of the
destination port. This prevents the sender from corrupting the
ring buffer, since the hypervisor can enforce conformity before
copying the data. What is different is that the receiver is handed
a write-enabled shared memory too. Considering the receiver
needs to indicate which messages were read already, the same
shared memory is taken advantage of. Again, the two stage
approach prevents corruption propagation here as well.

6.3.2 Processes

For processes, Unix processes in child cgroups of the partitions
cgroup are used. Because ARINC 653 part 4 only allows for
the creation of a single periodic and single aperiodic process, a
child cgroup is created by the hypervisor for each one. Within
a partitions time window, the hypervisor then unfreezes the
periodic process first, should it exist. Through accessibility of
the partitions cgroups by processes, the periodic process can then
freeze itself should it be done for the current time window. The
hypervisor can detect this and unfreeze the aperiodic process
until reaching the end of the ptw.

6.3.3 System calls

For providing access to APEX services, a hypervisor would
typically offer them as system calls which are directly usable
by partitions. Utilizing apex.rs from Chapter 5, our Rust native
hypervisor implements traits for the ARINC 653 part 4 features.
Internally, service requests from partitions in our hypervisor are
conducted using Unix Sockets, offloading work to each partition.

offloading Most services offered through the APEX API do
not require involvement from the hypervisor. While we propose
that sampling and queuing ports are realized by two staged
shared memory, immediate involvement of the hypervisor is
not required. According to ARINC 653 part 1, synchronous
behaviour of ports is not required, allowing us to handle inter-
partition communication in between ptws[6]. Processes do not
require direct communication with the hypervisor either. As
previously mentioned, cgroups with the ability for a process
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to freeze itself are enough for providing everything which is
expected. Many of the remaining APEX services are solely for
requesting information from the hypervisor. Through shared
memory, information for service requests like GET_PARTITION_

STATUS and GET_TIME can always be provided. CREATE_SAMPLING_

PORT and CREATE_QUEUING_PORT only succeed if they exactly match
the configuration table. Because of this, all ports along with their
shared memory can always be provided to partitions, which can
then utilize them on their own.

unix sockets For service requests, requiring immediate
acting of the hypervisor, Unix sockets are utilized. Through
them the requests for changing the partition mode, reporting a
message and raising an error are made. During the partitions
time window, the hypervisor waits for messages and acts on
them if any arrive. Partition mode change requests start the
transition progress, message reports are written to stdout and
errors are passed to the healthmonitor.

6.4 evaluation

With this effort a first attempt at developing a prototype of a
Linux native hypervisor is made. Aiming to be fully compliant
to the ARINC 653 part 4 standard, we set a bold goal. To get
an initial feedback regarding the achievement of said goal, we
conduct some work towards evaluating our prototype.

6.4.1 Is it up to the promise?

temporal isolation The partition binaries are started
directly in their own cgroup and cgroup namespace. Since the
capability to freeze exists within every cgroup, partition time
frames are enforced. Further, we employ additional child cgroups
inside each partition’s cgroup to realize intra-partition scheduling
of APEX processes. By also trapping partitions in individual
cgroup namespaces, escape from their cgroup should not be
possible as long as the implementation of cgroups in the Linux
kernel is sound. Considering that the ARINC 653 part 4 standard
expects only a single core, the cgroups cpuset controller was not
utilized in the hypervisor itself. Besides, setting up a cgroup with
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cpuset controller usually requires privileges and hence should
be done prior to running the hypervisor if needed.

spatial isolation For a first prototype we opted for
primarily focusing on scheduling, because it marks the bare
minimum required for running and testing partitions and
modules. As a consequence, spatial isolation is still lacking.
While we place each partition in an isolated mount namespace
and attempt to unmount all file systems but an individually
mounted tmpfs, some issues remain. After the applied pivot_root

syscall, which is used for swapping the old root file system for
the tmpfs, we were unable to unmount the old root file system
completely. We mainly attribute this to bind mounts used for
getting access to /dev/null and the partition binary, but given
the relative insignificance for a first prototype we did not pursue
resolution of this further. With an already broken spatial isolation
we did not attempt to limit resource consumption just yet either.

dependency and privilege-free Considering the previ-
ously mentioned capabilities were all provided by the Linux ker-
nel itself, no runtime dependencies are required to implement
said behaviour. Further on, an unmodified Linux Kernel is per-
fectly sufficient to execute our hypervisor, but the idea of using
the RT PREEMPT patches lends itself if low jitter real-time beha-
viour is desired. With only the cgroups cpuset controller requir-
ing privileges at the initial start of the hypervisor, running the
hypervisor does not require escalated privileges. This ensures
a frictionless experience during development. Should exclusive
allocation of a CPU core to the hypervisor be desired, a privileged
user can manually create a cgroup limited to one core and pass it
to the hypervisor config.

arinc 653 part 4 The most important goal of the hypervisor
is implementation of the APEX API services defined in ARINC
653 part 4. Again, serving as a first prototype, our hypervisor
does not fully satisfy this goal either. The two service groups
missing are queuing ports and health monitoring. While we
propose a concept for implementing queuing ports with Linux
primitives, for demonstrating inter-partition communication,
sampling ports suffice for now. Likewise, we come up with
means of sending intra partition errors via Unix sockets to the
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hypervisor. For other errors, the hypervisor could observe the
partition processes execution for termination, deadline misses
and non-compliance with the proposed handling of ports. Due
to architectural design flaws in the proof of concept, integration
of the health monitor for handling errors proves complicated at
the moment, therefore it is postponed for the time being. Lastly,
the lack of a C ABI for APEX API services prevents our hypervisor
from being interfaced by C-based partitions.

6.4.2 Comparison to Existing Solutions

Attempting to be the jack of all trades for ARINC 653 applic-
ations, the Linux hypervisor tries to be a development tool as
well as a type-2 hypervisor. Considering spatial isolation marks
a hard requirement for ARINC 653 compliance, with our Linux
hypervisor not providing said requirement, usage for safety crit-
ical systems would be ill-advised[5]. Because of this, comparison
to fully ARINC 653 compliant hypervisors also becomes unne-
cessary. Leaving us with the comparison to development focused
solutions - SKE and AMOBA[31].

In terms of completeness regarding provided APEX API func-
tionalities, the Linux hypervisor is also inferior to SKE and
AMOBA. Both SKE and AMOBA offer most ARINC 653 part 1

services and the Linux hypervisor does not even implement all
services required by ARINC 653 part 4. With this being all dis-
advantages we know of, the Linux hypervisor has one strong
advantage over both of its competitors, it realizes temporal isola-
tion. The SKE simulator for example demands cooperation of its
partitions to pause themselves. Here a partition would be think-
able which never pauses, effectively stalling the simulation. This
makes our solution particularly interesting to simulate situations
in which some partitions misbehave while other partitions are
expected to keep operational (degraded operation). AMOBA on
the other hand only allows for testing and verification of single
partitions, since the POSIX API which it depends on does not
provide scheduling. This means that with AMOBA we do not
even gain the capability to test multiple partitions in a module
simultaneously[31].

Out of these two development tools, SKE is the closest to our
Linux hypervisor. Both do not require any dependencies other



48 linux hypervisor

than a Linux OS to run on and both can be executed with little
effort in Continuous Integration (CI) systems like GitHub actions.
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AV I O N I C P L AT F O R M
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Figure 7.1: System Architecture using apex.rs

With the extendable and safety hardened APEX API developed
in Chapter 5 as well as the Linux native hypervisor introduced
in Chapter 6, we acquired all necessary pieces of our new avionic
platform. For demonstrating its flexibility we will now develop
an APEX module with two partitions. The partitions will utilize
our sample extension, which adds functions to all ports for
sending and receiving postcard serialized data. Afterwards we
will compile the partitions for our Linux hypervisor and the XNG
hypervisor. By executing them on both hypervisors we exercise
the flexibility of this platform. Lastly, we will evaluate the
usability along with further benefits presented by the platform.
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7.1 demonstrator module

0ms 30ms 50ms 100ms

Partitions Foo Bar Foo

Frame Major Frame

(a) Major Frame

0ms 3ms 5ms 10ms

Foo Periodic Aperiodic

Bar Periodic Aperiodic

Window Partition Time Window

(b) Partition Time Window

Figure 7.2: Demonstrator Scheduling
Foo:= offset: 0ms, duration: 10ms, period: 50ms

Bar:= offset: 30ms, duration: 10ms, period: 100ms

The two partitions Foo and Bar are created for our demon-
strator module. Additionally, the sampling port Hello is declared,
with Foo as the source and Bar as the destination. The static
schedule for our demonstrator module is defined analogous to
the schedule shown in Fig. 7.2a. For reasons of clarity, the Rust
code for the partitions is not shown in this chapter but in the
appendix (Listing C.1 and Listing C.2).

partition foo As it can be seen in Fig. 7.2b, the Foo partition
introduces both a foreground (periodic) and a background
(aperiodic) process. These processes report a message through
APEXs REPORT_APPLICATION_MESSAGE service every millisecond, in
which a number is incremented. After five reported messages
(> 5ms), the foreground process writes a struct to the sampling
port, utilizing our postcard extension for APEX channels. When
the message is written, the foreground process waits for the next
maf and hence allows the background process to be scheduled.

partition bar Just like the Foo partition, the processes
of the Bar partition also report messages every millisecond,
incrementing a number. After only three reported messages
(> 3ms), the foreground process attempts to read and deserialize
a message from the Hello sampling port, using our postcard
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extension. Also reporting this message to the hypervisor via the
REPORT_APPLICATION_MESSAGE service, the foreground process then
waits for the next maf.

Because temporal isolation is not expected between processes
of a partition, the actual start of the background process
(aperiodic) is marked as uncertain in Fig. 7.2b.

7.2 hypervisor independence

apex.rs
Shim

apex.rs

Extensions

Partition Code

Partition

(a) Architecture

apex.rs

apex.rs
Shim Extensions

Partition
Code

Partition

(b) Library Dependencies

Figure 7.3: Comparison of Partition Architecture and Dependencies

Effortless interchangeability of the hypervisor along with com-
pletely hypervisor independent extensibility are requirements to-
wards our platform. Through them, a flourishing ecosystem sur-
rounding ARINC 653 may be constructed, lowering the burden
for newcomers to the avionic market. To demonstrate the exist-
ence of these qualities in our proposed platform, we will execute
our example module from Sec. 7.1 on our Linux hypervisor as
well as the proprietary XNG hypervisor running on a Xilinx SoC.
Considering the architectural structure of partitions in Fig. 7.3a,
everything in a partition is build on top of the apex.rs shim.
However, contrary to the architectural structure, only the parti-
tion code truly depends on the apex.rs shim. Hence, compiling
a partition for various hypervisors should be as easy as swap-
ping the shim for another one, as long as the partition does not
depend on hypervisor specific services.



52 avionic platform

7.2.1 Linux Hypervisor

Because apex.rs only allows for hypervisor independent parti-
tion development, the hypervisor themselves must be individu-
ally configured for partitions, channels and schedule. As a result
of the simplicity of the Linux hypervisor, the configuration is
kept short and can be seen in Fig. 7.4a.

major_frame: 100ms

partitions:

- id: 0

name: Foo

duration: 10ms

offset: 0ms

period: 50ms

image: foo_part

- id: 1

name: Bar

offset: 30ms

duration: 10ms

image: bar_part

period: 100ms

channel:

- !Sampling

name: Hello

msg_size: 10KB

source: Foo

destination:

- Bar

(a) Config

Partition: Foo > "200ms": P MSG 16

Partition: Foo > "201ms": P MSG 17

Partition: Foo > "202ms": P MSG 18

Partition: Foo > "203ms": P MSG 19

Partition: Foo > "204ms": P MSG 20

Partition: Foo > "205ms": AP MSG 16

Partition: Foo > "206ms": AP MSG 17

Partition: Foo > "207ms": AP MSG 18

Partition: Foo > "208ms": AP MSG 19

Partition: Foo > "209ms": AP MSG 20
Partition: Bar > "230ms": P MSG 6

Partition: Bar > "231ms": P MSG 7

Partition: Bar > "232ms": P MSG 8

Partition: Bar > "233ms": P MSG 9

Partition: Bar > "234ms": P MSG 10

Partition: Bar > "235ms":

Received via Sampling Port:

CustomMessage {

msg: "Sampling MSG 4",

when: 205.708074ms },

valid: Valid }

Partition: Bar > "235ms": AP MSG 4

Partition: Bar > "236ms": AP MSG 5

(b) Log

Figure 7.4: Demonstrator on the Linux Hypervisor
Foo Partition Bar Partition

Fig. 7.4b shows part of the output from the Linux hypervisor
when running our demonstrator module. Here the aperiodic and
periodic processes report messages as expected. Furthermore,
the Bar partition successfully read and deserialized the custom
message from the sampling port using our extension library.

continues integration With testing being an anticipated
use-case of our Linux hypervisor, we also attempted to run
the demonstrator module inside GitHub’s CI system - GitHub
Actions. For this we designed a workflow, which builds both
partitions, in addition to the hypervisor and then runs the Linux
hypervisor with the aforementioned configuration. Running on
a GitHub hosted Ubuntu, the workflow successfully executed
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from the first try. Throughout this, the only dependency was
a Rust toolchain that was solely used for compiling partitions
and hypervisor. Afterwards the CI run hypervisor executed the
partitions as expected with an output similar to Fig. 7.4b.

7.2.2 XNG

"200ms": P MSG 16

"201ms": P MSG 17

"202ms": P MSG 18

"203ms": P MSG 19

"204ms": P MSG 20

"205ms": AP MSG 16

"206ms": AP MSG 17

"207ms": AP MSG 18

"208ms": AP MSG 19

"209ms": AP MSG 20

"251ms": P MSG 21

"252ms": P MSG 22

"253ms": P MSG 23

"230ms": P MSG 6

"231ms": P MSG 7

"232ms": P MSG 8

"233ms": P MSG 9

"234ms": P MSG 10

"234ms":

Received via Sampling Port:

CustomMessage {

msg: "Sampling MSG 4",

when: 205.328572ms },

valid: Valid }

"235ms": AP MSG 4

"236ms": AP MSG 5

Figure 7.5: XNG Log Snippet running the Demonstrator
Foo Partition Bar Partition

For running our demonstrator partitions on the XNG hyper-
visor, a Xilinx SoC was used as the host device. After compil-
ing the partitions for the target platform, an ELF file including
the hypervisor itself was build and executed. The output at the
UART of the SoC can be seen in Fig. 7.5. Because the name of the
message reporting partition is not printed here, the output was
coloured for indicating the message source. A small evidence for
out claim of hypervisor independence is the output of said execu-
tion; except for little timing differences, the output is equivalent
to Fig. 7.4b.

7.3 evaluation

With the execution of our demonstrator module on both the
Linux hypervisor and XNG we showed that hypervisor independ-
ence was achieved to some degree. Still, the caveat remains that
partitions need to be compiled for every target hypervisor with
the corresponding apex.rs shim. An issue we did not encounter
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with our simple example is that ARINC 653 compliant hyper-
visors are allowed to provide additional hypervisor specific func-
tions to partitions and processes[6]. Because of this, partitions
can be further bound to a particular hypervisor, should these
functions be provided by a shim and be used by the partition.

Nevertheless, even if a partition may be bound to a hypervisor
due to exclusive functionality, apex.rs and its trait remain
extendable, since extensions do not depend on the shim at all
(Fig. 7.3b). The two examples demonstrate that the serialization
extension actually works; the custom message type could be
serialized, send and deserialized in the second partition.

Another takeaway of our demonstrator is that compilation
along with execution of the Linux hypervisor and partitions
works with Continuous Integration (CI) systems. While we men-
tioned in Sec. 6.4.1 that the Linux hypervisor is still lacking in
safety, it can be used for testing of modules and partitions. Solely
requiring a Linux OS with no reliance on proprietary hardware
and software, multiple instances of a module can run in parallel
on a powerful system. Doing this, partitions could be automatic-
ally tested in various configurations, ultimately enabling DevOps
for ARINC 653 partition/module development[3].
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C O N C L U S I O N A N D F U T U R E W O R K

Starting with the implicit question of how to improve the
developer experience in avionics, we choose to propose a modern
development platform for ARINC 653 in this thesis. Establishing
a baseline of essential knowledge, we first introduced ARINC
653 and the Rust programming language in Chapter 2. In
consideration of our platforms primary goal of assisting with the
development process and us designing our own hypervisor for
testing purposed too, we mention various existing hypervisors
in Chapter 3. With this, we especially focus on hypervisors that
run under Linux and are designed for development of ARINC
653 applications as well. In Chapter 4, we then looked at already
established software ecosystems to understand factors involved
in a succeeding ecosystem surrounding ARINC 653. Following
this, issues potentially preventing the APEX API from growing
more as an ecosystem including safety issues are enumerated.
With apex.rs our Rust native APEX API is then introduced
in Chapter 5, distinguishing itself through extendability and
improved safety. Built upon this API an example extension is
also developed, extending APEX channels by allowing to send
and receiving custom data types. Chapter 6 then shows our
Linux hypervisor, which was intended not only as a tool for
development but also as a full-fledged hypervisor for low-DAL
systems. As a result of inadequate isolation, the hypervisor
can not be used as a hypervisor for live systems just yet, but
already achieves the primary goal of improving the development
and testing process. In Chapter 7, the platform, with apex.rs,
extensions and the Linux hypervisor was then put to the test.
Successfully execution of an apex.rs based ARINC 653 module,
featuring two partitions communicating with each other by using
our APEX channel extension, proofed applicability. Especially,
portability of the APEX API has been demonstrated by execution
of the same ARINC 653 module on our Linux hypervisor as well
as the proprietary XNG hypervisor with minimal changes.
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8.1 future work

linux hypervisor Running APEX partitions, which only
require a subset of ARINC 653 part 4, is already possible with
our hypervisor. As a next step, the missing ARINC 653 part
4 services for queuing ports and health monitoring should be
implemented.

Further, we mentioned in Sec. 6.1 that we intend for our
Linux hypervisor to feature actual temporal and spatial isolation.
For achieving this, our encountered problems regarding spatial
isolation need to be addressed as well. Moreover, scheduling of
intra-partition processes may not be safe yet, because the cgroups
are partially exposed to the internals of the partitions. Aiming
for applicability in low DAL systems, lessons should be learned
from other Linux based isolation domains, for example from OCI
container.

Another future goal is allowing access to devices and the
network. In ARINC 653 part 2, the memory block service is
introduced as an extended service offering access to named write
and read-enabled memory ranges[7]. While this service should
be made available for memory mappings to devices (including
PCI devices like network cards), advantages gained from Linux
should be incorporated as well. Running on top of Linux, the
operating system can already grant us device drivers as well as a
working network stack. Offering device and network access via
hypervisor implementation dependent services could be a valid
solution to accomplish this.

One last goal is automatic ARINC 653 compliance testing.
Previously mentioned, the Linux hypervisor is still missing
essential services for ARINC 653 part 4, but we aspire part
1 compliance. As part of the ARINC 653 standard, part 3a[9]
and 3b[10] respectively specify conformity tests for ARINC 653

part 1 and 2. Due to our Linux hypervisor being compilable
and executable with CI tools, we fancy the idea of automatic
conformity testing of our hypervisor. All tests defined in
ARINC 653 part 3a and 3b could be automatically run after
commits to our version control system, allowing for live updates
on attained ARINC 653 conformity. This would also form a
nice demonstration of applied DevOps for avionics software
engineering.
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platform Considering the focus of our platform lies on
apex.rs, as the pivot of an extendable ecosystem for ARINC 653

compliant application development, we now plan to promote its
usage through the open-source community. Moreover, comple-
mentary to apex.rs, the Linux hypervisor can serve as a shortcut
into ARINC 653 application development, rewarding adoption
of our platform. First, improving on the documentation for par-
tition and shim development, we want to make apex.rs more
accessible. Also, we now intend to put the platform to the test
with an ongoing project that requires partitioning in the sense
of ARINC 653. Through the time working on this project, we
hope to mature the proposed platform while also adding to the
apex.rs ecosystem by developing extensions for it.
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Štrbac. ‘Performance Comparison of the type-2 hypervisor
VirtualBox and VMWare Workstation’. In: 2019 27th Tele-
communications Forum (TELFOR). IEEE. 2019, pp. 1–4.

[23] W. Steiner and S. Poledna. ‘Fog computing as enabler for
the Industrial Internet of Things’. In: e & i Elektrotechnik und
Informationstechnik 133.7 (2016), pp. 310–314.

[24] M. Masmano, I. Ripoll, A. Crespo and J Metge. ‘Xtratum: a
hypervisor for safety critical embedded systems’. In: 11th
Real-Time Linux Workshop. Citeseer. 2009, pp. 263–272.

[25] Software User Manual: SKE. Fent Innovative Software Solu-
tions. 2020.

[26] SYSGO GmbH. PikeOS 5.1 - Certified RTOS with Hypervisor
Functionality. Rel. 1.3. Nov. 2022.

[27] Wind River. VxWorks 653: Multi-core Edition. Rev 11/2022.
Nov. 2022.

[28] R. Zhou, Q. Zhou, Y. Sheng and K.-C. Li. ‘XtratuM/PPC: a
hypervisor for partitioned system on PowerPC processors’.
In: The Journal of Supercomputing 63.2 (2013), pp. 593–610.

[29] S. Goiffon and P. Gaufillet. ‘Linux: A multi-purpose execut-
ive support for civil avionics applications?’ In: Building the
Information Society. Springer, 2004, pp. 719–724.

[30] S. Santos, J. Rufino, T. Schoofs, C. Tatibana and J. Wind-
sor. ‘A portable ARINC 653 standard interface’. In: 2008
IEEE/AIAA 27th Digital Avionics Systems Conference. IEEE.
2008, 1–E.

[31] E. Pascoal, J. Rufino, T. Schoofs and J. Windsor. ‘AMOBA-
ARINC 653 simulator for modular based space applica-
tions’. In: emergency 10 (2008), p. 2.

[32] A. Certain. ‘Enabling Linux Usage in Space Applications’.
Embedded Linux Conference. 2019. url: https://elinux.
org/Applications_Presentations.

[33] C. Rebischke. ‘From the Cloud to the Clouds: Taking
Integrated Modular Avionics on a New Level with Cloud-
Native Technologies’. MA thesis. TU Clausthal, 2022.

https://elinux.org/Applications_Presentations
https://elinux.org/Applications_Presentations


62 bibliography

[34] A. Farrukh and R. West. ‘FLYOS: Integrated Modular
Avionics for Autonomous Multicopters’. In: 2022 IEEE
28th Real-Time and Embedded Technology and Applications
Symposium (RTAS). IEEE. 2022, pp. 68–81.

[35] S. Han and H.-W. Jin. ‘Full virtualization based ARINC
653 partitioning’. In: 2011 IEEE/AIAA 30th Digital Avionics
Systems Conference. IEEE. 2011, 7E1–1.

[36] S. Han and H.-W. Jin. ‘Kernel-level ARINC 653 partition-
ing for Linux’. In: Proceedings of the 27th Annual ACM Sym-
posium on Applied Computing. 2012, pp. 1632–1637.

[37] W. Ruan and Z. Zhai. ‘Kernel-level design to support par-
titioning and hierarchical real-time scheduling of ARINC
653 for VxWorks’. In: 2014 IEEE 12th International Confer-
ence on Dependable, Autonomic and Secure Computing. IEEE.
2014, pp. 388–393.

[38] MISRA C:2012 Guidlines for the use of the C language in
critical systems. The Motor Industry Software Reliability
Association. 2013.

[39] S. Newton. MISRA-Rust. Version caa5e5b. July 2018. url:
https://github.com/PolySync/misra-rust.

[40] P. Mansanet. Tightness Driven Development in Rust. 2021.
url: https://www.ecorax.net/tightness/.

[41] C. Koster. Invariant Driven Development. 2018. url: https:
/ / medium . com / statuscode / invariant - driven -

development-8231add95e33.

[42] A Cook. ‘ARINC 653—challenges of the present and
future’. In: Microprocessors and Microsystems 19.10 (1995),
pp. 575–579.

[43] A. Poulsen, C. McCall, G. Vasluianu, J. Jensen and J.
Cordeiro. An OS implementation based on the ARINC 653
Standard. Tech. rep. Aalborg University, 2016.

[44] A. Dubey, G. Karsal and N. Mahadevan. ARINC 653
simulator. Version 9928113. July 2019. url: https://github.
com/adubey14/arinc653emulator.

[45] opencontainers. Image Format Specification. Ver-
sion 494a5a6aca. July 2022. url: https : / / github .

com/opencontainers/runtime-spec/blob/main/spec.md.

https://github.com/PolySync/misra-rust
https://www.ecorax.net/tightness/
https://medium.com/statuscode/invariant-driven-development-8231add95e33
https://medium.com/statuscode/invariant-driven-development-8231add95e33
https://medium.com/statuscode/invariant-driven-development-8231add95e33
https://github.com/adubey14/arinc653emulator
https://github.com/adubey14/arinc653emulator
https://github.com/opencontainers/runtime-spec/blob/main/spec.md
https://github.com/opencontainers/runtime-spec/blob/main/spec.md


bibliography 63

[46] opencontainers. Image Format Specification. Ver-
sion a7ac485f4c. Sept. 2022. url: https : / / github .

com/opencontainers/image-spec/blob/main/spec.md.

[47] A. Cook and K. Hunt. ‘ARINC 653—Achieving software
re-use’. In: Microprocessors and Microsystems 20.8 (1997),
pp. 479–483.

[48] R. Munroe. Standards. 2011. url: https://xkcd.com/927/.

[49] I. Borate and R. Chavan. ‘Sandboxing in linux: From
smartphone to cloud’. In: International Journal of Computer
Applications 148.8 (2016).

https://github.com/opencontainers/image-spec/blob/main/spec.md
https://github.com/opencontainers/image-spec/blob/main/spec.md
https://xkcd.com/927/




A
apex . r s

Listing A.1: apex-rs types.rs

1 pub mod basic {

2 /// Max Length for Name Types

3 ///

4 /// According to ARINC653-P1, the maximum name length is

always 32

5 pub const MAX_NAME_LENGTH: usize = 32;

6 /// C compatible function type

7 pub type SystemAddress = extern "C" fn();

8 /// Apex internal ReturnCode Type

9 pub type ReturnCode = u32;

10 /// Apex Name type using [MAX_NAME_LENGTH]

11 pub type ApexName = [u8; MAX_NAME_LENGTH];

12

13 // Base Types

14 /// Apex Byte Type: 8-bit, 0..255

15 pub type ApexByte = u8;

16 /// Apex Integer Type: 32-bit, -2^31..2^31-1

17 pub type ApexInteger = i32;

18 /// Apex Unsigned Type: 32-bit, 0..4_294_967_295

19 pub type ApexUnsigned = u32;

20 /// Apex Long Integer Type: 64-bit: -2^63..2^63-1

21 pub type ApexLongInteger = i64;

22

23 /// Apex Message Size type: [ApexUnsigned]

24 pub type MessageSize = ApexUnsigned;

25 /// Apex Message Range type: [ApexUnsigned]

26 pub type MessageRange = ApexUnsigned;

27

28 /// APEX Error Return Code

29 ///

30 /// Basically the normal APEX Return Codes without the

non-error variant

31 #[repr(u32)]

32 #[derive(Copy, Clone, Debug, PartialEq, Eq)]

65



66 apex .rs

33 #[cfg_attr(feature = "serde", derive(serde::Serialize,

serde::Deserialize))]

34 #[cfg_attr(feature = "strum", derive(strum::FromRepr))]

35 pub enum ErrorReturnCode {

36 /// status of system unaffected by request

37 NoAction = 1,

38 /// resource required by request unavailable

39 NotAvailable = 2,

40 /// invalid parameter specified in request

41 InvalidParam = 3,

42 /// parameter incompatible with configuration

43 InvalidConfig = 4,

44 /// request incompatible with current mode

45 InvalidMode = 5,

46 /// time-out tied up with request has expired

47 TimedOut = 6,

48 }

49

50 impl ErrorReturnCode {

51 /// Convenience function for gaining a Result from a

given [ReturnCode]

52 ///

53 /// # Return Values for given [ReturnCode]

54 ///

55 /// - ‘0‘ => ‘Ok(())‘

56 /// - ‘1..=6‘ => ‘Err(Self)‘

57 /// - ‘7..‘ => ‘panic‘

58 pub fn from(from: ReturnCode) -> Result<(), Self> {

59 use ErrorReturnCode::*;

60 match from {

61 1 => Ok(()),

62 2 => Err(NoAction),

63 3 => Err(NotAvailable),

64 4 => Err(InvalidParam),

65 5 => Err(InvalidConfig),

66 6 => Err(InvalidMode),

67 unexpected => panic!(" {unexpected} "),
68 }

69 }

70 }

71

72 /// Port Directions

73 #[repr(u32)]

74 #[derive(Debug, Copy, Clone, PartialEq, Eq)]
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75 #[cfg_attr(feature = "serde", derive(serde::Serialize,

serde::Deserialize))]

76 #[cfg_attr(feature = "strum", derive(strum::FromRepr))]

77 pub enum PortDirection {

78 /// Source/Sender Port

79 Source = 0,

80 /// Destination/Receiver Port

81 Destination = 1,

82 }

83

84 impl TryFrom<ApexUnsigned> for PortDirection {

85 type Error = ApexUnsigned;

86

87 fn try_from(value: ApexUnsigned) -> Result<Self, Self

::Error> {

88 match value {

89 0 => Ok(PortDirection::Source),

90 1 => Ok(PortDirection::Destination),

91
_ => Err(value),

92 }

93 }

94 }

95

96 /// Queuing Disciplines

97 #[repr(u32)]

98 #[derive(Debug, Copy, Clone, PartialEq, Eq)]

99 #[cfg_attr(feature = "serde", derive(serde::Serialize,

serde::Deserialize))]

100 #[cfg_attr(feature = "strum", derive(strum::FromRepr))]

101 pub enum QueuingDiscipline {

102 /// First in/first out queue

103 FIFO = 0,

104 /// Priority queue

105 Priority = 1,

106 }

107

108 impl TryFrom<ApexUnsigned> for QueuingDiscipline {

109 type Error = ApexUnsigned;

110

111 fn try_from(value: ApexUnsigned) -> Result<Self, Self

::Error> {

112 match value {

113 0 => Ok(QueuingDiscipline::FIFO),

114 1 => Ok(QueuingDiscipline::Priority),
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115
_ => Err(value),

116 }

117 }

118 }

119

120 /// Apex SystemTime Type: [ApexLongInteger]

121 pub type ApexSystemTime = ApexLongInteger;

122 /// [ApexSystemTime] value indicating infinite time

123 pub const INFINITE_TIME_VALUE: ApexSystemTime = -1;

124

125 /// ProcessorCore Id Type: [ApexInteger]

126 pub type ProcessorCoreId = ApexInteger;

127 /// [ProcessorCoreId] value indicating no preference

128 pub const CORE_AFFINITY_NO_PREFERENCE: ProcessorCoreId =

-1;

129 }

130

131 pub mod abstraction {

132 use core::panic;

133 use core::str::{FromStr, Utf8Error};

134 use core::time::Duration;

135

136 // Reexport important basic-types for downstream-user

137 pub use super::basic::{ApexByte, ApexUnsigned,

MessageSize, MAX_NAME_LENGTH};

138 use crate::bindings::*;

139

140 /// Error Type used by abstracted functions.

141 /// Includes all Variants of [ErrorReturnCode] plus a [

WriteError] and [ReadError] variant

142 #[derive(Clone, Debug, PartialEq, Eq)]

143 #[cfg_attr(feature = "serde", derive(serde::Serialize,

serde::Deserialize))]

144 pub enum Error {

145 /// status of system unaffected by request

146 NoAction,

147 /// resource required by request unavailable

148 NotAvailable,

149 /// invalid parameter specified in request

150 InvalidParam,

151 /// parameter incompatible with configuration

152 InvalidConfig,

153 /// request incompatible with current mode

154 InvalidMode,
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155 /// time-out tied up with request has expired

156 TimedOut,

157 /// buffer got zero length or is to long

158 WriteError(WriteError),

159 /// buffer is to small

160 ReadError(ReadError),

161 }

162

163 impl From<ErrorReturnCode> for Error {

164 fn from(rc: ErrorReturnCode) -> Self {

165 use Error::*;

166 match rc {

167 ErrorReturnCode::NoAction => NoAction,

168 ErrorReturnCode::NotAvailable => NotAvailable

,

169 ErrorReturnCode::InvalidParam => InvalidParam

,

170 ErrorReturnCode::InvalidConfig =>

InvalidConfig,

171 ErrorReturnCode::InvalidMode => InvalidMode,

172 ErrorReturnCode::TimedOut => TimedOut,

173 }

174 }

175 }

176

177 /// Abstracted SystemTime Variant making use of Rusts [

Duration]

178 /// Includes Infinite-variant since [Duration] does not

allow for negative values

179 ///

180 /// # Size

181 ///

182 /// [ApexSystemTime] => 8-Byte

183 /// [Duration] => 16-Byte

184 /// [SystemTime] => 24-Byte

185 #[repr(C)]

186 #[derive(Clone, Debug, PartialEq, Eq)]

187 #[cfg_attr(feature = "serde", derive(serde::Serialize,

serde::Deserialize))]

188 pub enum SystemTime {

189 /// Infinite Time value

190 Infinite,

191 /// Normal positive Time value

192 Normal(Duration),
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193 }

194

195 impl SystemTime {

196 /// Create new SystemTime from given [ApexSystemTime]

197 pub fn new(time: ApexSystemTime) -> Self {

198 time.into()

199 }

200

201 /// Returns Durations if this SystemTime is

SystemTime::Normal

202 ///

203 /// Otherwise panics

204 pub fn unwrap_duration(self) -> Duration {

205 if let SystemTime::Normal(time) = self {

206 return time;

207 }

208 panic!("Was Infinite ")
209 }

210 }

211

212 impl From<Duration> for SystemTime {

213 fn from(time: Duration) -> Self {

214 Self::Normal(time)

215 }

216 }

217

218 impl From<SystemTime> for Option<Duration> {

219 fn from(time: SystemTime) -> Self {

220 match time {

221 SystemTime::Infinite => None,

222 SystemTime::Normal(time) => Some(time),

223 }

224 }

225 }

226

227 impl From<Option<Duration>> for SystemTime {

228 fn from(time: Option<Duration>) -> Self {

229 use SystemTime::*;

230 match time {

231 Some(time) => Normal(time),

232 None => Infinite,

233 }

234 }

235 }
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236

237 impl From<ApexSystemTime> for SystemTime {

238 /// Converts ApexSystemTime to a [SystemTime]

239 /// Should ApexSystemTime be less than 0, its

considered to be infinite.

240 /// As stated in ARINC653P1-5 3.4.1 all negative

values should be treated as ‘INFINITE_TIME_VALUE‘

241 fn from(time: ApexSystemTime) -> Self {

242 use SystemTime::*;

243 // This conversion can only fail, if

ApexSystemTime is negative.

244 match u64::try_from(time) {

245 Ok(time) => Normal(Duration::from_nanos(time)

),

246 Err(_) => Infinite,

247 }

248 }

249 }

250

251 impl From<SystemTime> for ApexSystemTime {

252 /// Converts [SystemTime] into [ApexSystemTime]

253 fn from(time: SystemTime) -> Self {

254 if let SystemTime::Normal(time) = time {

255 if let Ok(time) = ApexSystemTime::try_from(

time.as_nanos()) {

256 return time;

257 }

258 }

259 INFINITE_TIME_VALUE

260 }

261 }

262

263 /// Convenient Abstraction Name Type

264 /// Uses [ApexName] internally

265 #[derive(Clone, Debug, PartialEq, Eq)]

266 #[cfg_attr(feature = "serde", derive(serde::Serialize,

serde::Deserialize))]

267 pub struct Name(ApexName);

268

269 impl Name {

270 /// Create new [Name] from [ApexName]

271 pub fn new(name: ApexName) -> Self {

272 Name(name)

273 }
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274

275 /// Get [str] from this

276 pub fn to_str(&self) -> Result<&str, Utf8Error> {

277 let nul_range_end = self

278 .0

279 .iter()

280 .position(|&c| c == b’\0’)

281 .unwrap_or(self.0.len());

282 core::str::from_utf8(&self.0[0..nul_range_end])

283 }

284

285 /// Dismantle this to its inner [ApexName] type

286 pub fn into_inner(self) -> ApexName {

287 self.0

288 }

289 }

290

291 impl From<Name> for ApexName {

292 fn from(val: Name) -> Self {

293 val.0

294 }

295 }

296

297 impl FromStr for Name {

298 type Err = ApexUnsigned;

299

300 fn from_str(s: &str) -> Result<Self, Self::Err> {

301 if s.len() > MAX_NAME_LENGTH {

302 return Err(s.len() as ApexUnsigned);

303 }

304 let mut array_name = [0; MAX_NAME_LENGTH as usize

];

305 array_name[..s.len()].copy_from_slice(s.as_bytes

());

306 Ok(Self(array_name))

307 }

308 }

309

310 /// Read Error indicating that the buffer was not

guaranteed to fit a payload on a given read operation.

311 #[derive(Clone, Debug, PartialEq, Eq)]

312 #[cfg_attr(feature = "serde", derive(serde::Serialize,

serde::Deserialize))]

313 pub struct ReadError(usize);
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314

315 impl ReadError {

316 /// Validate a buffer to fit at least a given size.

317 /// If not returns [Self] with the length of the

passed buffer

318 pub fn validate(

319 size: MessageSize,

320 buffer: &mut [ApexByte],

321 ) -> Result<&mut [ApexByte], Self> {

322 if usize::try_from(size)

323 .map(|ss| buffer.len() < ss)

324 .unwrap_or(true)

325 {

326 return Err(Self(buffer.len()));

327 }

328 Ok(buffer)

329 }

330

331 /// Returns the length of the buffer which was to

small

332 pub fn found_buffer_size(&self) -> usize {

333 self.0

334 }

335 }

336

337 impl From<ReadError> for Error {

338 fn from(re: ReadError) -> Self {

339 Error::ReadError(re)

340 }

341 }

342

343 /// Write Error indicating that the buffer was to large

for the given write operation.

344 #[derive(Clone, Debug, PartialEq, Eq)]

345 #[cfg_attr(feature = "serde", derive(serde::Serialize,

serde::Deserialize))]

346 pub struct WriteError(usize);

347

348 impl WriteError {

349 /// Validate a buffer to be at most as long as the

given usize.

350 /// If not returns [Self] with the length of the

passed buffer
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351 pub fn validate(size: MessageSize, buffer: &[ApexByte

]) -> Result<&[ApexByte], Self> {

352 if usize::try_from(size)

353 .map(|ss| buffer.len() > ss)

354 .unwrap_or(false)

355 || buffer.is_empty()

356 {

357 return Err(Self(buffer.len()));

358 }

359 Ok(buffer)

360 }

361

362 /// Returns the length of the buffer which was to

long

363 pub fn found_buffer_size(&self) -> usize {

364 self.0

365 }

366 }

367

368 impl From<WriteError> for Error {

369 fn from(we: WriteError) -> Self {

370 Error::WriteError(we)

371 }

372 }

373 }
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Listing B.1: apex-rs-postcard sampling.rs

1 use apex_rs::bindings::*;

2 use apex_rs::prelude::*;

3 use arrayvec::ArrayVec;

4 use postcard::de_flavors::Slice as DeSlice;

5 use postcard::ser_flavors::Slice as SerSlice;

6 use serde::{Deserialize, Serialize};

7

8 use crate::error::*;

9

10 pub trait SamplingPortSourceExt {

11 fn send_type<T>(&self, p: T) -> Result<(), SendError>

12 where

13 T: Serialize;

14 }

15

16 pub trait SamplingPortDestinationExt<const MSG_SIZE:

MessageSize> {

17 fn recv_type<T>(&self) -> Result<T, SamplingRecvError<

MSG_SIZE>>

18 where

19 T: for<’a> Deserialize<’a>,

20 [u8; MSG_SIZE as usize]:;

21 }

22

23 impl<const MSG_SIZE: MessageSize, Q: ApexSamplingPortP4>

SamplingPortSourceExt

24 for SamplingPortSource<MSG_SIZE, Q>

25 where

26 [u8; MSG_SIZE as usize]:,

27 {

28 fn send_type<T>(&self, p: T) -> Result<(), SendError>

29 where

30 T: Serialize,

31 {

32 let buf = &mut [0u8; MSG_SIZE as usize];

75
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33 let buf =

34 postcard::serialize_with_flavor::<T, SerSlice, &

mut [u8]>(&p, SerSlice::new(buf))?;

35 self.send(buf).map_err(SendError::from)

36 }

37 }

38

39 impl<const MSG_SIZE: MessageSize, Q: ApexSamplingPortP4>

SamplingPortDestinationExt<MSG_SIZE>

40 for SamplingPortDestination<MSG_SIZE, Q>

41 where

42 [u8; MSG_SIZE as usize]:,

43 {

44 fn recv_type<T>(&self) -> Result<T, SamplingRecvError<

MSG_SIZE>>

45 where

46 T: for<’a> Deserialize<’a>,

47 {

48 let mut msg_buf = [0u8; MSG_SIZE as usize];

49 let (val, msg) = self.receive(&mut msg_buf)?;

50 let msg_slice = DeSlice::new(msg);

51 let mut deserializer = postcard::Deserializer::

from_flavor(msg_slice);

52 match T::deserialize(&mut deserializer) {

53 Ok(t) => Ok(t),

54 Err(e) => {

55 let mut msg = ArrayVec::from(msg_buf);

56 msg.truncate(msg.len());

57 Err(SamplingRecvError::Postcard(e, val, msg))

58 }

59 }

60 }

61 }

Listing B.2: apex-rs-postcard queuing.rs

1 use apex_rs::bindings::*;

2 use apex_rs::prelude::*;

3 use arrayvec::ArrayVec;

4 use postcard::de_flavors::Slice as DeSlice;

5 use postcard::ser_flavors::Slice as SerSlice;

6 use serde::{Deserialize, Serialize};

7

8 use crate::error::*;

9
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10 pub trait QueuingPortSenderExt {

11 fn send_type<T>(&self, p: T, timeout: SystemTime) ->

Result<(), SendError>

12 where

13 T: Serialize;

14 }

15

16 pub trait QueuingPortReceiverExt<const MSG_SIZE: MessageSize>

{

17 fn recv_type<T>(&self, timeout: SystemTime) -> Result<T,

QueuingRecvError<MSG_SIZE>>

18 where

19 T: for<’a> Deserialize<’a>,

20 [u8; MSG_SIZE as usize]:;

21 }

22

23 impl<const MSG_SIZE: MessageSize, const NB_MSGS: MessageRange

, Q: ApexQueuingPortP4>

24 QueuingPortSenderExt for QueuingPortSender<MSG_SIZE,

NB_MSGS, Q>

25 where

26 [u8; MSG_SIZE as usize]:,

27 {

28 fn send_type<T>(&self, p: T, timeout: SystemTime) ->

Result<(), SendError>

29 where

30 T: Serialize,

31 {

32 let buf = &mut [0u8; MSG_SIZE as usize];

33 let buf =

34 postcard::serialize_with_flavor::<T, SerSlice, &

mut [u8]>(&p, SerSlice::new(buf))?;

35 self.send(buf, timeout).map_err(SendError::from)

36 }

37 }

38

39 impl<const MSG_SIZE: MessageSize, const NB_MSGS: MessageRange

, Q: ApexQueuingPortP4>

40 QueuingPortReceiverExt<MSG_SIZE> for QueuingPortReceiver<

MSG_SIZE, NB_MSGS, Q>

41 where

42 [u8; MSG_SIZE as usize]:,

43 {
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44 fn recv_type<T>(&self, timeout: SystemTime) -> Result<T,

QueuingRecvError<MSG_SIZE>>

45 where

46 T: for<’a> Deserialize<’a>,

47 {

48 let mut msg_buf = [0u8; MSG_SIZE as usize];

49 let msg = self.receive(&mut msg_buf, timeout)?;

50 let msg_slice = DeSlice::new(msg);

51 let mut deserializer = postcard::Deserializer::

from_flavor(msg_slice);

52 match T::deserialize(&mut deserializer) {

53 Ok(t) => Ok(t),

54 Err(e) => {

55 let mut msg = ArrayVec::from(msg_buf);

56 msg.truncate(msg.len());

57 Err(QueuingRecvError::Postcard(e, msg))

58 }

59 }

60 }

61 }
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Listing C.1: Foo Partition main.rs

1 #[derive(Clone, Debug, Serialize, Deserialize)]

2 pub struct CustomMessage {

3 msg: String,

4 when: Duration,

5 }

6

7 #[partition(linux_apex_partition::partition::

ApexLinuxPartition)]

8 mod foo {

9 #[sampling_out(msg_size = "10KB")]

10 struct Hello;

11

12 #[start(cold)]

13 fn cold_start(ctx: start::Context) {

14 ctx.init_hello().unwrap();

15 ctx.init_periodic_foo().unwrap();

16 ctx.init_aperiodic_foo().unwrap();

17 }

18

19 #[start(warm)]

20 fn warm_start(ctx: start::Context) {

21 cold_start(ctx);

22 }

23

24 #[aperiodic(

25 time_capacity = "Infinite",

26 stack_size = "100KB",

27 base_priority = 1,

28 deadline = "Soft"

29 )]

30 fn aperiodic_foo(ctx: aperiodic_foo::Context) {

31 for i in 0..i32::MAX {

32 let time = ctx.get_time().unwrap_duration();

33 info!(" { : ? } : AP MSG { i } ", format_duration(time).

to_string());
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34 sleep(Duration::from_millis(1))

35 }

36 }

37

38 #[periodic(

39 period = "0ms",

40 time_capacity = "Infinite",

41 stack_size = "100KB",

42 base_priority = 1,

43 deadline = "Soft"

44 )]

45 fn periodic_foo(ctx: periodic_foo::Context) {

46 for i in 1..i32::MAX {

47 let time = ctx.get_time().unwrap_duration();

48 info!(" { : ? } : P MSG { i } ", format_duration(time).

to_string());

49 sleep(Duration::from_millis(1));

50 if i % 5 == 0 {

51 ctx.hello

52 .unwrap()

53 .send_type(CustomMessage {

54 msg: format!("Sampling MSG {} ", i /

5),

55 when: time,

56 })

57 .unwrap();

58

59 ctx.periodic_wait().unwrap();

60 }

61 }

62 }

63 }

Listing C.2: Bar Partition main.rs

1 #[derive(Clone, Debug, Serialize, Deserialize)]

2 pub struct CustomMessage {

3 msg: String,

4 when: Duration,

5 }

6

7 #[partition(linux_apex_partition::partition::

ApexLinuxPartition)]

8 mod bar {

9 #[sampling_in(refresh_period = "40ms")]
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10 #[sampling_in(msg_size = "10KB")]

11 struct Hello;

12

13 #[start(cold)]

14 fn cold_start(ctx: start::Context) {

15 ctx.init_hello().unwrap();

16 ctx.init_periodic_bar().unwrap();

17 ctx.init_aperiodic_bar().unwrap();

18 }

19

20 #[start(warm)]

21 fn warm_start(ctx: start::Context) {

22 cold_start(ctx);

23 }

24

25 #[aperiodic(

26 time_capacity = "Infinite",

27 stack_size = "100KB",

28 base_priority = 1,

29 deadline = "Soft"

30 )]

31 fn aperiodic_bar(ctx: aperiodic_bar::Context) {

32 for i in 0..i32::MAX {

33 let time = ctx.get_time().unwrap_duration();

34 info!(" { : ? } : AP MSG { i } ", format_duration(time).

to_string());

35 sleep(Duration::from_millis(1))

36 }

37 }

38

39 #[periodic(

40 period = "0ms",

41 time_capacity = "Infinite",

42 stack_size = "100KB",

43 base_priority = 1,

44 deadline = "Soft"

45 )]

46 fn periodic_bar(ctx: periodic_bar::Context) {

47 for i in 1..i32::MAX {

48 let time = ctx.get_time().unwrap_duration();

49 info!(" { : ? } : P MSG { i } ", format_duration(time).

to_string());

50 sleep(Duration::from_millis(1));

51 if i % 3 == 0 {



82 platform demonstrator

52 let (valid, data) = ctx.hello

53 .unwrap()

54 .recv_type::<CustomMessage>()

55 .unwrap();

56 info!("Received via Sampling Port : { : ? } ,
valid : { valid : ? } ", data)

57

58 ctx.periodic_wait().unwrap();

59 }

60 }

61 }

62 }
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