# DISRUPTIVE ECONOMIC OPPORTUNIES THROUGH QUANTUM SENSORS AND QUANTUM CLOCKS

Prof. Dr. Kai Bongs DLR Institut für Quantentechnologien, Ulm

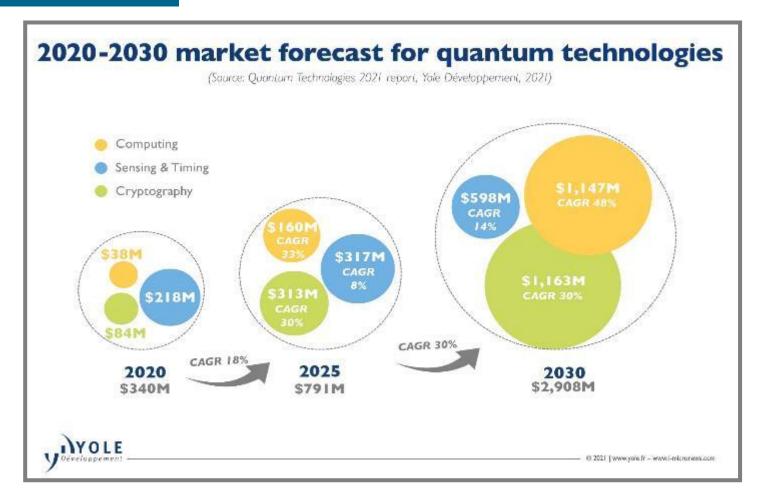


Divisions

| Quantenmetrologie<br>(QME) | Quanteninformation &<br>Kommunikation (QIC) | Quantennanophysik<br>(QNP) | Geladene<br>Materiewellen |                                              |
|----------------------------|---------------------------------------------|----------------------------|---------------------------|----------------------------------------------|
|                            |                                             |                            |                           | Quanten Engineering (QEN)                    |
|                            |                                             |                            | Ir                        | ntegration von Mikro- und Nanosystemen (IMN) |
|                            |                                             |                            |                           | Theoretische Quantenphysik (TQP)             |
|                            |                                             |                            | I I                       | A                                            |






DLR Institut für Quantentechnologien

DLR

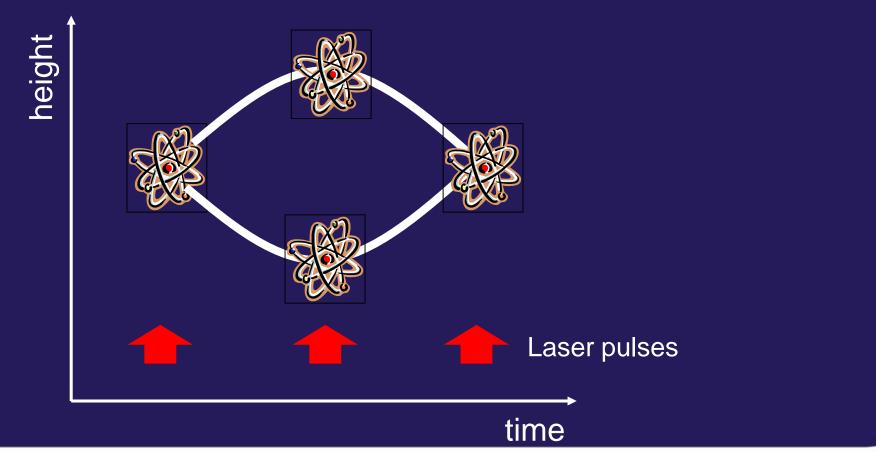
### **Quantum Technologies**



### **Growth Potential and Areas**



# UK National QT Hub in Sensors and Timing Funders, Partners and Collaborators




EPSRC funding £59.5M, collaborative projects with over 85 companies: £150M

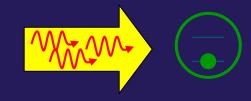


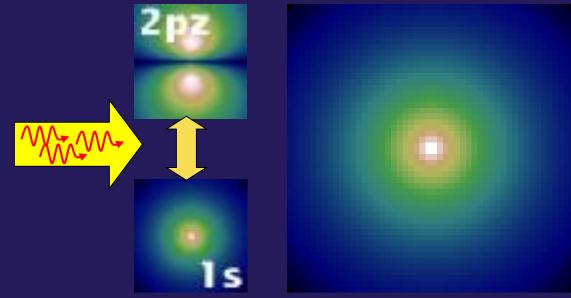


### Atomic Quantum Sensors: Atoms Manipulated by Lasers



Unprecedented sensitivity for measuring gravity, rotation, time and magnetic fields



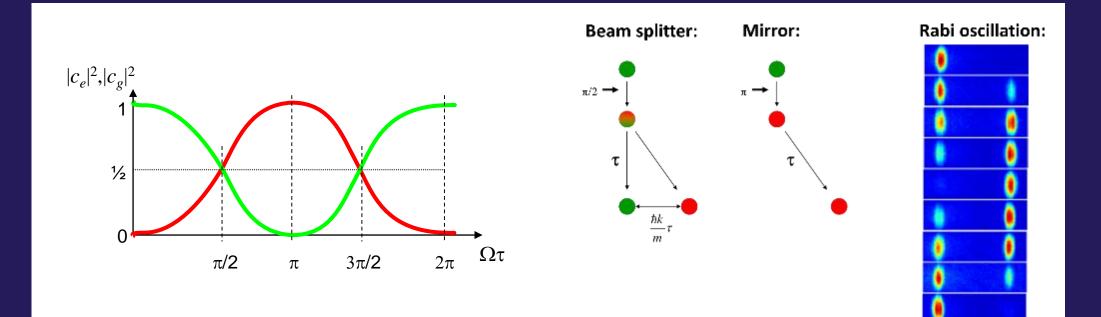




### **Atom-Light Interactions**

System:

- two-level atom
- resonant laser beam

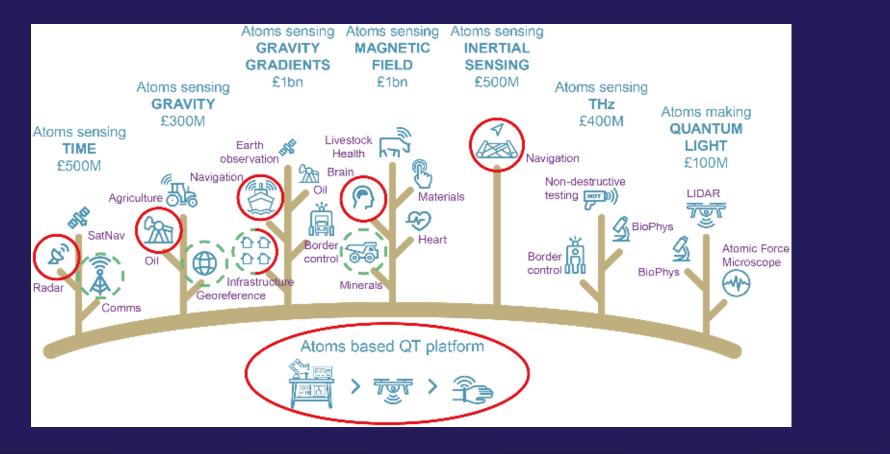





animation and images from: http://iff.physik.unibas.ch/~florian/rabi/rabi.html






### Atom-Light Interactions







# Roadmap to Applications



For Atom Interferometry, see also: Nature Reviews Physics 1, 731 (2019)





## Selected Quantum Sensor Applications



Underground risk in infrastructure projects → 0.5% GDP Sensing brain function



Dementia: 1% GDP ADHD: 1% GDP Sensing small objects in the air



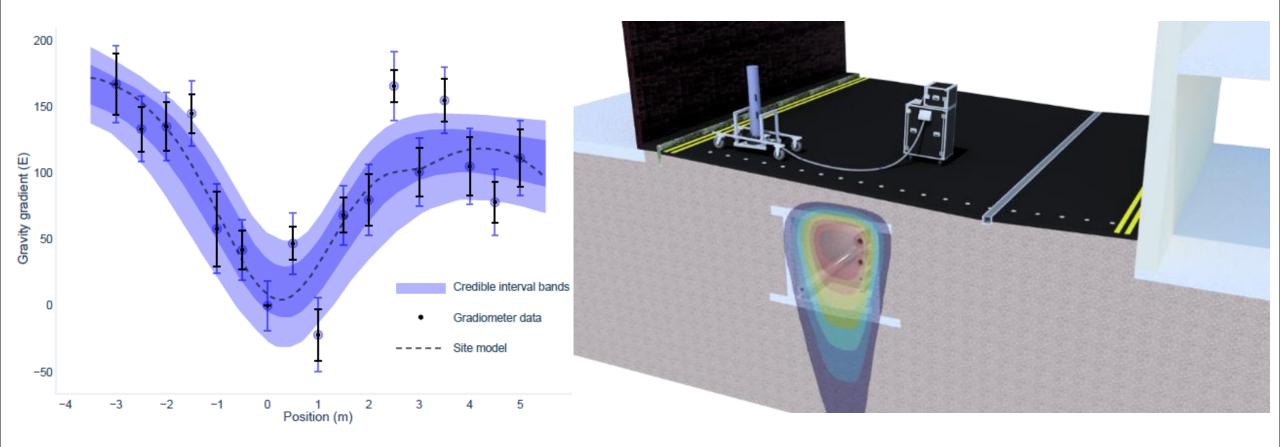
29M drones by 2021

Sensing position and movement



China ha

~7% GDP

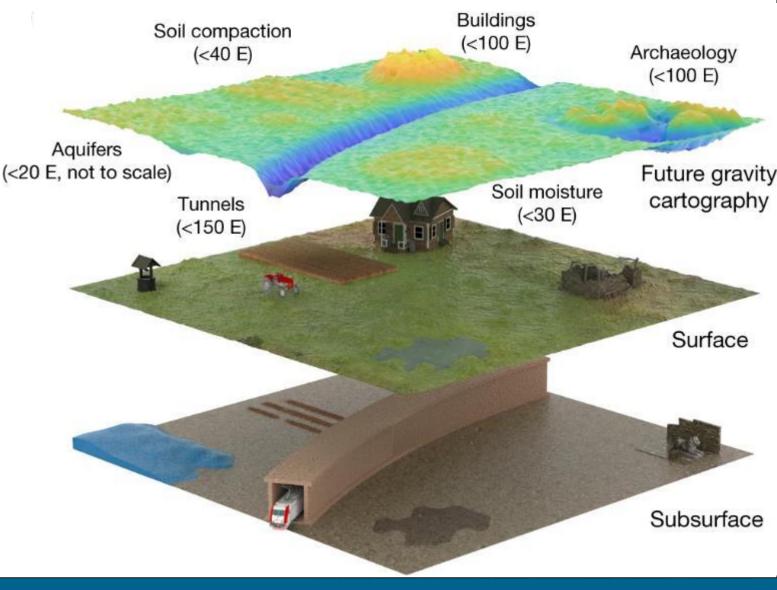



The World Economic Forum has recognised **Quantum Sensing** as one of the top 10 emerging technologies for 2020



# World first detection for quantum gradiometry

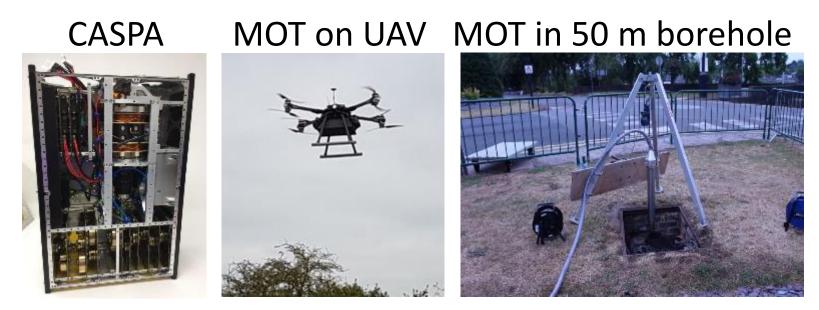
Survey over tunnel




Tunnel centre localised to:  $\pm 0.19$  m, horizontal; -0.59/+2.3 m, vertical

*<u>Nature</u>* **volume 602**, pages590–594 (2022)

# Enabling Gravity Cartography

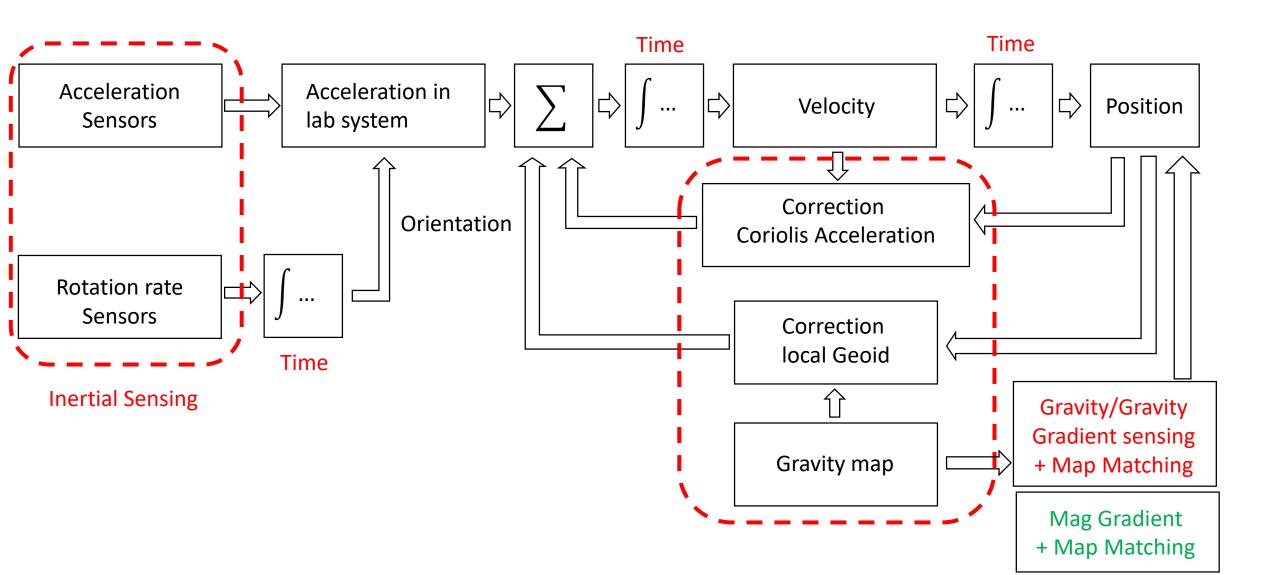

- Relevant to a range of applications, including:
  - Water monitoring
  - Infrastructure
  - Archaeology
  - Agriculture
  - Navigation



# Towards compact sensors

Person-portable and moving platform devices underway






**Exploitation in new start-up:** 

Delta g limited



# Schematic Setup of a Quantum Navigation System



# Quantum Sensors and Timing: Opportunities in PNT

### Map Matching for Positioning

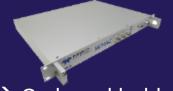
Gravity gradient







→ Providing absolute position
 without any communication
 (including under water)
 → Collision alert (?)


### **Inertial Sensors for Navigation**

#### Acceleration and Rotation



- $\rightarrow$  Low drift
- $\rightarrow$  Low bias
- $\rightarrow$  Ingredients for INS





### $\rightarrow$ On board holdover

 $\rightarrow$  GNSS spoofing alert



→ Time references
 → Transportable time





### One Navigation System Example: TERPROM



#### TERPROM\* DIGITAL TERRAIN SYSTEM

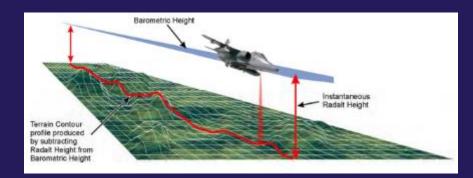
#### MISSION PROVEN, GPS-DENIED TERRAIN REFERENCED NAVIGATION

Enables aircraft to fly demanding missions more safely and effectively in all weather conditions, day and night

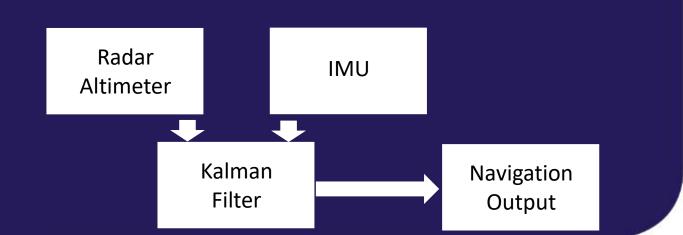


https://www.collinsaerospace.com/-/media/project/collinsaerospace/collinsaerospacewebsite/product-assets/marketing/t/terpromr/terpromr-digital-terrain-system-fixedwing.pdf?rev=14709802dc674d959f4fd9e787f2b2bc

REY FEATURES


 Predictive ground collision availance availant.

Database terrain following


Passive target ranging

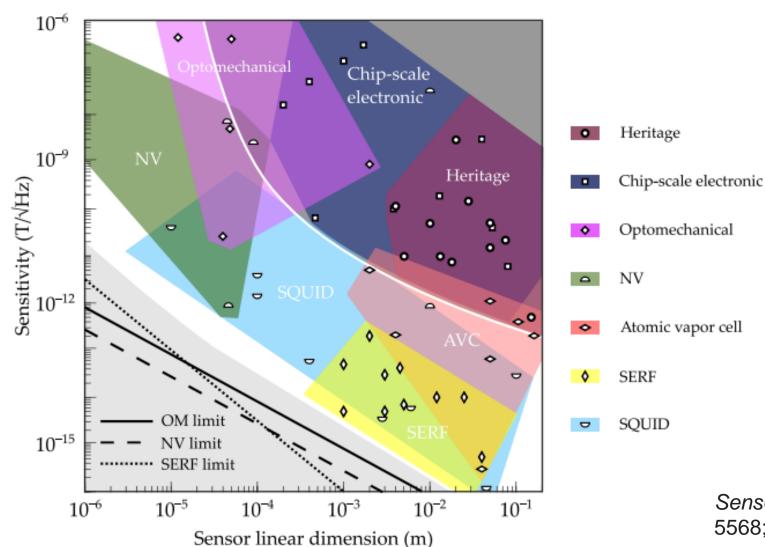
ATAC (Advanced Terrain Avaidance Cueing)

Obstruction warning and cuping



https://www.whatdotheyknow.com/reques t/491019/response/1182168/attach/3/Seg ment%20005%20of%20AP3456%20Tablet% 20Vn%2010p0%202018Redacted.pdf?cooki e\_passthrough=1

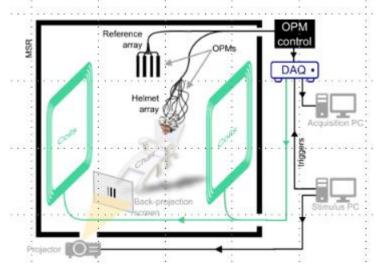







### Magnetic Sensor Overview – Scale vs Sensitivity

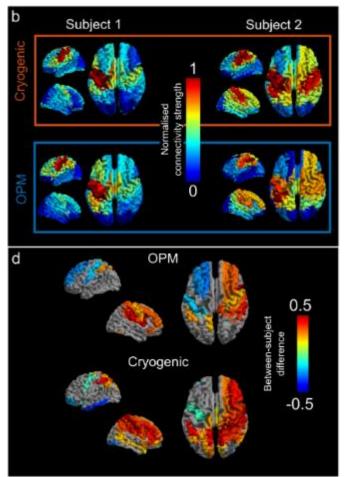
Sensors 2021, 21, 5568


16 of 27



Sensors **2021**, *21*(16), 5568; <u>https://doi.org/10.3390/s21165568</u>

# Quantum-Magnetoencephalography – Spin off from QT






#### Cerca:

Joint venture spin-off between Magnetic Shields and Nottingham University Founded in 2020

First systems delivered internationally £6M turnover in first year >£50M requests for quotations



#### Impact Opportunities:

Epilepsy: 60M people worldwide

Dementia: 1% GDP

Schizophrenia: 1% of population

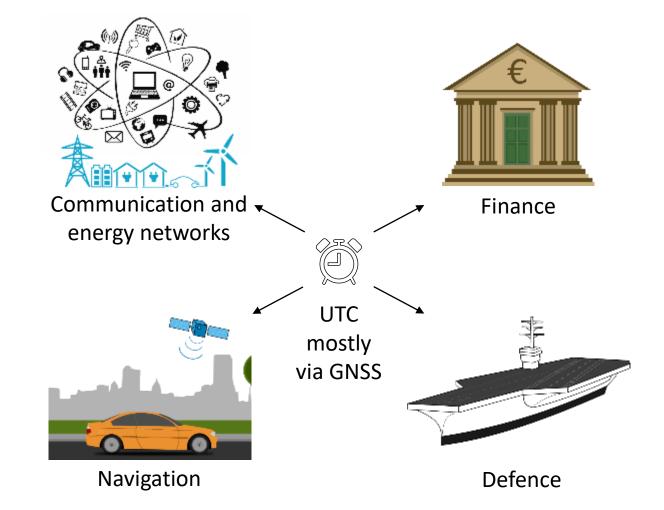
Trauma: 100.000 / year in UK



A new generation of quantum sensors have enabled 'wearable' brain imaging technology



50 channel whole head system 2020



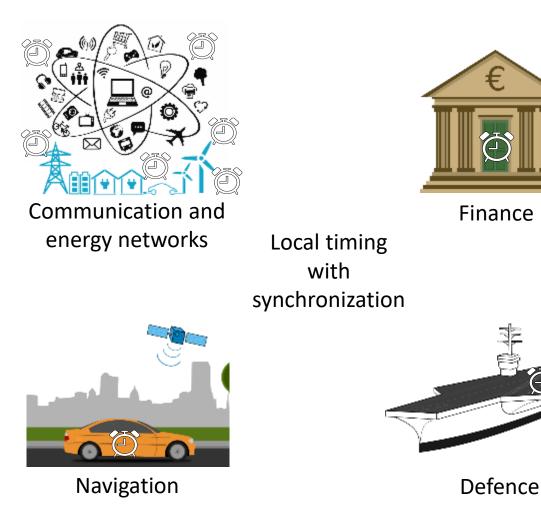





# Quantum Clocks Potential to Change Business Models

**Timing today: Centralized model** 




#### Timing via Global Navigation Satellite Systems:

- + "Free" to use
- Worldwide availability
- <sup>+</sup> 30 ns within UTC
- → Widespread use in industry and critical national infrastructure
- Can be easily spammed or spoofed
- Is not available everyehere (e.g. underwater)
- Risk to critical infrastructure in case of conflict
- Potential limits to communication



# Quantum Clocks Potential to Change Business Models

Timing future: "Edge" model



#### Quantum "Edge" Timing:

- + Resilience
- Network architectures with higher bandwidth and better energy efficiency
- Architectures for safe autonomous vehicles
- \* Improved air and space surveillance
- Not "free" to use
- Will need 10-15 years of development to reach full potential

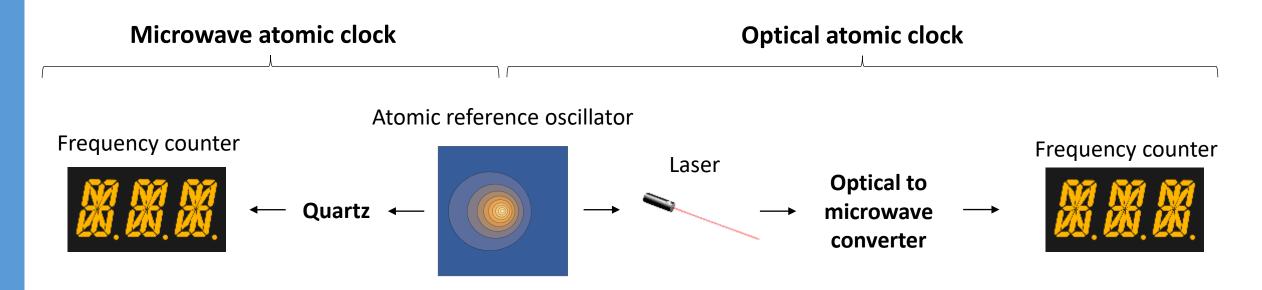
# How do Quantum Clocks Work?



A quantum clock replaces the manmade frequency reference in a classical clock (e.g. a pendulum) with an atom








Always made the same by nature Precision governed by the laws of physics

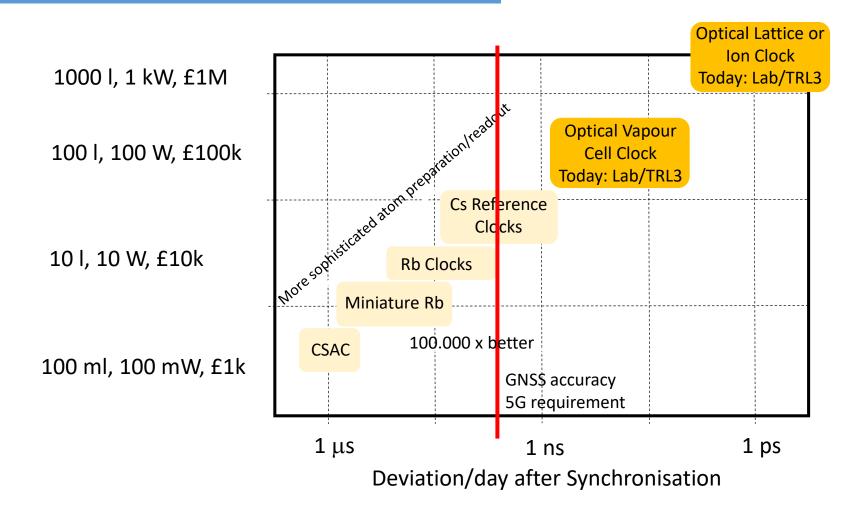


# Microwave (old) and Optical (new) Quantum Clocks

A quantum clock replaces the manmade frequency reference in a classical clock (e.g. a pendulum) with an atom



Microwave atomic transition is used to discipline a quartz oscillator


Optical atomic transition is used to discipline a laser

100.000 higher frequency → faster sychronization & higher precision



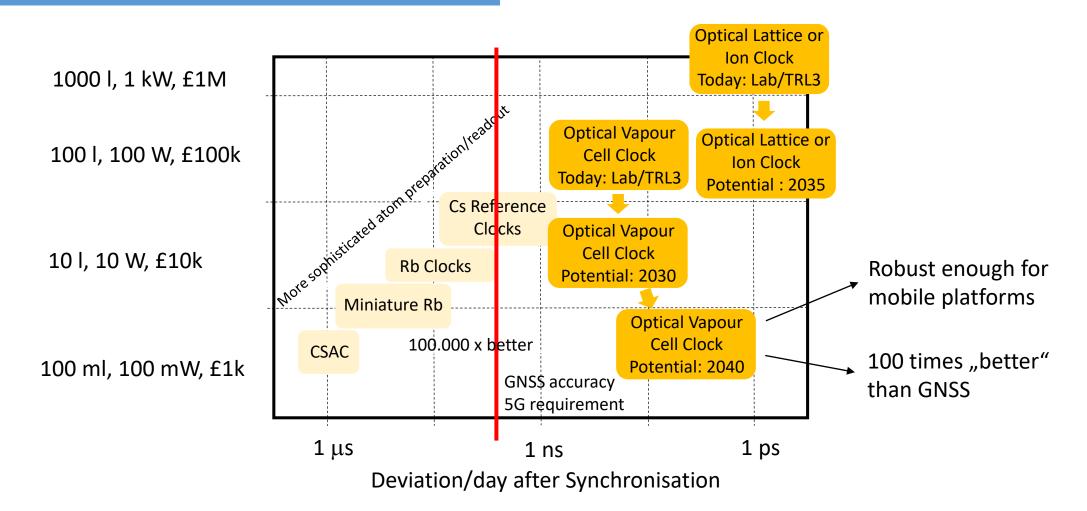
# Why are Optical Clocks Disruptive?

So far: "linear" relationship between SWAP-C and stability



### Some International Developments – Optical Clocks

#### GPS Solutions (2021) 25:83 https://doi.org/10.1007/s10291-021-01113-2


 Table 1
 Summary of the key figures of the different optical clock technologies, together with the corresponding figures of the Galileo RAFS and PHM

|                                                              | References                                                                                                                                                             | Galileo RAFS<br>Orolia datasheet<br>(2016)                                                                                                                   | Galileo PHM<br>Leonardo data-<br>sheet (2017)                                                                                                               | Ca beam<br>Shang et al.<br>(2017)                                                                                     | I <sub>2</sub> MTS<br>Schuldt et al.<br>(2017); Döring-<br>shoff et al.<br>(2019)                                                                          | Rb MTS<br>Zhang et al.<br>(2017)                                                                        | Rb TPT<br>Martin et al.<br>(2018)                                                                                                 | Sr Lattice clock<br>Bongs et al.<br>(2015); Origlia<br>et al. (2018)                                                    | Ca single ion clock<br>(Delehay and Lac-<br>route 2018; Cao<br>et al. 2017)                                             |
|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| Frequency stabil-<br>ity (in RAV<br>@ integration<br>time τ) | 1 s<br>10 s<br>10 <sup>2</sup> s<br>10 <sup>3</sup> s<br>10 <sup>4</sup> s<br>10 <sup>5</sup> s<br>10 <sup>6</sup> s<br>Longest reported<br>(continuous)<br>$\tau$ (s) | $3 \times 10^{-12}$<br>$1 \times 10^{-12}$<br>$3 \times 10^{-13}$<br>$6 \times 10^{-14}$<br>$3 \times 10^{-14}$<br>Long-term<br>drift < $10^{-10}$ /<br>year | $2 \times 10^{-12}$<br>$3 \times 10^{-13}$<br>$7 \times 10^{-14}$<br>$2 \times 10^{-14}$<br>$7 \times 10^{-15}$<br>Long-term<br>drift < $10^{-15}$ /<br>day | $5 \times 10^{-14}$<br>$2 \times 10^{-14}$<br>$5 \times 10^{-15}$<br>$2 \times 10^{-15}$<br>n/s<br>n/s<br>n/s<br>1600 | $6 \times 10^{-15}$<br>$3 \times 10^{-15}$<br>$2 \times 10^{-15}$<br>$2 \times 10^{-15}$<br>$3 \times 10^{-15}$<br>$< 2 \times 10^{-14}$<br>n/s<br>700,000 | $1 \times 10^{-14a}$<br>$4 \times 10^{-15a}$<br>$3 \times 10^{-15a}$<br>n/s<br>n/s<br>n/s<br>n/s<br>600 | $4 \times 10^{-13}$<br>$1 \times 10^{-13}$<br>$4 \times 10^{-14}$<br>$1 \times 10^{-14}$<br>$5 \times 10^{-15}$<br>n/s<br>180,000 | n/s<br>$1 \times 10^{-16}$<br>$4 \times 10^{-17}$<br>$1 \times 10^{-17}$<br>$4 \times 10^{-18}$<br>n/s<br>n/s<br>30,000 | n/s<br>$6 \times 10^{-15}$<br>$2 \times 10^{-15}$<br>$6 \times 10^{-16}$<br>$2 \times 10^{-16}$<br>n/s<br>n/s<br>30,000 |
| Clock transition frequency/wave- 6.8 G<br>length             |                                                                                                                                                                        | 6.8 GHz                                                                                                                                                      | 1.4 GHz                                                                                                                                                     | 657 nm                                                                                                                | 532 nm                                                                                                                                                     | 420 nm                                                                                                  | 778 nm                                                                                                                            | 698 nm                                                                                                                  | 729 nm                                                                                                                  |
| Clock transition nat                                         | tural linewidth                                                                                                                                                        |                                                                                                                                                              |                                                                                                                                                             | 0.4 kHz                                                                                                               | 300 kHz                                                                                                                                                    | 1450 kHz                                                                                                | 330 kHz                                                                                                                           | 6 mHz                                                                                                                   | 140 mHz                                                                                                                 |
| SWaP Budgets <sup>b,c</sup>                                  | Mass (kg)                                                                                                                                                              | 3.4                                                                                                                                                          | 18.2                                                                                                                                                        | n/s                                                                                                                   | $21 + 10^{b}$                                                                                                                                              | $10^{d} + 10^{b}$                                                                                       | $12^{e} + 10^{b}$                                                                                                                 | <250                                                                                                                    | n/s                                                                                                                     |
| -                                                            | Power (W)                                                                                                                                                              | 35                                                                                                                                                           | 60 <sup>f</sup>                                                                                                                                             | n/s                                                                                                                   | $44 + 66^{b}$                                                                                                                                              | $20^{d} + 66^{b}$                                                                                       | $25^{e} + 66^{b}$                                                                                                                 | n/s                                                                                                                     | n/s                                                                                                                     |
|                                                              | Volume (l)                                                                                                                                                             | 3.2                                                                                                                                                          | 26.3                                                                                                                                                        | $300 + 7^{b}$                                                                                                         | 33 + 7 <sup>b</sup>                                                                                                                                        | n/s                                                                                                     | $8^{e} + 7^{b}$                                                                                                                   | <1000                                                                                                                   | 540                                                                                                                     |
| Complexity                                                   | # Lasers                                                                                                                                                               | n/a                                                                                                                                                          | n/a                                                                                                                                                         | 2                                                                                                                     | 1                                                                                                                                                          | 1                                                                                                       | 1                                                                                                                                 | 5                                                                                                                       | 6                                                                                                                       |
|                                                              | Vacuum chamber                                                                                                                                                         |                                                                                                                                                              |                                                                                                                                                             | Yes                                                                                                                   | No                                                                                                                                                         | No                                                                                                      | No                                                                                                                                | Yes                                                                                                                     | Yes                                                                                                                     |
|                                                              | Cavity pre-stabi-<br>lization                                                                                                                                          | n/a                                                                                                                                                          | n/a                                                                                                                                                         | Yes                                                                                                                   | No                                                                                                                                                         | No                                                                                                      | No                                                                                                                                | Yes                                                                                                                     | Yes                                                                                                                     |
| TRL 9                                                        |                                                                                                                                                                        | 9                                                                                                                                                            | 9                                                                                                                                                           | 4                                                                                                                     | 4-5 <sup>g</sup>                                                                                                                                           | 4                                                                                                       | 4                                                                                                                                 | 4                                                                                                                       | 4                                                                                                                       |
|                                                              |                                                                                                                                                                        |                                                                                                                                                              |                                                                                                                                                             |                                                                                                                       |                                                                                                                                                            |                                                                                                         |                                                                                                                                   |                                                                                                                         |                                                                                                                         |



# Why are Optical Clocks Disruptive?

So far: "linear" relationship between SWAP-C and stability

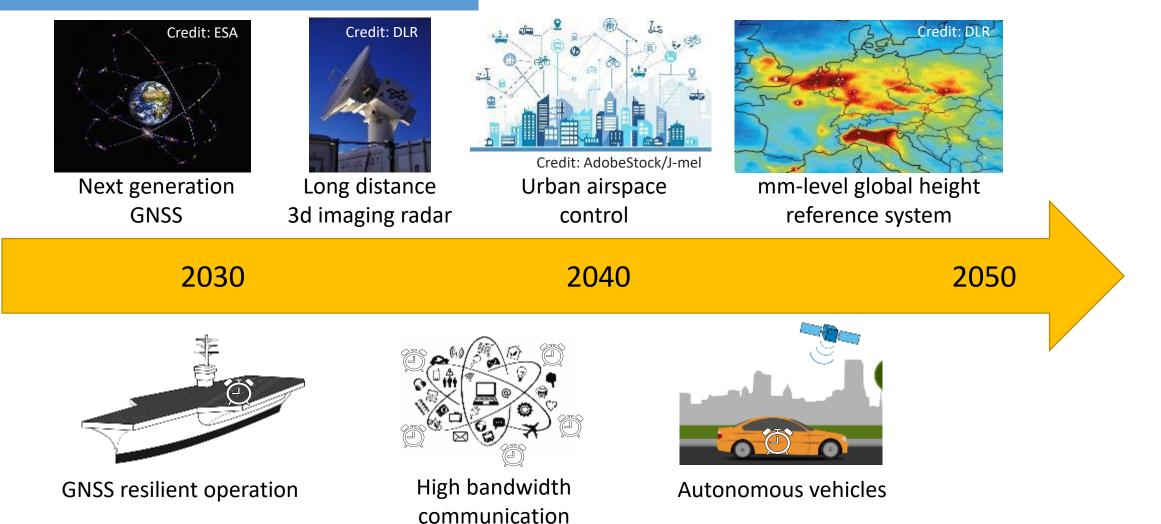




### Where Does DLR Stand?

### Worldwide leading optical vapour cell clock

#### GPS Solutions (2021) 25:83 https://doi.org/10.1007/s10291-021-01113-2


Table 1 Summary of the key figures of the different optical clock technologies, together with the corresponding figures of the Galileo RAFS and PHM

|                                                              | References                                                                                                                                                                                                                  | Galileo RAFS<br>Orolia datasheet<br>(2016)                                                                                                                   | Galileo PHM<br>Leonardo data-<br>sheet (2017)                                                                                                               | Ca beam<br>Shang et al.<br>(2017)                                                                              | $I_2$ MTS<br>Schuldt et al.<br>(2017); Döring-<br>shoff et al.<br>(2019)                                                                                                      | Rb MTS<br>Zhang et al.<br>(2017)                                                                        | Rb TPT<br>Martin et al.<br>(2018)                                                                                                                             | Sr Lattice clock<br>Bongs et al.<br>(2015); Origlia<br>et al. (2018)                                                    | Ca single ion clock<br>(Delehay and Lac-<br>route 2018; Cao<br>et al. 2017)                                             |
|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| Frequency stabil-<br>ity (in RAV<br>@ integration<br>time τ) | $ \begin{array}{c} 1 \text{ s} \\ 10 \text{ s} \\ 10^2 \text{ s} \\ 10^3 \text{ s} \\ 10^4 \text{ s} \\ 10^5 \text{ s} \\ 10^6 \text{ s} \\ \text{Longest reported} \\ (\text{continuous}) \\ \tau (\text{s}) \end{array} $ | $3 \times 10^{-12}$<br>$1 \times 10^{-12}$<br>$3 \times 10^{-13}$<br>$6 \times 10^{-14}$<br>$3 \times 10^{-14}$<br>Long-term<br>drift < $10^{-10}$ /<br>year | $2 \times 10^{-12}$<br>$3 \times 10^{-13}$<br>$7 \times 10^{-14}$<br>$2 \times 10^{-14}$<br>$7 \times 10^{-15}$<br>Long-term<br>drift < $10^{-15}$ /<br>day | $5 \times 10^{-14}$<br>$2 \times 10^{-14}$<br>$5 \times 10^{-15}$<br>$2 \times 10^{-15}$<br>n/s<br>n/s<br>1600 | $\begin{array}{c} 6 \times 10^{-15} \\ 3 \times 10^{-15} \\ 2 \times 10^{-15} \\ 2 \times 10^{-15} \\ 3 \times 10^{-15} \\ < 2 \times 10^{-14} \\ n/s \\ 700,000 \end{array}$ | $1 \times 10^{-14a}$<br>$4 \times 10^{-15a}$<br>$3 \times 10^{-15a}$<br>n/s<br>n/s<br>n/s<br>n/s<br>600 | $\begin{array}{c} 4 \times 10^{-13} \\ 1 \times 10^{-13} \\ 4 \times 10^{-14} \\ 1 \times 10^{-14} \\ 5 \times 10^{-15} \\ n/s \\ n/s \\ 180,000 \end{array}$ | n/s<br>$1 \times 10^{-16}$<br>$4 \times 10^{-17}$<br>$1 \times 10^{-17}$<br>$4 \times 10^{-18}$<br>n/s<br>n/s<br>30,000 | n/s<br>$6 \times 10^{-15}$<br>$2 \times 10^{-15}$<br>$6 \times 10^{-16}$<br>$2 \times 10^{-16}$<br>n/s<br>n/s<br>30,000 |
| Clock transition frequency/wave- 6.8 GHz 1.4 GHz<br>length   |                                                                                                                                                                                                                             |                                                                                                                                                              | 657 nm                                                                                                                                                      | 532 nm                                                                                                         | 420 nm                                                                                                                                                                        | 778 nm                                                                                                  | 698 nm                                                                                                                                                        | 729 nm                                                                                                                  |                                                                                                                         |
| Clock transition natural linewidth                           |                                                                                                                                                                                                                             |                                                                                                                                                              | 0.4 kHz                                                                                                                                                     | 300 kHz                                                                                                        | 1450 kHz                                                                                                                                                                      | 330 kHz                                                                                                 | 6 mHz                                                                                                                                                         | 140 mHz                                                                                                                 |                                                                                                                         |
| SWaP Budgets <sup>b,c</sup>                                  | Mass (kg)                                                                                                                                                                                                                   | 3.4                                                                                                                                                          | 18.2                                                                                                                                                        | n/s                                                                                                            | $21 + 10^{b}$                                                                                                                                                                 | $10^{d} + 10^{b}$                                                                                       | $12^{e} + 10^{b}$                                                                                                                                             | <250                                                                                                                    | n/s                                                                                                                     |
|                                                              | Power (W)                                                                                                                                                                                                                   | 35                                                                                                                                                           | 60 <sup>f</sup>                                                                                                                                             | n/s                                                                                                            | $44 + 66^{b}$                                                                                                                                                                 | $20^{d} + 66^{b}$                                                                                       | $25^{e} + 66^{b}$                                                                                                                                             | n/s                                                                                                                     | n/s                                                                                                                     |
|                                                              | Volume (l)                                                                                                                                                                                                                  | 3.2                                                                                                                                                          | 26.3                                                                                                                                                        | $300 + 7^{b}$                                                                                                  | 33+7 <sup>b</sup>                                                                                                                                                             | n/s                                                                                                     | $8^{e} + 7^{b}$                                                                                                                                               | <1000                                                                                                                   | 540                                                                                                                     |
| Complexity                                                   | # Lasers                                                                                                                                                                                                                    | n/a                                                                                                                                                          | n/a                                                                                                                                                         | 2                                                                                                              |                                                                                                                                                                               |                                                                                                         |                                                                                                                                                               | 5                                                                                                                       | 6                                                                                                                       |
|                                                              | Vacuum chamber                                                                                                                                                                                                              |                                                                                                                                                              |                                                                                                                                                             | Yes                                                                                                            | No                                                                                                                                                                            | No                                                                                                      | No                                                                                                                                                            | Yes                                                                                                                     | Yes                                                                                                                     |
|                                                              | Cavity pre-stabi-<br>lization                                                                                                                                                                                               | n/a                                                                                                                                                          | n/a                                                                                                                                                         | Yes                                                                                                            |                                                                                                                                                                               |                                                                                                         |                                                                                                                                                               | Yes                                                                                                                     | Yes                                                                                                                     |
| TRL                                                          |                                                                                                                                                                                                                             | 9                                                                                                                                                            | 9                                                                                                                                                           | 4                                                                                                              | 4-5 <sup>8</sup>                                                                                                                                                              | 4                                                                                                       | 4                                                                                                                                                             | 4                                                                                                                       | 4                                                                                                                       |



# Roadmap for Optical Clock Applications

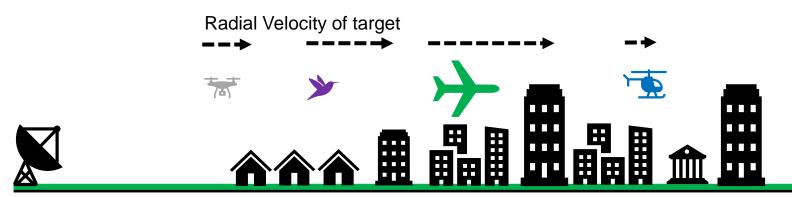
#### **Business Advantage through Quantum Timing**



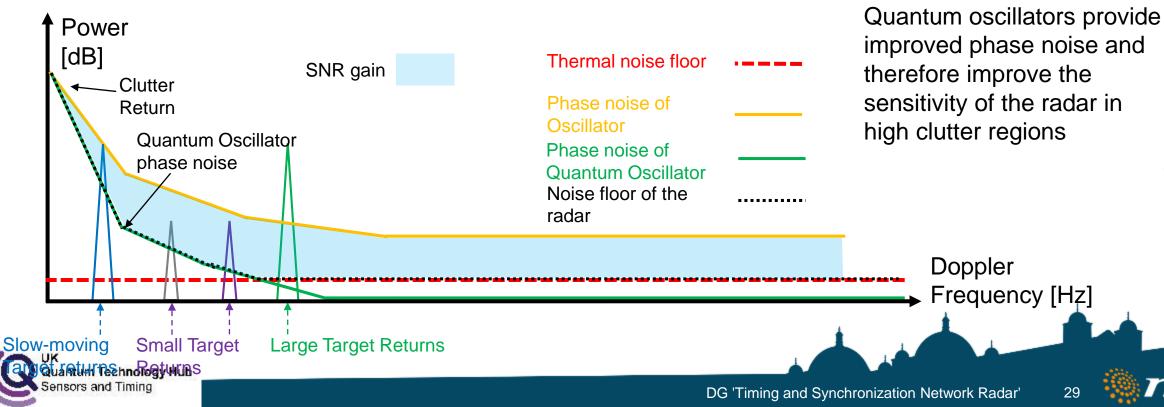
### Timeline for Quantum Clocks providing Business Advantage

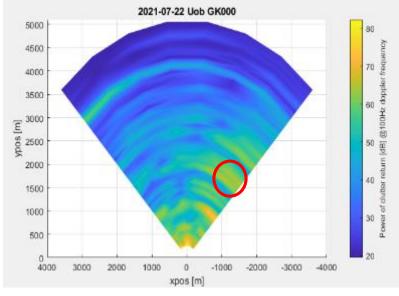


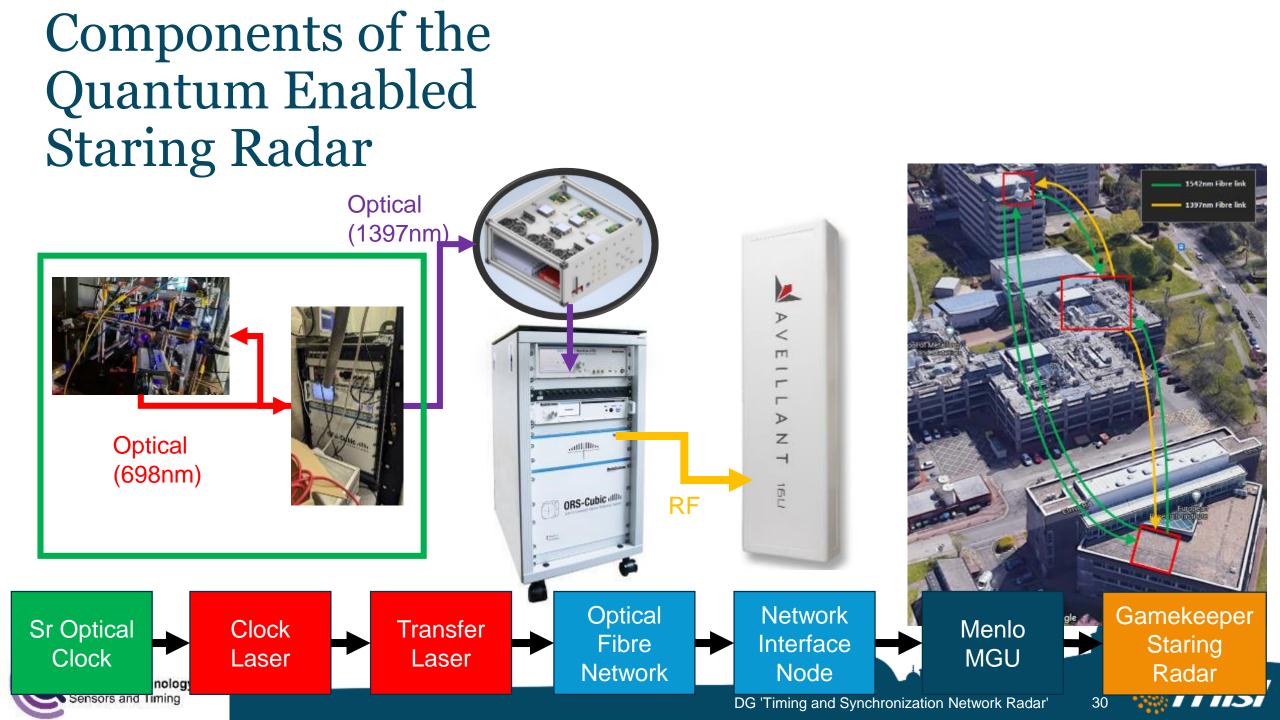


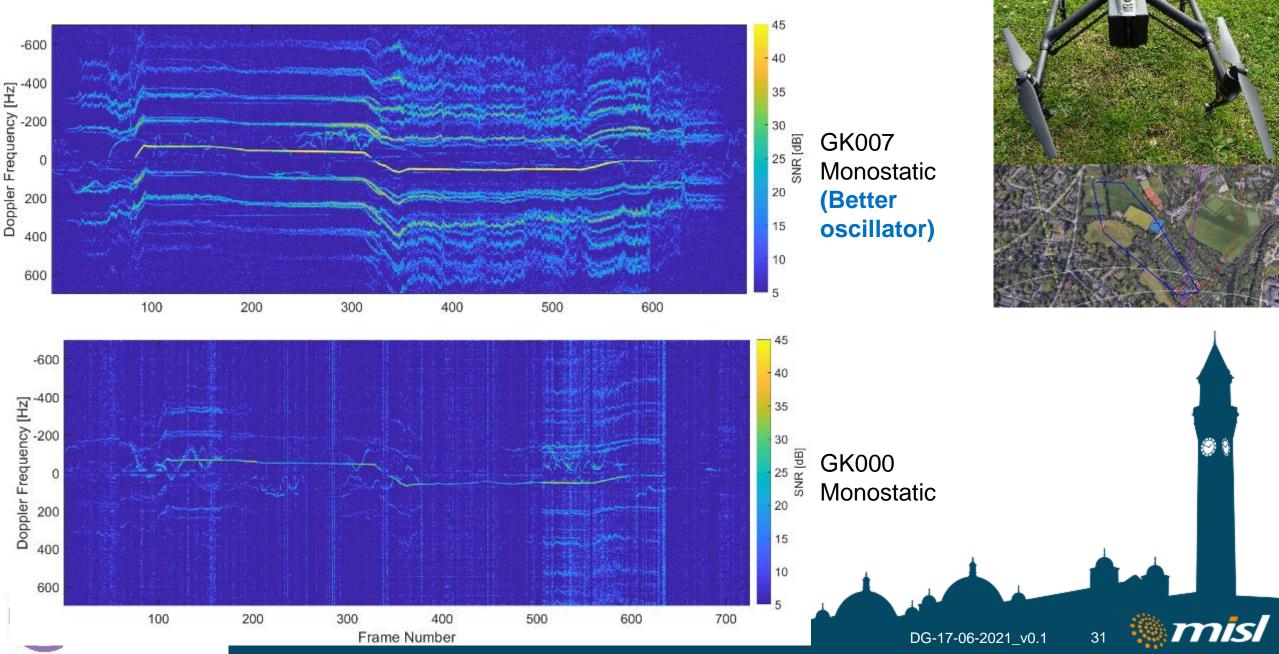

# **UoB ADRAN Testbed**


- UoB ADRAN ADvanced Networked RAdar facility is enabling to
  - Benchmark conventional radar performance in challenging urban environment
  - Demonstrate the capability of network synchronisation through practical demonstration in radar under demanding realistic conditions
  - Only dedicated multistatic network radar testbed for urban surveillance





# Noise limitations in the radar




Dense Urban Environment







# Better oscillator: more features



### Radar Improvement with better Oscillator – Drone Tracking

# Small Drone Tracked by two radar

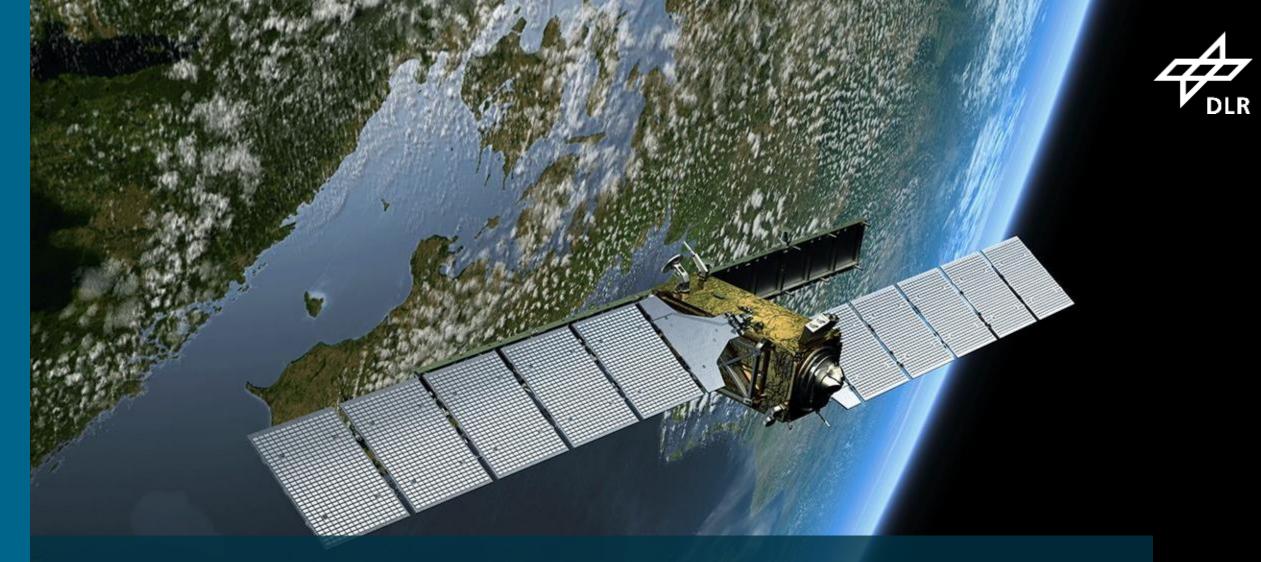
Side-by-side comparison: Tracker output



Radar#1 Purple lines








Radar#2 Yellow Line - Better Phase Noise









# THANK YOU FOR LISTENING – QUESTIONS?