Maneuver Loads Analysis using CFD Methods of a Fighter Aircraft

Arne Voß Institute of Aeroelasticity

The DLR Future Fighter Demonstrator (FFD)

 Data exchange via Common Parametric Aircraft Configuration Schema (CPACS)

- Conceptual Design performed by DLR Institute of System Architectures in Aeronautics
- More detailed aerodynamic shape by the DLR Institute of Aerodynamics and Flow Technology

Maximum speed	VC = Ma 2.0 at 36,000 - 50,000 ft VD = Ma 2.3 at 36,000 - 50,000 ft
Maximum altitude	50,000 ft
Mission radius	550 - 700 NM
Mass	30.0 – 36.0 t MTOM
Payload	air 2 air mission: 1820 kg (internal) optional: 8000 kg (internal + external)
Agility	Load factor Nz = $-3.0 \dots +9.0$ with BFDM
Longitudinal Stability	Subsonic: unstable, supersonic: stable
Control surfaces	All-movable HTP, VTP with rudder, ailerons along trailing edge

Overview

- Motivation & Introduction
- Set-up of Aeroelastic Modeling
- Comparison of CFD with Panel Aerodynamics
- Maneuver Loads Analysis across the Flight Envelope
- Conclusions and Outlook

Parametric Geometrical Modeling with ModGen

- Geometry defined in cpacs is processed in ModGen (inhouse tool)
 - a) Geometry models for the primary structure parts like spars and ribs
 - b) Outer hull for CFD mesh generation

Structural Modeling

- Global structural dynamic characteristics
- Deformations for Fluid-Structure-Interaction

Mass Modeling

CG

M3: 70% fuel, no payload

- Volumetric fuel modeling \rightarrow mass and inertia properties per section
- Estimates for system masses, primary structural mass from material density
- Four mass configurations representing different phases during flight

6

Aerodynamic Modeling

VLM & ZONA51

- CAERO cards
- 1112 panels
- Correction for camber and twist (indicated by color)

- Centaur
- 206k surface triangles
- 4.4M volume cells / 0.8M volume points
- Refined, cylindrical area to better resolve vortices

The Vortex-Dominated Flow in CFD: Q-Criterion

Ma=0.4, alpha=15.0°, Tau RANS (DLR Institute of Aerodynamics and Flow Technology)

8

Ma=0.4, alpha=15.0°, Tau Euler

Ma=0.4, alpha=15.0°, SU2 Euler

- Iso-surfaces at Q=50 identify two primary vortices in all three solutions
- Vortices slightly stronger the two Euler, as expected due to the missing viscous dissipation

Arne Voß, Institute of Aeroelasticity, 4th SU2 Conference, 23.-25. October 2023, Varenna, Italy

The Vortex-Dominated Flow in CFD: Cp

Ma=0.4, alpha=15.0°, Tau RANS (DLR Institute of Aerodynamics and Flow Technology)

9

Primary vortices Pressure Coefficient ср ср 0.5 0.5 0.5 0.125 0.125 0.125 -0.25 -0.25 -0.25 -0.625 -0.625 -0.625 -1 -1 -1.375 -1.375 -1.375 -1.75 -1.75 -1.75 -2.125 -2.125 -2.125 -2.5 -2.5

- Surface pressure distributions very similar in all three solutions
- "Footprints" of the vortices visible as suction peaks in green to blue colors

Ma=0.4, alpha=15.0°, Tau Euler

Ma=0.4, alpha=15.0°, SU2 Euler

CFD vs. Panel Methods: dCp

Ma=0.4, alpha=15.0°, SU2 Euler

- Ma=0.4, alpha=15.0°, VLM
- $\mathbf{\Delta c}_p^{\mathrm{AIC}} = \mathbf{AIC} \cdot \mathbf{w}_j$

Vortex-dominated flow is not captured properly by VLM

Intermediate Conclusions

CFD vs. Panel Methods

11

- Vortices are not captured properly
- ZONA51 provides a reasonable solution in supersonic regime (not only for academic cases but for complex configurations)

Tau RANS vs. Tau Euler vs. SU2 Euler

- Euler is a reasonable choice for loads analysis, especially w.r.t. maturity of aircraft design
- RANS has its place and purpose!
- Difficulties with other CFD solvers in supersonic regime, SU2 very robust

What does this mean for maneuver loads?

- Panel methods are at their physical limit → for fighter aircraft, we should use CFD !
- CFD maneuver loads are very labor intensive (trimmed aircraft, fully coupled with FEM, incl. control surface deflections, for all 688 load cases, in all areas of the flight envelope)

Design Flight Speeds & Load Case Selection

Overview on maneuver load parameters

- Load factor $N_z = -3.0 \dots 9.0$
- Roll rate $p=\pm 20^\circ/s\cdots\pm 220^\circ/s$
- Roll acceleration $\dot{p}=20^{\circ}/s^2\dots 550^{\circ}/s^2$
- Elevator deflection $\eta_{\min,\max} = \pm 15^{\circ}$

Total of 688 maneuver load cases

- For all flight speeds, at seven different altitudes, with four mass cases
- 175 subsonic and 513 supersonic load cases

CFD Maneuver Loads

- First interpretation: loads are similar, but different.
- Some details: magnitudes of Mx and My, upper right corner, lower right corner, no clock-wise rotation, envelopes defined by (mostly) the same load cases

Requirements on CFD Solver

Robustness

- Many load cases \rightarrow many single simulations
 - Per load case: typically 1-3 h on one node with 128 CPUs
 - High degree of automation, no room for user-interaction
- Reliable solution for "numerically difficult" flow conditions on the edge of the envelope and beyond
- Imperfect modeling, e.g. surface geometry not perfect due to preliminary design stage

Python interface

- Input: surface deformations, set onflow condition
- Run solver
- Output: force vector

Coupled simulation via Python interface

My [Nm]

Loads Kernel Software available here: https://github.com/DLR-AE/LoadsKernel

Conclusions

- Comprehensive maneuver loads analysis covering the whole flight envelope is performed with CFD.
- VLM and ZONA51 fail because the magnitude of the section loads is unreliable.
- Necessity of a maneuver loads analysis using CFD for fighter configurations is shown.
- Work published at ICAS (2022) and in AST Journal (2023, open access)
- My most important requirements on the CFD solver: Robustness, Python interface
 + support from developers

15

Fully coupled maneuver loads analysis with CFD + structural sizing

Next Step: Gust Encounter

1.R