TECHNO-ECONOMIC ANALYSIS OF E-METHANOL PRODUCTION UNDER FIXED OPERATING CONDITIONS IN GERMANY

11th FSC International Conference

Eurogress Aachen, 23 May 2023

Yoga Rahmat, Simon Maier, Moritz Raab, Francisco Moser, Ralph-Uwe Dietrich

German Aerospace Center (DLR), Institute of Engineering Thermodynamics

Outline

- Motivation
- Methodology
- Process description
- Results
- Conclusion

Motivation

- EU Climate Neutral Goal by 2050 (German already by 2045)^{[1][2]} A
- Potential to substitute fossil fuel

- ✓ Vol. energy density 50 % of gasoline^[3]

Water soluble

✓ Basic chemical (157 million t a⁻¹)^[4]
 ✓ Raw material for MtK (SAF), DME, OME, MtG, etc.
 ▲ Cold start problem in ICE

Goals:

- Techno-economic analysis of e-methanol production from German electricity grid and renewable electricity in northern and southern Germany
- Investigation of the recommended reactor design configuration
- Techno-economic comparison of different kinetic models
- Identification of process inefficiencies through an exergy analysis

[1] European Climate Law (europa.eu)

Y. Rahmat, Institute of Engineering Thermodynamics, 23.05.2023

[1] Albrecht et al. (2017). A Standardized Methodology for the Techno-Economic Evaluation of Alternative Fuels[2] Maier et al. (2021) Techno-economically-driven identification of ideal plant configurations for a new biomass-to-liquid process

Methodology Kinetic models

Reactions^[1]

 $CO_{2} + 3H_{2} \rightleftharpoons CH_{3}OH + H_{2}O \quad \Delta H_{o} = -49.8 \frac{\text{kJ}}{\text{mol}} \quad (1)$ $CO_{2} + H_{2} \rightleftharpoons CO + H_{2}O \qquad \Delta H_{o} = +41.2 \frac{\text{kJ}}{\text{mol}} \quad (2)$ $CO + 2H_{2} \rightleftharpoons CH_{3}OH \qquad \Delta H_{o} = -91.0 \frac{\text{kJ}}{\text{mol}} \quad (3)$

Vanden Bussche and Froment (VDB)^{[2]*} Only CO₂ hydrogenation + RWGS Reactions (1) and (2)

Graaf, Stamhuis and Beenackers (GRF)^[3] Both CO and CO₂ hydrogenation + RWGS Reactions (1), (2) and (3)

Impacts of kinetics selection on TEA results?

*basis for this study

[1] Van-Dal and Bouallou (2013) Design and simulation of a methanol plant plant from CO₂ hydrogenation
 [2] Vanden Bussche & Froment (1996) A steady-state kinetic model for methanol synthesis and the water gas shift reaction on a commercial Cu/ZnO/Al₂O₃ catalyst
 [3] Graaf et al. (1988) Kinetics of low-pressure methanol synthesis

Methodology Key Performance Indicator (KPI)

Energetic efficiencies:

$$\eta_{PtF} = \frac{LHV_{\text{MeOH}} \cdot \dot{n}_{\text{MeOH}}}{\dot{P}_{\text{elec}}}$$
$$\eta_{\text{H}_{2}tF} = \frac{LHV_{\text{MeOH}} \cdot \dot{n}_{\text{MeOH}}}{LHV_{\text{H}_{2}} \cdot \dot{n}_{\text{H}_{2}}}$$
$$\eta_{c} = \frac{\dot{n}_{\text{MeOH}}}{\dot{n}_{\text{CO}_{2}}}$$

Exergy balance:

 $\dot{E} = \dot{E}^{PH} + \dot{E}^{CH}$ $\dot{E}^{PH} = (\dot{H} - \dot{H}_0) - T_0(\dot{S} - \dot{S}_0)$ $\dot{E}^{CH} = \dot{m} \cdot \overline{e}^{CH} = \dot{m} \cdot (\sum x_k \overline{e}_k^{CH} + \overline{R}T_0 \sum x_k lnx_k)$ $\dot{E}_F = \dot{E}_P + \dot{E}_D + \dot{E}_L$

$\frac{\text{Exergetic efficiencies:}}{\varepsilon_{PtF}} = \frac{\dot{E}_{MeOH}}{\dot{E}_{net,elec} + \dot{E}_{net,heat}}$ $\varepsilon_{PtX} = \frac{\dot{E}_{MeOH} + \dot{E}_{HPS}}{\dot{E}_{net,elec} + \dot{E}_{net,heat}}$ $\varepsilon_{Process-to-X} = \frac{\dot{E}_{MeOH} + \dot{E}_{HPS}}{\dot{E}_{H_2} + \dot{E}_{CO_2} + \dot{E}_{elec,plant}}$

Methodology Economic analysis – Basis conditions, OPEX & NPC

Y. Rahmat, Institute of Engineering Thermodynamics, 23.05.2023

[1] Heimann et al. (2023b) Standardisierung der ökonomischen und ökologischen Analyse der herstellungspfade von PtX-Prozessen in Deutschland [2] Peters et al. (2002) *Design and Economics for Chemical Engineers*. Europe: McGraw-Hill Education.

Methodology Economic analysis – CAPEX

$$EC_{i} = EC_{ref} \times \left(\frac{sizing_{i}}{sizing_{ref}}\right)^{n} \times \left(\frac{CEPCI_{i}}{CEPCI_{ref}}\right) \times material \ factor \ \times \ pressure \ factor$$

 $EC_{i} = \left[e \cdot (sizing_{i})^{2} + f \cdot sizing_{i} + g \right] \times \left(\frac{CEPCI_{i}}{CEPCI_{ref}} \right) \times material \ factor \ \times \ pressure \ factor$

Reference function	EC _{ref}	Currency	sizing _{ref}	Unit	n	Year _{ref}	Source
Compressor	3 035	\$	1	kW	0.68	2002	[1]
Centrifugal pump	16 809	\$	1	m³ s ⁻¹	0.36	2002	[1]
Distillation column	286 343	\$	100	size factor = HxD ^{1.5} [m ^{2.5}]	0.53	2007	[2][3]
Combustion chamber	143 244	143 244 \$ 2 MW		0.87	2002	[1]	
Polynomial function	е	f	g	Sizing unit	Currency	Year _{ref}	
Lurgi reactor, D _{tube} 2 in.*	0	156.03	11910	Number of tube [-]	\$	2002	[1]**
Lurgi reactor, D _{tube} 1½ in.*	0	83.83	8532	Number of tube [-]	\$	2002	[1]**
Shell & tube heat exchanger*	0	201.29	3853.3	Heat transfer area [m ²]	\$	2002	[1]
Flash drum	-2.21	369.75	805.42	Length & diameter [m]	\$	2002	[1]

*stainless steel as the material construction

**with own reformulation

Peters et al. (2002) Design and Economics for Chemical Engineers. Europe: McGraw-Hill Education.
 Woods (2007) Rules of Thumb in Engineering Practices
 Towler (2008) Chemical Engineering Design

Process Description e-MeOH plant with Lurgi reactor concept

Heimann et al. (2023b) Standardisierung der ökonomischen und ökologischen Analyse der herstellungspfade von PtX-Prozessen in Deutschlar
 Metallgesellschaft AG (1996) – EP 0 790 226 B1

[3] Bertau et al. (2014) Methanol: The Basic Chemical and Energy Feedstock of the Future

[4] Graaf et al. (1986) Chemical equilibria in methanol synthesis

Process Description e-MeOH plant with Lurgi reactor concept

[2] Metallgesellschaft AG (1996) - EP 0 790 226 B1 Y. Rahmat, Institute of Engineering Thermodynamics, 23.05.2023

[3] Bertau et al. (2014) Methanol: The Basic Chemical and Energy Feedstock of the Future

[4] Graaf et al. (1986) Chemical equilibria in methanol synthesis

Process Description Reactor fixed parameters and design variations

AspenPlus® model: RPlug

Color coding process parameters:

Blue \rightarrow taken from literature Green \rightarrow own assumptions

Y. Rahmat, Institute of Engineering Thermodynamics, 23.05.2023

[1] Metallgesellschaft AG (1996) - EP 0 790 226 B1

[2] Van-Dal and Bouallou (2013) Design and simulation of a methanol plant plant from CO₂ hydrogenation

[3] Doraiswamy and Sharma (1984) Heterogenous reactions: Analysis examples and reactor design [4] Bartholomew and Farrauto (2006) Fundamentals of Industrial Catalytic Processes, 2. Ed.

[5] Serth and Lestina (2014) Process Heat Transfer: Principles, Applications and Rules of Thumb

[6] Rase (1990) Fixed-Bed Reactor Design and Diagnostics: Principles, Applications and Rules of Thumb

ш

Results Base case – NPC, OPEX, CAPEX

 \overline{V}_{D}

12

Config. – p – D_{tube} – NRP \rightarrow **S2-80-LD-1**

Results Techno-economic comparison NPC vs η_{PtF}

Y. Rahmat, Institute of Engineering Thermodynamics, 23.05.2023

- Best cases:
- One-stage
- 80 bar
- Larger diameter
- NRP 3

 $Config. - p - D_{tube} - NRP \rightarrow \textbf{S1-80-LD-3}$

- ✓ Base case
- ✓ Best case

Results

Techno-economic comparison of VDB and GRF kinetics

Y. Rahmat, Institute of Engineering Thermodynamics, 23.05.2023

14

Config. – p – D_{tube} – NRP \rightarrow S1-80-LD-3

				1	1.5	2	2.5	3	3.5	4	4.5	5	5.5	6	6.5	7		
			0	50	68	86	105	123	141	159	177	195	214	232	250	268	Summary:	
			20	55	73	92	110	128	146	164	182	201	219	237	255	273		
	_		40	61	79	97	115	133	151	170	188	206	224	242	260	279		
			60	66	84	102	120	139	157	175	193_	211	229	248	266	284	■ DAC €∥	
	Ţ.	ΨE	80	71	89	108	126	144	162	180	198	217	235	253	271	289	 Affordable electricity 	
	₂ costs [€	~	100	76	95	113	131	149	167	185	204	222	240	258	276	295	price needed	
			120	82	100	118	136	154	173	191	209	227	245	263	282	300	$\int dx = f(x) = a triait(x)$	
			200	103	121	139	157	176	194	212	230	248	266	285	303	321	$H_2 = I(e)ec(ncity)$	
	0 0		300	129	148	166	184	202	220	238	257	275	293	311	329	347		
	U	AC	400	156	174	192	210	228	247	265	283	301	319	338	356	374	Competitive if:	
			500	182	200	219	237	255	273	291	309	328	346	364	382	400		
			600	209	227	245	263	281	300	318	336	354	372	390	409	427	■ ⊓ ₂ < ∠ € kg '	
			700	235	253	271	290	308	326	344	362	380	399	417	435	453	CO ₂ < 120 € t ⁻¹	
																	-	
	NPC Range [€ MWh ⁻¹] e-MeOH production							•										
		<	: 109			Competitive \rightarrow max. 150 % of current price level									,	🔀 Ra	w materials costs in 2018 (Heimann et al., 2022b)	
	109 - 181				Pres	Presumably competitive \rightarrow max. 250 % of current price level								Raw materials costs in 2020 (Heimann et al., 2022a)				

 \rightarrow more than 250 % of current price level

H₂ costs [€ kg⁻¹]

2030

2018

Results Sensitivity analysis

2045

NPC

[€ MWh⁻¹]

Y. Rahmat, Institute of Engineering Thermodynamics, 23.05.2023

Not competitive

Config. – p – D_{tube} – NRP \rightarrow S1-80-LD-3

> 181

Results Exergy analysis

Exergetic efficiencies

ε _{PtF}	56.4 %
ε _{PtX}	58.3 % (1.9 % from the generated HPS)
E _{Process-to-X}	87.9%

312.6 MW

Conclusion

- e-MeOH production was in detail techno-economically assessed (2 kinetics compared)
- Energetic efficiency η_{PtF} 52.4 % and η_{H2tF} 81.5 % can be achieved
 - Exothermic process, equilibrium-limited reactions, CO-based syngas is preferred, purge stream
- Cost driver is renewable H₂ which depends on the electricity costs
- NPC e-MeOH from German renewable electricity is 3 times higher than from German electricity grid in 2020
- NPC e-MeOH could be considered competitive if
 - H₂ costs < 2 € kg⁻¹ (electrolysis technology development, affordable renewable electricity)
 - CO₂ costs < 120 € t⁻¹ (MEA currently preferred over DAC, CO₂ certification/incentives)
- NPC is similar despite implementing two different kinetic models
- TEA methodology used for reactor configuration preference

THANK YOU FOR YOUR ATTENTION!

Y. Rahmat, Institute of Engineering Thermodynamics, 23.05.2023

Yoga.Rahmat@dlr.de

DLR

Thema:Techno-economic analysis of e-methanol production under
fixed operating conditions in Germany
11th FSC International Conference, Eurogress AachenDatum:23.05.2023Autor:Yoga Rahmat (Yoga.Rahmat@dlr.de)Institut:Technische ThermodynamikBildcredits:Alle Bilder "DLR (CC BY-NC-ND 3.0)"

Simulation – Purification sector Columns

AspenPlus® model: RadFrac

Column design	K1	K2		
Number of stages	10	28		
Feed stage	5	14		
Reflux ratio	1.5	0.9		

Assumptions:

- Cooling water for cooling down all condensers
- Estimation of the number of stages and feed stage
- Stabilizer column (K1):
 - Number of stages ~2.1 min. stages
- MeOH/Water column (K2):
 - Number of stages ~1.1 min. stages

> Techno-economic analysis of the green methanol production > Yoga Rahmat, Moritz Raab, Ralph-Uwe Dietrich • ProcessNet Conference FVT > 1 April 2022