

FINAL MEETING

OME₃₋₅, DMC, MeFo: Techno-economic assessment and conclusion

Ludwigshafen am Rhein, 2 March 2023 Yoga Rahmat, Sandra Adelung, Cornelie Bänsch, Ralph-Uwe Dietrich

- Techno-Economic and Ecological Assessment @ DLR
 - TEEA methodology
- Techno-economic assessment of German e-fuels transport options
 - Designer fuels: OME₃₋₅, DMC, MeFo
- Conclusion and discussion
 - Possible e-fuels impact on global transport Germany as role model?
 - How to make progress from 2023 onwards?

Techno-economic and ecological assessment @ DLR **TEEA** methodology

R-U. Dietrich, Y. Rahmat, DLR-TT, 2 March 2023

[1] Albrecht et al. (2016) A standardized methodology for the techno-economic evaluation of alternative fuels – A case study, Fuel, 194: 511-526
[2] Mutel (2017) - Brightway: An open source framework for Life Cycle Assessment, Journal of Open Source Software, 2(12): 236
[3] Wernet, G et al. (2016) The ecoinvent database version 3 (part I): overview and methodology. The International Journal of Life Cycle Assessment, 21(9): 1218–1230.

R-U. Dietrich, Y. Rahmat, DLR-TT, 2 March 2023

TEA OF DESIGNER FUELS

DLR

Designer fuels: OME₃₋₅, DMC, MeFo

Nachhaltige Mobilität durch synthetische Kraftstoffe

Oxygenates from MeOH

[1] BASF SE - Patent Nr. EP2922815B1

P-t-OME₃₋₅: The observed routes

OME₃₋₅ from MeOH

Graph: Mantei et al. (2022): Techno-economic assessment and carbon footprint of processes for the large-scale production of oxymethylene dimethyl ethers from carbon dioxide and hydrogen in Sustainable Energy and Fuels (DOI: 10.1039/D1SE01270C)

Simplified process flow diagram of P4, derived from Fraunhofer ISE factsheet^[1]

[1] Mantei et al. (2022): Techno-economic assessment and carbon footprint of processes for the large-scale production of oxymethylene dimethyl ethers from carbon dioxide and hydrogen in Sustainable Energy and Fuels (DOI: 10.1039/D1SE01270C)

R-U. Dietrich, Y. Rahmat, DLR-TT, 2 March 2023

P-t-OME₃₋₅: Economic assessment

CAPEX: Equipment costs

Equipment type Red: special equipment Green: standard equipment	Characteristics	Literature source (Standard: [1])	
Reactors	FA-synthesis (hydrous/anhydrous): fixed bed reactor Remaining type : multi-tubular reactor	[2] (improper capacity range in [1])	
Membrane	Water separation: plate membrane, dimensioning [3] H ₂ separation: hollow fiber membrane, dimensioning [4]	[4] (not available in [1])	
Film evaporators		[2] (improper capacity range in [1])	
Heat exchangers, columns, compressors, pumps, burner, flash drums	Standard equipment according to Peters <i>et al.</i> [1], available in TEPET database	[1]	

[1] M. S. Peters, K. D. Timmerhaus, R. E. West, Plant Design and Economics for Chemical Engineers 2003, McGraw-Hill Higher Education, New York.

[2] D. R. Woods, Rules of Thumb in Engineering Practice 2007, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

[3] N. Schmitz, Production of polyoxymethylene dimethyl ethers from formaldehyde and methanol 2018, Dissertation, TU Kaiserslautern.

[4] R. W. Baker, Membrane Technology and Applications 2012, John Wiley and Sons Ltd, Chichester.

DLR Deutsches Zentrum für Luft- und Raumfahrt German Aerospace Center

m mfahrt Center

Nachhaltige Mobilität durch synthetische Kraftstoffe

BEniVer

Begleitforschung Energiewende im Verkehr

Assumpt	V3.2*			
Basis year		2018		
Full-load hours		8 000		
CO_2	€/t	71		
H_2^{-}	€/t	5 586		
Electricity €/MWh		71.5		

*BEniVer general assumptions:

300 MW_e power input

• generic costs - minimum 2018

- The anhydrous processes (P2 & P4) form less water out of H₂
- Higher η_{PtL} in P2 & P4
- Lower NPC in P2 & P4
- P4 is the slightly better OME₃₋₅ production option

P-t-DMC : Technical assessment

DMC from MeOH*

* Innovative lab scale process of TU Delft, publication pending, project results corrected with MeOH production assessment of Rahmat et al. R-U. Dietrich, Y. Rahmat, DLR-TT, 2 March 2023

P-t-DMC : Economic assessment

Nachhaltige Mobilität durch synthetische Kraftstoffe

BEniVer

Begleitforschung Energiewende im Verkehr

Assump	V3.2*			
Basis year		2018		
Full-load hours		8 000		
CO_2	€/t	71		
H_2^{-}	€/t	5 586		
Electricity €/MWh		71.5		

*BEniVer general assumptions:

300 MW_e power input

• generic costs - minimum 2018

- H₂ is the cost driver
- CAPEX annuity does not play significant role
- Techno-economic comparison on the slide 15

400

DMC from MeOH*

1.6

P-t-MeFo : Technical assessment

MeFo from MeOH*

* state-of-the-art BASF process, taken from patent Nr. EP2922815B1, project results corrected with MeOH production assessment of Rahmat et al. R-U. Dietrich, Y. Rahmat, DLR-TT, 2 March 2023

P-t-MeFo : Economic assessment

298

Nachhaltige Mobilität durch synthetische Kraftstoffe

BEniVer

Begleitforschung Energiewende im Verkehr

Assumpt	V3.2*			
Basis year		2018		
Full-load hours		8 000		
CO_2	€/t	71		
H_2^{-}	€/t	5 586		
Electricity €/MWh		71.5		

*BEniVer general assumptions:

- 300 MW_e power input
- generic costs minimum 2018
- H₂ is the cost driver
- CAPEX annuity does not play significant role
- Techno-economic comparison on the slide 15

0

400

000 NPC [€₂₀₁₈/MWh_{LHV}] 005

Annuity

SOPEX H2■ OPEX CO2

■ OPEX Elec.

Other dir. OPEX

indirect OPEX

Labor costs

• NPC

OPEX NG

MeFo from MeOH*

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

NPC [€₂₀₁₈/kg]

Designer fuels : Techno-economic assessment

Oxygenates from MeOH : OME₃₋₅, DMC, MeFo

400 55% 360 329 350 50% Annuity 298 300 efficiency MINIOPEX H2 NPC [€2018/MWh_{LHV}] OPEX CO2 250 45% OPEX Elec. OPEX NG 200 EtL other dir. OPEX and 40% indirect OPEX 150 Labor costs PtL 100 NPC 35% → •n EtL 50 --- •η PtL 0 30% OME P4 DMC MeFo

Nachhaltige Mobilität durch synthetische Kraftstoffe

BEniVer

Begleitforschung Energiewende im Verkehr

Assumptions		V3.2*		
Basis year		2018		
Full-load hours		8 000		
CO_2	€/t	71		
H_2^{-}	€/t	5 586		
Electricity €/MWh		71.5		

*BEniVer general assumptions: generic costs - average 2018

- OME₃₋₅ through the route P4 is not the winner
- MeFo has the lowest NPC due to its relatively high efficiency
- Application as drop-in fuels?

CONCLUSION: PTX FOR TRANSPORT?

DLR

Global e-fuel assessment – initial contribution

Comparing generic / designer fuels						
	SNG	MeOH	FT	OME ₃₋₅	DMC	MeFo
Production: technical						
η_{PtX} [%]	59	53	40	42	47	52
η_{EtX} [%]	exotherm.	51	41	38	39	46

$$\boldsymbol{\eta}_{PtX} = \frac{\dot{\boldsymbol{m}}_{fuel} \cdot L\dot{H}V_{fuel}}{\sum \dot{\boldsymbol{P}}_{el}}$$

$$\boldsymbol{\eta}_{EtX} = \frac{\dot{\boldsymbol{m}}_{fuel} \cdot L \dot{H} V_{fuel}}{\sum \dot{\boldsymbol{P}}_{el} + \sum \dot{\boldsymbol{Q}}}$$

Conclusion for e-fuels options in global transport Simple pictograms

■ Present (2018 → 2023)

• Future Dream (2018) E&V Questions $\xrightarrow{e^{-}}$ $\xrightarrow{e^{-}}$ $\xrightarrow{e^{-}}$ $\xrightarrow{e^{-}}$ $\xrightarrow{e^{-}}$ $\xrightarrow{e^{-}}$ $\xrightarrow{e^{-}}$ $\xrightarrow{e^{-}}$ $\xrightarrow{e^{-}}$

Reality Check 2023
 Q&A

Outlook: Transport beyond 2023

- Maximize mileage from green electrons
 - Favor public over private transport
 - Favor rail over road / air transport
 - Favor electric over hydrogen over ICE
- Invent new / better electric locomotion
 - Efficient public transport
 - New e-bikes, -cars, -trucks, -planes, -ships
 - Smart connection between transport options
- Don't ignore the legacy fleet (short-term response?)
 - Instant drop-in fuels blending mandate
 - Little electrification in marine and aviation
 - Maximize GHG abatement at minimal cost

Nachhaltige Mobilität durch synthetische Kraftstoffe

THANK YOU FOR YOUR ATTENTION ANY QUESTIONS?

OME₃₋₅, DMC, MeFo: Techno-economic assessment and conclusion

Ludwigshafen am Rhein, 2 March 2023

Sandra Adelung, Cornelie Bänsch, Yoga Rahmat, Ralph-Uwe Dietrich

