
DSC 2023 Europe VR Kilian Gröne et al.

Antibes, 6-8 Sep 2023 - 1 -

Using the Unreal game engine for
Multi-User-Simulation – First impressions

Kilian Gröne1, Michaela Rehm1, Donaji Martinez Garcia1, Gerald Temme1, Laura Quante1, Marvin
Achilles1, Martin Fischer1

(1) German Aerospace Center - DLR, Lilienthalplatz 7, 38108 Braunschweig, Germany, e-mail: {kilian.groene,
michaela.rehm, donaji.martinezgarcia, gerald.temme, laura.quante, ma.fischer, marvin.achilles}@dlr.de

Abstract – Multi-User-Simulation is a tool for studying social interactions in traffic situations, including vehicles
and vulnerable road users. The presented simulators use Unreal Engine as visualization software. The two
methods used are a message-broker approach and the integrated multiplayer framework of the Unreal Engine.
These approaches were carried out in the MoSAIC-VRU laboratory of the DLR - Institute of Transportation
Systems.

Keywords: Multi-User-Simulation, Human-centred Simulation, Unreal Game Engine, Vulnerable Road Users

Introduction
Simulation-based research is critical in
transportation science because it provides a safe
and controlled environment for analyzing roadway
hazards. Human-in-the-loop simulation focuses on
studying the behavior of a single participant, allowing
evaluation of road infrastructure and assistance
systems. However, when considering interactions
with other road users, such as merging or
intersections, there is a need for real road user
behavior. This requires the combination of multiple
human-in-the-loop simulators in a multi-user
simulation, including vulnerable road users such as
cyclists and pedestrians. This allows the analysis of
social interactions that play an important role in road
traffic. (Muehlbacher, 2015)

Another enhancement to simulation-based research
is the use of state-of-the-art game engines. (Chance,
et al., 2022) In addition to the relatively accessible,
high-quality graphics of these engines and
affordable access to virtual reality (VR) and many
other features, some game engines offer a
multiplayer/networking framework that enables
distributed application. This work aims to show the
advantages of using game engines at the example
of the Unreal game engine.

Simulator Setups

Figure 1 General Setup

The general structure of the simulators used, is
shown in Figure 1.

The hardware control is closely linked to the
simulation software to minimize latencies. The
visualization software (Unreal Engine 5) runs
separately on dedicated hardware and
communicates with the core software via UDP
messages. The decision of whether to implement
certain functions in Unreal Engine or the simulation
software depended on factors such as the physical
behavior of the means of transport and the safety
requirements.

For the bicycle simulator, the physical model was
developed outside Unreal Engine to meet hardware
requirements and ensure safety and reliability. The
simulator software sends speed, rotation, steering
angle, and leaning angle data to the visualization,
while position changes in the virtual environment are
primarily determined by speed and yaw rate.

On the other hand, for the fixed-based car simulator,
the physical model is implemented within Unreal
Engine using the ChaosVehicle framework. This
framework provides accurate results and can be
configured by a small team with limited experience in
dynamic behavior modeling. In summary, the bicycle
simulator calculates and applies the physical state
externally, while the car simulator relies on Unreal
Engine's built-in capabilities. (Epic Games, 2023)

The bicycle simulator receives data from the Unreal
Instance about the road gradient and resistance
factor of the surface, which affect pedalling
resistance and tilting of the bicycle. In the car
simulator, the driver's input is processed by the
software and sent to the Unreal Instance to simulate
the vehicle state. Information such as forward
velocity and signal states are fed back to the
simulator to modify force feedback and speedometer
indication. Both simulators support monitor or HMD
visualization.

Using game engines for Multi-Ego-Simulation - First impressions DSC 2023 Europe VR

- 2 - Antibes, 6-8 Sep 2023

Replication Methods
To achieve interaction between simulators, data
exchange at the Unreal instance level is necessary.
A single Unreal project was used for both car
simulators, starting at different positions in the level.
Data exchange was performed object by object, with
each simulator having its own representation in its
Unreal instance (ego-perspective) and a
corresponding representation in the other simulator's
Unreal instance (multi-user perspective).

Figure 2 shows the object replication of the car
simulator.

Figure 2 Car Simulator Object Replication

Different approaches were tested for displaying
transmitted information in the multiplayer object.
Initially, two separate objects were created in Unreal,
each with its own functionality. The multiplayer object
didn't have physics simulation or control signal
processing like the ego object, but it was responsible
for displaying additional information (e.g., wheel
turning or head movements in the bike simulator).
However, this approach required duplicating and
maintaining the object, which was time-consuming
for small development teams. An improved approach
was to create a single implementation that could
function as both an ego and multiplayer object,
depending on initialization in the virtual environment.
This approach involved implementing a server-client
concept for information distribution and processing.

Message Broker & Unreal Server
An own developed gRPC-based message broker
with unreal integration was used to exchange the
information within the Unreal instances. It can
dynamically request information from the objects that
needs to be replicated. To do this, the Unreal
instances register with the broker and inform it about
the desired objects. The minimum information that
must always be transmitted is the transform
properties (position/rotation/scaling) of the objects in
the virtual world. To replicate additional information
of the objects, they are named with an adjustable
prefix. The Replicator object recognizes and

transmits these to further simulation participants.
The Unreal instances involved have authority over
their own virtual environment.

When using an unreal dedicated server, the
exchange of information is different. The server
hosts and has authority over the main world instance
and replicates the information of the actors it
contains to the connected clients. (The clients don't
have the authority to move objects in their own
environment. The simulators pass the simulator
inputs to the server, which updates all simulator
objects (cars, bicycles, pedestrians, etc.). After
processing, it updates the client states. The
advantage of this procedure is that it can ensure that
each client has the same state.

The benefits of the Message Broker are that it is easy
to configure, replicate across Unreal projects and
enable communication between different objects.
Seamless setup, cross-project replication and
flexible send and receive capabilities are beneficial
in small development teams. When using the
dedicated server, Unreal built-in utilities make it easy
to use prediction and correction methods to improve
networked applications. This can enable multi-user
simulation with simulators far apart.

In summary, the different approaches are better
suited for different use cases. The message broker
approach promises a faster turnaround in smaller
Multi-User-Simulations running on a local network.
The Unreal Server approach offers better scalability
as the number of participants grows, as well as
connectivity with slower connection (e.g. the
internet).

Conclusion
More experience needs to be gained and changes in
technologies taken into account in the development
of Multi-User-Simulation. By then, it should be
possible to evaluate different approaches to linking
simulators and their impact on developing those.

References
Chance, G. et al., 2022. On Determinism of Game Engines
Used for Simulation-Based Autonomous Vehicle
Verification. IEEE Transactions on Intelligent
Transportation Systems, Issue DOI:
10.1109/TITS.2022.3177887, pp. 20538-20552.
Epic Games, 2023. docs.unrealengine.com. [Online]
Available at: https://docs.unrealengine.com/5.1/en-
US/vehicles-in-unreal-engine/
[Accessed 11 04 2023].

Muehlbacher, D., 2015. Multi-Driver Simulation – the link
between driving simulation and traffic. Munich:
Conference: mobil.TUM 2015.

