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Abstract

We define symmetries in non-relativistic quantum electrodynamics, which have

the physical interpretation of rotation, parity and time reversal symmetry. We collect

transformation properties related to these symmetries in Fock space representation

as well as in the Schrödinger representation. As an application, we generalize and

improve theorems about Kramer’s degeneracy in non-relativistic quantum electrody-

namics.

1 Introduction

Symmetries are often used to analyze various properties of physical systems. In particular

in quantum mechanics symmetries are used to determine spectral properties of the Hamil-

tonian. In this paper we study symmetries of non-relativistic quantum electrodynamics

(qed), which have the physical interpretation of rotation, parity and time reversal symme-

try. We give explicit formulas for these symmetries both in Fock space representation as

well as in the so called Schrödinger representation and apply these symmetries to prove

multiplicities of eigenvalues.

The transformation properties described in the present paper are of general interest in

non-relativistic qed. In particular, in the Fock representation these symmetries are helpful

for operator theoretic renormalization analysis of non-relativistic qed. On the one hand,
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symmetries can be used to control marginal terms [12, 13, 14, 25]. On the other hand sym-

metries allow the treatment of degenerate eigenvalues in the frame work of renormalization,

provided the symmetries act irreducibly on the eigenspace [15]. In fact, the latter is the

main interest, which we had in mind, for collecting the transformation properties of the

aforementioned symmetries.

In physics literature continuous symmetries are often described by means of their in-

finitesimal generator. That is, as a representation of the Lie-algebra. For non-relativistic

qed the generators of the Lie-algebra of SU(2) are readily available in textbooks about

non-relativistic aspects of quantum electrodynamics [4, 27]. In this paper we express the

SU(2)-symmetry directly as a representation of the Lie-group.

As already mentioned, symmetries are helpful in the spectral analysis of Hamiltonian

operators of quantum mechanics. For example the classical Kramers degeneracy theorem

states, that the eigenvalues of a time-reversal symmetric Hamiltonian describing an odd

number of spin 1/2-particles have even multiplicity. Using a theorem of this type it was

shown in [20, 21] that Hamiltonians of non-relativistic qed, which describe odd number

of spin 1/2-particles have a doubly degenerate ground state, provided the external poten-

tial is symmetric with respect to parity. In this paper we improve that result and show

that parity symmetry is not necessary. This is of physical relevance, since potentials de-

scribing molecules with static nuclei, are not necessarily symmetric with respect to parity.

Furthermore, we include external magnetic fields in the mathematical model. Finally, we

consider translation invariant systems and generalize degeneracy results for a single spin

1/2-particle [16, 17] to atoms and molecules.

Let us give a short outline of the paper. In the next section we review the notion of

a symmetry in quantum mechanics and state an abstract version of Kramers degeneracy

theorem. In Section 3 we introduce non-relativistic qed. In Section 4 we define rotation,

parity, and time-reversal symmetry. Moreover we collect various transformation properties.

In Section 5 we study symmetry properties of Hamiltonians of non-relativistic qed. In par-

ticular we show the aforementioned degeneracy theorems. In Section 6 we study symmetry

properties of fibers of translationally invariant Hamiltonians of non-relativistic qed. In Sec-

tion 7 we define rotation, parity, and time-reversal symmetry in the so called Schrödinger

representation. We show that the definitions in Schrödinger representation agree with

the definitions in Fock space representation. To show this, we use the canonical unitary

transformation mapping the Fock space representation to the Schrödinger representation.

2 Symmetries in Quantum Mechanical Systems

In this section we collect some well-known definitions and properties.

Definition 2.1. Let V be a complex vector space. A mapping A : V → V is called anti-

linear (or conjugate linear) if

(i) A(x+ y) = Ax+ Ay for all x, y ∈ V .
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(ii) A(αx) = αAx, for all x ∈ V and α ∈ C.

If H is a complex Hilbert space and T : H → H anti-linear, then the adjoint T ∗ : H → H
is defined by

〈T ∗x, y〉 = 〈Ty, x〉 , ∀x, y ∈ H.
If H is a complex Hilbert space and S : H → H anti-linear, then S is called anti-unitary

if it is surjective and satisfies

〈Sx, Sy〉 = 〈y, x〉 , ∀x, y ∈ H.

The assertions of the following Lemma are straightforward to verify.

Lemma 2.2. The following holds.

(a) Let Ci be anti-linear (anti-unitary) transformations on complex vector spaces Vi (Hilbert

spaces), i = 1, 2. Then C1 ⊗C2 : V1⊗ V2 → V1⊗ V2 is also anti-linear (anti-unitary).

(b) If T : H → H is an anti-linear mapping on a Hilbert space H, then also T ∗ is

anti-linear.

(c) If S is anti-unitary, then S is bijective and S∗S = 1 and SS∗ = 1.

Definition 2.3. Let S be a unitary or anti-unitary operator. Let H be a densely defined

operator in H. We call S a symmetry of H, if

SH = HS

when S is unitary, and

SH = H∗S

when S is anti-unitary.

The following theorem, whose formulation is from [20], can be viewed as an abstract

version of Kramer’s degeneracy theorem, [18, 29].

Theorem 2.4 (Abstract Kramers Degeneracy). Let θ be a an anti-unitary symmetry of

a self-adjoint operator H and θ2 = −1. Then each eigenvalue of H is at least doubly

degenerate. Any eigenvalue of H with finite multiplicity has even multiplicity.

The proof follows from the following lemma.

Lemma 2.5. Let J be an anti-unitary operator on a complex Hilbert space V with J2 = −1.

Then the following holds.

(a) For any nonzero v ∈ V , also Jv is nonzero and v ⊥ Jv.

(b) The Hilbert space V cannot have finite odd dimension.
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Proof. (a) Since J(Jv) = J2v = −v, the vector Jv is nonzero. Since J is anti-unitary

〈v, Jv〉 = 〈JJv, Jv〉 = −〈v, Jv〉.

So 〈v, Jv〉 = 0.

(b) We show by induction that V cannot have dimension 2n − 1 for n ∈ N. Clearly, the

induction hypothesis holds true for n = 1 by (a). Suppose the induction hypothesis holds

for n, and suppose V has dimension 2n + 1. Pick a nonzero v ∈ V . Then Jv ∈ V and

Jv ⊥ v by (a). Thus W := {v, Jv}⊥ is a complex vector space, which has dimension 2n−1.

Since J2 = −1, it follows that J leaves the complex linear span linC{v, Jv} invariant. Since

J is anti-unitary, it leaves also W invariant. But the complex vector space W together

with J |W contradict the induction hypothesis.

Proof of Theorem 2.4. Let E be an eigenvalue of H . Since H is self-adjoint E is real. So θ

leaves the space V = ker(H −E) invariant, since (H −E)θψ = θ(H −E)ψ. Thus the first

and second statement follow from (b) of Lemma 2.5 with J = θ.

3 Non-relativistic qed

For a complex Hilbert space H we denote the n-fold tensor product by

H⊗n :=
n⊗

j=1

H

and we set H⊗0 := C. Let S{1,...,n} be the permutation group of the set {1, ..., n}. For each
σ ∈ S{1,...,n} we define an operator U(σ) on H⊗n by

U(σ)(ϕ1 ⊗ ϕ2 ⊗ · · · ⊗ ϕn) = ϕσ(1) ⊗ ϕσ(2) ⊗ · · · ⊗ ϕσ(n) (3.1)

for any ϕj ∈ H, j = 1, ..., n, and extending it linearly. This yields a bounded operator (of

norm one) on H⊗n so we can define Sn = 1
n!

∑
σ∈S{1,...,n}

U(σ). We define the symmetric

n-fold tensor product of H by

H⊗sn := Sn

(
H⊗n

)
.

Let Ds denote the representation space of SU(2) with dimension 2s + 1. In this paper

we shall only consider the case s = 0, describing spinless particles, and the case s = 1
2
,

describing particles with spin 1/2.

The model consists of N particles with spins sj ∈ {0, 1/2}, masses mj > 0, charges

qj ∈ R, values of the spin magnetic moments µj ∈ R, j = 1, ..., N . By xj ∈ R
3 we shall

denote the position of the j-the particle. The Hilbert space describing the non-relativistic

quantum mechanical matter is

Hmat =

N⊗

j=1

L2(R3;Dsj).
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We note that the description of physical systems usually requires the restriction to a sub-

space determined by the particle statistics of identical particles. This will be considered

below.

If s = 0, let ŝl = 0 for l = 1, 2, 3, and if s = 1/2, let ŝl =
1
2
σl for l = 1, 2, 3, where σl

denotes the l-th Pauli-matrix.

Remark 3.1. Note that ŝ1, ŝ2 and ŝ3 are representations of the generators of su(2) in the

representation Ds = C2s+1, s ∈ {0, 1/2}. They are linear maps in Ds satisfying

[ŝj, ŝk] =

3∑

l=1

iǫj,k,lŝl, ŝ∗l = ŝl, l = 1, 2, 3,

ŝ1 = ŝ1, ŝ2 = −ŝ2, ŝ3 = ŝ3, (3.2)

where ǫj,k,l denotes the totally antisymmetric tensor in three dimensions.

For j = 1, ..., N and l = 1, 2, 3 we define

(Ŝj)l =

(
j−1⊗

k=1

1IDsk

)
⊗ ŝl ⊗

(
N⊗

k=j+1

1IDsk

)
.

For a Hilbert space h define the symmetric Fock space over h by

Fs(h) :=
∞⊕

n=0

h⊗sn.

Thus we can identify ψ ∈ Fs(h) with a sequence of functions ψ = (ψ(0), ψ(1), ψ(2), ....) such

that ψ(n) ∈ h⊗sn. We introduce the set F0(h) := {ψ ∈ Fs(h) : ∃N, ∀n ≥ N,ψ(n) = 0} of

finite particle vectors. For f ∈ h let a∗(f) denote the usual creation operator, which is a

densely defined closed linear operator which satisfies for η ∈ h⊗sn

a∗(f)η =
√
n + 1Sn+1(f ⊗ η). (3.3)

Let a(f) denote the adjoint of the creation operator. If T be a symmetry in h, then Γ(T )

denotes the unique operator on F(h) such that on h⊗sn

Γ(T )|h⊗sn =
n⊗

j=1

T.

It is straight forward to see that also Γ(T ) is a symmetry. Let A be any self-adjoint

operator on H with domain of essential self-adjointness D. Let DA = {ψ ∈ F0(h) : ψ
(n) ∈

⊗n
k=1D for each n} and define dΓ(A) on DA ∩ h⊗sn as

A⊗ 1⊗ · · · ⊗ 1 + 1⊗ A⊗ · · · ⊗ 1 + · · ·+ 1⊗ · · · ⊗ 1⊗A.
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In [24, Section VIII.10] it is shown that dΓ(A) is essentially self-adjoint on DA, and we

shall denote this self-adjoint extension again by dΓ(A). It follows from the definitions that

for a symmetry T on h and f ∈ h

Γ(T )a#(f)Γ(T )∗ = a#(Tf), (3.4)

Γ(T )dΓ(A)Γ(T )∗ = dΓ(TAT ∗), (3.5)

where a# stands for a or a∗. Let us now define operators acting on the composite Hilbert

space

H⊗Fs(h),

where H denotes a Hilbert space, which is used to describe the matter. For a bounded

linear operator G ∈ L(H,H⊗ h) we define for ϕ ∈ H and η ∈ h⊗sn

a∗(G)(ϕ⊗ η) =
√
n+ 1(1⊗ Sn+1)((Gϕ)⊗ η). (3.6)

This extends by linearity to a closable operator in H⊗Fs(h), which we shall again denote

by a∗(G). We define a(G) = [a∗(G)]∗.

In non-relativistic qed one consider the Fock space over g := L2(R3 ×Z2). In that case

we can identify ψ ∈ Fs(g) with a sequence of functions ψ = (ψ(0), ψ(1), ψ(2), . . .) such that

ψ(n) ∈ L2
s((R

3×Z2)
n), where the subscript s stands for wave functions which are symmetric

with respect to interchange of components of the n-fold Cartesian product. Let Mf denote

the operator of multiplication by the function f . We define

Hf = dΓ(Mω),

where the so-called dispersion relation ω : R3 → [0,∞) is defined such that ω(k) = ω(k′)

whenever |k′| = |k|. Moreover define

Pf = dΓ(Mπj
),

where πj : R
3 → R with πj(k) = kj. Next we introduce creation and annihilation operators

in terms of operator valued distributions. We define

DS := {ψ ∈ F0(g) : ψ
(n) ∈ S((R3 × Z2)

n)}.

where S((R3 × Z2)
n) denotes the space of smooth rapidly decaying functions. For each

(k, λ) ∈ R3 × Z2 we define an operator a(k, λ) on Fs(g) with domain DS by

(a(k, λ)ψ)n(k1, λ1, ..., kn, λn) =
√
n+ 1ψn+1(k, λ, k1, λ1, ..., kn, λn).

We define a∗(k, λ) in the sense of quadratic forms on DS ×DS by

〈ψ1, a
∗(k, λ)ψ2〉 = 〈a(k, λ)ψ1, ψ2〉.
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Then it is straight forward to see that

a∗(f) =
∑

λ=1,2

∫

R3

f(k, λ)a∗(k, λ)dk, a(f) =
∑

λ=1,2

∫

R3

f(k, λ)a(k, λ)dk,

where the equalities are understood in the sense of quadratic forms and the integrals are

understood as weak integrals. Let us now relate the definition given in (3.6) to integrals of

operator valued distributions. To this end we use the natural embedding

I : L2(R3 × Z2;L(Hmat)) → L(Hmat;L
2(R3 × Z2;Hmat)) ∼= L(Hmat;Hmat ⊗ g)

g 7→ (ϕ 7→ [(k, λ) 7→ g(k, λ)ϕ]) ,

which is a bounded injection, cf. [24, Theorem II.10]. Then for g ∈ L2(R3 × Z2;L(Hmat))

it is straight forward to show that

a∗(I(g)) =
∑

λ=1,2

∫

R3

g(k)⊗ a∗(k, λ)dk, a(I(g)) =
∑

λ=1,2

∫

R3

g(k)∗ ⊗ a(k, λ)dk (3.7)

in the sense of quadratic forms on Hmat⊗DS , where the integral is a weak integral. Hence-

forth we shall drop the tensor sign in (3.7) if it is clear on which factor the operator

acts. The definition of the vector potential involves the so called polarization vectors. For

λ = 1, 2 we choose a measurable function

ε(·, λ) : S2 → R
3 (3.8)

on the 3-dimensional sphere S2 with the following properties. For each k ∈ S2 the vectors

(ε(k, 1), ε(k, 2), k) form an orthonormal basis of R3. We extend ε(·, λ) to R3\{0} by setting

ε(k, λ) := ε(k/|k|, λ) for all nonzero k. We assume that we are given a measurable coupling

function κ : R3 → C. We note that the Fourier transform of κ is real, if and only if

κ(k) = κ(−k). (3.9)

We define the coupling functions for l = 1, 2, 3 and x ∈ R3

g
(ε)
x,l (k, λ) =

εl(k, λ)√
2ω(k)

κ(k)e−ik·x.

We can now define the field operators. If ω−1/2κ ∈ L2(R3), we define the magnetic vector

potential

Al(x) :=a(g
(ε)
x,l ) + a∗(g

(ε)
x,l )

=
∑

λ=1,2

∫

R3

εl(k, λ)√
2ω(k)

(
κ(k)eik·xa(k, λ) + κ(k)e−ik·xa∗(k, λ)

)
dk, l = 1, 2, 3,
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where in the second line we made use of (3.7). If | · |ω−1/2κ ∈ L2(R3), we define the

quantized magnetic field

Bl(x) :=[∇× A(x)]l

=
∑

λ=1,2

∫

R3

i[k × ε(k, λ)]l√
2ω(k)

(
κ(k)eik·xa(k, λ)− κ(k)e−ik·xa∗(k, λ)

)
dk, l = 1, 2, 3.

If ω1/2κ ∈ L2(R3), we define the quantized electric field

E⊥
l (x) :=a(−iωg

(ε)
x,j) + a∗(−iωg(ε)x,j)

=
∑

λ=1,2

∫

R3

iεl(k, λ)

√
ω(k)

2

(
κ(k)eik·xa(k, λ)− κ(k)e−ik·xa∗(k, λ)

)
dk, l = 1, 2, 3.

The Hamiltonian acting in the Hilbert space

Hmat ⊗ Fs(g)

is given by

H =

N∑

j=1

{
(pj ⊗ 1 + qj(A(x̂j) + Aext(x̂j)))

2 + µjŜj · (B(x̂j) + Bext(x̂j))
}

+ 1⊗Hf + V (x̂1, ..., x̂N)⊗ 1, (3.10)

where x̂j denotes the operator of multiplication with xj , the coordinates of the j-th particle,

and pj = −i∇xj
. We assume that V : R3N → R is a function and that Bext : R

3 → R3 is a

function. Furthermore, we defined

Aext(x) := −
∫

(x− y)× Bext(y)

4π|x− y|3 dy, (3.11)

cf. Remark 3.2.

Remark 3.2. Provided Bext is sufficiently regular and has sufficient decay, we can write

Aext(x) := −
∫

(x− y)×Bext(y)

4π|x− y|3 dy = ∇x ×
∫

Bext(y)

4π|x− y|dy =
∫ ∇y ×Bext(y)

4π|x− y| dy, (3.12)

by calculating the derivative and using integration by parts, respectively. In particular, if

∇ ·Bext = 0, it follows that ∇×Aext = Bext.

Physically, V is called the external potential, Bext the external magnetic field, Aext the

external magnetic vector potential. We assume that Bext is such that Aext in (3.11) is well

defined for almost all x ∈ R3. Moreover, we assume that κ and ω are such that the fields

occurring in the Hamiltonian exist. Furthermore, we assume that κ, ω, V , and Bext are

such that the Hamiltonian is essentially self-adjoint on
(⊗N

j=1C
∞
c (R3;Dsj)

)
⊗ F0(g), for

details we refer the reader to [23, Theorem X.35, Theorem X.34] and [11].
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4 Symmetries

In this subsection we define symmetries associated to rotations, space inversion and time

inversion. To define these symmetries on Fock space it is convenient to identity h with the

space of so called divergence free vector fields. In this section we shall denote by F the

Fourier transform and by F−1 its inverse, i.e. for f ∈ L1(R3)

(Ff)(k) = (2π)−3/2

∫

R3

e−ik·xf(x)dx,

(F−1f)(x) = (2π)−3/2

∫

R3

eik·xf(k)dk,

where both transformations are canonically extended to L2(R3) by Plancherel’s theorem.

4.1 Space of divergent free vector fields

We introduce the space of divergence free vector fields

v := {v ∈ L2(R3;C3) :
3∑

j=1

kj v̂j(k) = 0 , a.e. k ∈ R
3}.

Given a specific measurable choice for the polarization vectors (3.8) we obtain a canonical

identification with the one photon Hilbert space g = L2(R3 × Z2). This is the content of

the following lemma.

Lemma 4.1. For the polarization vector ε : S2 × Z2 → R3, as in (3.8), the map

τε : g → v, h 7→
(
F−1

∑

λ=1,2

εj(·, λ)h(·, λ)
)

j=1,2,3

,

is unitary and its inverse acting on v ∈ v is determined by (τ−1
ε v)(k, λ) = ε(k, λ) · (Fv)(k)

for almost all (k, λ) ∈ R3 × {1, 2}.

For the proof we first note the following. For k ∈ R3 \ {0} define

P (k)a,b := δab −
kakb
|k|2 , a, b = 1, 2, 3, k 6= 0 (4.1)

From the definition it follows that P (k)a,b = P (k)b,a, and that P (k) is equal to the projection

operator in C
3 onto the subspace in C

3, which is perpendicular to k. Thus from the

definition of the polarization vectors, (3.8), we infer that for k ∈ R3 \ {0}

P (k)a,b =
∑

λ=1,2

εa(k, λ)εb(k, λ). (4.2)
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Proof of Lemma 4.1. The lemma follows from a straight forward calculation using the

properties of the polarization vectors. Let h ∈ g. Clearly, τε is well defined, since

k · F (τε(h))(k) = k ·
∑

λ=1,2 ε(k, λ)h(k, λ) = 0. The map is an isometry, since

‖τεh‖2 =
∫

R3

3∑

j=1

∑

λ,λ′=1,2

εj(k, λ)h(k, λ)εj(k, λ
′)h(k, λ′)d3k

=

∫

R3

∑

λ,λ′=1,2

δλ,λ′h(k, λ)h(k, λ′)d3k = ‖h‖2.

Furthermore for v ∈ v let (βǫv)(k, λ) = ε(k, λ) · (Fv)(k). Then

F (τε(βεv)j)(k) =
∑

λ=1,2

εj(k, λ)(βεv)(k, λ)

=
∑

λ=1,2

εj(k, λ)

3∑

l=1

εl(k, λ) · (Fvl)(k)

= Fvj(k),

where we used that (4.2) and that v is divergence free. This shows the surjectivity of τε
and that its inverse is given by βε.

Define for x ∈ R3 and a = 1, 2, 3 the function vx,a : R
3 → C3 by

[vx,b(y)]a :=
1

(2π)3/2

∫

R3

e−ik·(x−y) κ(k)√
2ω(k)

P (k)a,b dk, y ∈ R
3. (4.3)

The properties collected in the following lemma are straight forward to verify using the

definitions.

Lemma 4.2. We have the following properties for x ∈ R3 and b = 1, 2, 3

(a) vx,b ∈ v,

(b) vx,b = τεg
(ε)
x,b, τ−1

ε vx,b = g
(ε)
x,b.

The next lemma will be needed to determine transformation properties of the field

energy and field momentum with respect to rotations, parity transformations, and time

reversal symmetry.

Lemma 4.3. Let f : R
3 → C be a measurable function. Then we have the following

properties.

(a) τεMfτ
−1
ε = F−1MfF .

(b) For ϕ ∈ L2(R3) and S ∈ O(3) we define the transformation TSϕ = ϕ ◦ S−1. Then

TSF = FTS, TSF
−1 = F−1TS. (4.4)

10



(c) Let TS be defined as in (b). Then T−1
S = TS−1 and

TSMfT
−1
S =Mf◦S−1 . (4.5)

Proof. Part (a) follows from

(τεMfτ
−1
ε v)j = F−1

∑

λ=1,2

εj(·, λ)Mf(τ
−1
ε v)(·, λ)

= F−1
∑

λ=1,2

εj(·, λ)f(·)ε(·, λ) · (Fv)(·)

= F−1(MfFvj) (4.6)

(b) If ϕ ∈ S(R3), we find by the transformation formula for integrals for arbitrary S ∈ O(3)

(TSFϕ)(k) = (2π)−3/2

∫

R3

e−i(S−1k)·xϕ(x)dx = (2π)−3/2

∫

R3

e−ik·xϕ(S−1x)dx = (FTSϕ)(k).

(4.7)

So (b) follows by density and continuity. Part (c) is straight forward to verify.

The following lemma will be needed to determine transformation properties of the

interaction with respect to rotations and parity transformations.

Lemma 4.4. Let S ∈ O(3). Then the following holds.

(a) For all k ∈ R3 we have P (Sk) = SP (k)ST .

(b) For all x ∈ R3 and b = 1, 2, 3

3∑

c′=1

Sc,c′

∫

R3

e−ik·(x−S−1y) κ(k)√
2ω(k)

Pb,c′(k)dk (4.8)

=
3∑

b′=1

Sb′,b

∫

R3

e−ik·(Sx−y)κ(S
−1k)√

2ω(k)
Pb′,c(k)dk. (4.9)

(c) lf κ(S·) = κ(·), then for all x ∈ R
3 and b = 1, 2, 3

Svx,b(S
−1y) =

3∑

b′=1

Sb′,bvSx,b′(y). (4.10)

Proof. Part (a) is straight forward to verify using the definition (4.1). For x ∈ C3 and

k ∈ R
3 \ {0} we find for k̂ = k/|k|

P (Sk)x = x− Sk̂(Sk̂ · x) = SSTx− Sk̂(k̂ · STx) = SP (k)STx.

11



(b) follows from a change of variables and (a)

(4.8) =

3∑

c′=1

∫
e−i(Sk)·(Sx−y) κ(k)√

2ω(k)
Pb,c′(k)Sc,c′dk

=
3∑

c′=1

∫
e−ik·(Sx−y)κ(S

−1k)√
2ω(k)

Pb,c′(S
−1k)Sc,c′dk = (4.9).

(c) Now (4.10) follows from (4.9) and the definition (4.3).

4.2 Rotation Invariance

We introduce the so called canonical double covering homomorphism

π : SU(2) → SO(3), U 7→ π(U),

where π(U) is the unique element of SO(3) such that

UσmU
∗ =

3∑

l=1

π(U)l,mσl, m = 1, 2, 3,

with σ1, σ2, σ3 denoting the Pauli matrices. On the one electron Hilbert space L2(R3;Ds)

we define

(Up,s(U)ψ)(x) = Ds(U)ψ(π(U)
−1x),

where Ds denotes the representation of SU(2) with spin s. Similarly we define for v ∈ v

the transformation for R ∈ SO(3)

(Uv(R)v)(x) = Rv(R−1x).

Moreover, we define

Ug(R) = τ−1
ǫ Uv(R)τǫ,

which depends on the choice of the polarization vectors. For R ∈ SO(3) we define the

unitary mapping

Uf(R) = Γ(Ug(R)),

and for U ∈ SU(2) we define the unitary mappings

Umat(U) =
N⊗

j=1

Up,sj(U)

U(U) = Umat(U)⊗ Uf(π(U))

on the Hilbert spaces Hmat and Hmat⊗Fs(g), respectively. This defines a representation of

SU(2) on these Hilbert spaces. The next proposition collects elementary properties, which

follow directly from the definitions.
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Proposition 4.5. The map Uf is a unitary representation of R ∈ SO(3), and the maps

Umat, and U are unitary representations of SU(2).

Remark 4.6. By abuse of notation we denote the unitary representation Uf ◦ π on SU(2)

also by Uf .

Lemma 4.7. Let R ∈ SO(3) and κ(R·) = κ(·). Then

(a) Uf(R)A(x)U∗
f (R) = R−1A(Rx),

(b) Uf(R)B(x)U∗
f (R) = R−1B(Rx),

(c) Uf(R)E
⊥(x)U∗

f (R) = R−1E⊥(Rx).

Proof. We observe that for R ∈ SO(3) we find

(Uv(R)vx,b)(y) = Rvx,b(R
−1y) =

3∑

b′=1

Rb′,bvRx,b′(y), (4.11)

where we used Lemma 4.4 (c). Using Eqs. (3.4) and (4.11) as well as Lemma 4.2 we obtain

Uf(R)a
#(g

(ε)
x,b)U∗

f (R) = a#(Ug(R)g
(ε)
x,b) = a#(τ−1

ε Uv(R)τεg
(ε)
x,b)

= a#(τ−1
ε Uv(R)vx,b) =

3∑

b′=1

Rb′,ba
#(τ−1

ε vRx,b′)

=

3∑

b′=1

Rb′,ba
#(g

(ε)
Rx,b′)

This implies

Uf(R)Ab(x)U∗
f (R) =

3∑

b′=1

Rb′,bAb′(Rx).

Thus (a) follows. Now (b) follows from (a) and by calculating the rotation. (c) Follows

similarly as (a) observing that ω is invariant under rotations.

Proposition 4.8. Let U ∈ SU(2) and R = π(U). Then the following holds

(a) U(U)x̂jU(U)∗ = R−1x̂j ,

(b) U(U)pjU(U)∗ = R−1pj,

(c) U(U)ŜjU(U)∗ = R−1Ŝj,

(d) U(U)A(x̂j)U(U)∗ = R−1A(x̂j), if κ(R·) = κ(·),
(e) U(U)B(x̂j)U(U)∗ = R−1B(x̂j), if κ(R·) = κ(·),
(f) U(U)E⊥(x̂j)U(U)∗ = R−1E⊥(x̂j), if κ(R·) = κ(·),
(g) U(U)HfU(U)∗ = Hf ,

(h) U(U)PfU(U)∗ = R−1Pf .
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Proof. Parts (a), (b), and (c) are straight forward to verify. Parts (d)-(f) follow from (a)

and Lemma 4.7. Next we show (g) and (h). Using Lemma 4.3 and the identity (3.5) we

find for any measurable f : R3 → R and U ∈ SU(2) with R = π(U)

U(U)dΓ(Mf )U(U)∗ = dΓ(τ−1
ε Uv(π(U))τεMfτ

−1
ε U∗

v (π(U))τε)

= dΓ(τ−1
ε Uv(R)F

−1MfFU∗
v (R)τε)

= dΓ(τ−1
ε F−1Mf◦R−1Fτε)

= dΓ(Mf◦R−1)

Now choosing f = ω or f : k 7→ kj Parts (g) and (h) follow.

In the following proposition we give a formula for the action of the rotation transfor-

mation in g.

Proposition 4.9. For R ∈ SO(3) define

DU
λ,λ′(R; k) := (R−1ε(k, λ)) · ε(R−1k, λ′).

Then for R ∈ SO(3)

DU
λ,λ′(R−1; k) = DU

λ′,λ(R;Rk) (4.12)

and the following holds.

(a) For any h ∈ g

(Ug(R)h)(k, λ) =
∑

λ′=1,2

DU
λ,λ′(R; k)h(R−1k, λ′). (4.13)

(b) In the sense of operator valued distributions for all (k, λ) ∈ R3 × Z2

Uf(R)a
#(k, λ)Uf(R)

∗ =
∑

λ′=1,2

DU
λ,λ′(R−1; k)a#(Rk, λ′)

Proof. Equation (4.12) follows from a straight forward calculation using that the elements

of SO(3) preserve the inner product. Now we prove (a). Using the property (4.4) of the

Fourier transform, we find

(Ug(R)h)(k, λ) = ε(k, λ) · F
(
F−1

∑

λ′=1,2

Rε(·, λ′)h(·, λ′)
)
(R−1k)

=
∑

λ′=1,2

ε(k, λ) · Rε(R−1k, λ′)h(R−1k, λ′).
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(b) We have by linearity and (a)

∑

λ=1,2

∫

R3

h(k, λ)Uf(R)a
∗(k, λ)U∗

f (R)dk = Uf(R)a
∗(h)U∗

f (R) = a∗(Ug(R)h)

=
∑

λ=1,2

∫

R3

(Ug(R)h)(k, λ)a
∗(k, λ)dk

=
∑

λ,λ′=1,2

∫

R3

DU
λ,λ′(R; k)h(R−1k, λ′)a∗(k, λ)dk

=
∑

λ,λ′=1,2

∫

R3

DU
λ′,λ(R;Rk)h(k, λ)a

∗(Rk, λ′)dk.

Since h ∈ g is arbitrary the claim follows for a∗(k, λ) in view of (4.12). Taking adjoints

the claim then follows also for a(k, λ).

4.3 Parity Symmetry

Parity is the operation x 7→ −x. On the particle space we define

Pp,s : L
2(R3;Ds) → L2(R3;Ds), ψ 7→ (x 7→ ψ(−x))

for s = 0, 1/2. On the photon space we define

Pv : v → v, v 7→ (x 7→ −v(−x)),

and

Pg = τ−1
ε Pvτε.

We define

Pmat =
N⊗

j=1

Pp,sj ,

Pf = Γ(Pg),

P = Pmat ⊗ Pf .

Proposition 4.10. The maps Pmat, Pf and P are unitary and commute with the repre-

sentations Umat, Uf and U , respectively.

Proof. The unitarity property is straight forward to verify. The commutativity follows from

the commutativity of Pp with Up and Pv with Uv, which are straight forward to verify.

Lemma 4.11. Suppose κ(−·) = κ(·). Then

(a) PfA(x)P∗
f = −A(−x),

(b) PfB(x)P∗
f = B(−x),

(c) PfE
⊥(x)P∗

f = −E(−x).
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Proof. We observe that for S = −1I3×3 we find from (4.10)

(Pvvx,b)(y) = −vx,b(−y) = −v−x,b(y). (4.14)

Now we find similar as in the proof of Lemma 4.7 using Lemma 4.2 and (4.14)

Pfa
#(g

(ε)
x,b))P∗

f = a#(Pgg
(ε)
x,b) = a#(τ−1

ε Pvτεg
(ε)
x,b)

= a#(τ−1
ε Pvvx,b) = a#(−τ−1

ε v−x,b)

= −a#(g(ε)−x,b).

This implies

PfAb(x)P∗
f = −Ab(−x).

Thus (a) follows. Now (b) follows from (a) and by calculating the rotation. (c) Follows

similarly as in (a) observing that ω(−·) = ω.

In view of the following proposition we see that P has the physical interpretation of

parity inversion.

Proposition 4.12. P has satisfies the following properties.

(a) Px̂jP = −x̂j ,
(b) PpjP∗ = −pj ,
(c) PŜjP∗ = Ŝj,

(d) PA(x̂j)P∗ = −A(x̂j), if κ(−·) = κ(·),
(e) PB(x̂j)P∗ = B(x̂j), if κ(−·) = κ(·),
(f) PE⊥(x̂j)P∗ = −E⊥(x̂j), if κ(−·) = κ(·),
(g) PHfP∗ = Hf ,

(h) PPfP∗ = −Pf .

Proof. The proof is analogous to that of Proposition 4.8.

In the following proposition we give a formula for the action of the parity in g.

Proposition 4.13. The map Pg has the following properties. Define

DP
λ,λ′(k) := −ε(k, λ) · ε(−k, λ′).

Then DP
λ,λ′(k) = DP

λ′,λ(−k).

(a) For any h ∈ g we have for almost all (k, λ) ∈ R3 × {1, 2}

(Pgh)(k, λ) =
∑

λ′=1,2

DP
λ,λ′(k)h(−k, λ′).
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(b) We have in the sense of operator valued distributions for all (k, λ) ∈ R3 × Z2

Pfa
#(k, λ)P∗

f =
∑

λ′=1,2

DP
λ,λ′(k)a#(−k, λ′)

Proof. The first statement follows from the symmetry of the scalar product. (a) Using

(4.4), we find

(Pgh)(k, λ) = ε(k, λ) · F
(
F−1

∑

λ′=1,2

(−ε(·, λ′))h(·, λ′)
)
(−k)

=
∑

λ′=1,2

(−ε(k, λ)) · ε(−k, λ′)h(−k, λ′).

(b) We have by linearity and (a)

∑

λ=1,2

∫
h(k, λ)Pfa

∗(k, λ)P∗
f dk = Pfa

∗(h)P∗
f = a∗(Pgh)

=
∑

λ=1,2

∫

R3

(Pgh)(λ, k)a
∗(k, λ)dk

=
∑

λ,λ′=1,2

∫

R3

DP
λ,λ′(k)a∗(k, λ)h(−k, λ′)dk

=
∑

λ,λ′=1,2

∫

R3

DP
λ′,λ(−k)a∗(−k, λ′)h(k, λ′)dk

Since h ∈ g is arbitrary the claim follows for a∗(k, λ). Taking adjoints the claim then

follows also for a(k, λ).

4.4 Time reversal symmetry

We define time reversal symmetry. Let K denote complex conjugation on L2(R3;Ds).

Define the operators

Tp,s :=

{
K , if s = 0,

(Kσ2) , if s = 1/2

and

Tmat :=
N⊗

j=1

Tp,sj .

Let Kv denote complex conjugation in v, and let

Kg = τ−1
ε Kvτε (4.15)
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denote its action on g. Next we define operator of time reversal on the quantum field

Tf := Γ(−Kg). (4.16)

We define the operator of time reversal in the full Hilbert space by

T = Tmat ⊗ Tf . (4.17)

Proposition 4.14. The maps Tmat, Tf , and T are anti-unitary operators, which commute

with the representations Umat, Uf , and U and the operators Pmat, Pf , and P, respectively.

We have T 2
f = 1, and

T 2
mat = (−1)

∑N
j=1

2sj , T 2 = (−1)
∑N

j=1
2sj .

Proof. The anti-unitarity is straight forward to verify on the one particle spaces. On the

tensor product it then follows by Lemma 2.2. The commutativity can be seen by verifying

it on the one particle spaces. The last statement follows from

T 2
mat =

N⊗

j=1

(Tmat,sj)
2

with (Tmat,0)
2 = 1 and (Tmat,1/2)

2 = (Kσ2)(Kσ2) = K2σ2(−σ2) = −1,

Lemma 4.15. Suppose κ(·) = κ(−·). Then the following holds

(d) TfA(x)T ∗
f = −A(x),

(e) TfB(x)T ∗
f = −B(x),

(e) TfE
⊥(x)T ∗

f = E⊥(x).

Proof. It follows directly from the definition, a trivial change of variables, and the assump-

tion about κ that

(Kvvx,b)(y) = vx,b(y) . (4.18)

Now we find using Lemma 4.2

Γ(−Kg)a
∗(g

(ε)
x,b)Γ(−Kg)

∗ = a∗(−Kgg
(ε)
x,b) = −a∗(τ−1

ε Kvτεg
(ε)
x,b)

= −a∗(τ−1
ε Kvvx,b) = −a∗(τ−1

ε vx,b)

= −a∗(g(ε)x,b)

This implies Tfa
∗(g

(ε)
x,b)T ∗

f = −a∗(g(ε)x,b) and by taking adjoints Tfa(g
(ε)
x,b)T ∗

f = −a(g(ε)x,b). Hence

TfAb(x)T ∗
f = −Ab(x).

This shows (a). Now (b) follows from (a) and by calculating the rotation. (c) Follows

similarly as in (a) observing that iω changes sign when complex conjugating.
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In view of the following proposition we see that T has the physical interpretation of

time reversal.

Proposition 4.16. Suppose κ(·) = κ(−·). Then T is anti-unitary and satisfies the follow-

ing properties

(a) T x̂jT ∗ = x̂j ,

(b) T pjT ∗ = −pj ,
(c) T ŜjT ∗ = −Ŝj ,

(d) T A(x̂j)T ∗ = −A(x̂j), if κ(−·) = κ(·),
(e) T B(x̂j)T ∗ = −B(x̂j), if κ(−·) = κ(·),
(f) T E⊥(x̂j)T ∗ = E⊥(x̂j), if κ(−·) = κ(·),
(g) T HfT ∗ = Hf ,

(h) T PfT ∗ = −Pf .

Proof. Parts (a), (b), and (c) are straight forward to verify. Parts (d), (e), and (f) follow

from Lemma 4.15. Using Lemma 4.3 we find for any measurable f : R3 → R

TfdΓ(Mf)T ∗
f = dΓ(τ−1

ε KvτεMfτ
−1
ε K∗

vτε)

= dΓ(τ−1
ε KvF

−1MfFK∗
vτε)

= dΓ(τ−1
ε F−1Mf(−·)Fτε)

= dΓ(Mf(−·)),

where in the third equality we used that the Fourier transform satisfies the following prop-

erties Fϕ = Fϕ(−·) and F−1ϕ = F−1ϕ(−·) for ϕ ∈ L2(R3). Now choosing f = ω or

f : k 7→ kj Parts (g) and (h) follow.

In the following proposition we give a formula for the action of the time reversal sym-

metry in g.

Proposition 4.17. For h ∈ g we have for almost all (k, λ) ∈ R3 × {1, 2}

(Kgh)(k, λ) =
∑

λ′=1,2

DT
λ,λ′(k)h(−k, λ′),

where DT
λ,λ′(k) := ε(k, λ)·ε(−k, λ′). Then DT

λ,λ′(k) = DT
λ′,λ(−k) and in the sense of operator

valued distributions for all (k, λ) ∈ R3 × Z2

Tfa
#(k, λ)T ∗

f = −
∑

λ′=1,2

DT
λ,λ′(k)a#(−k, λ′).
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Proof. Using for ϕ ∈ L2(R3) the following property of the Fourier transform F (F−1ϕ)(k) =

ϕ(−k), we find

(Kgh)(k, λ) = ǫ(k, λ) · F
(
F−1

∑

λ′=1,2

ε(·, λ′)h(·, λ′)
)
(k)

=
∑

λ′=1,2

ε(k, λ) · ε(−k, λ′)h(−k, λ′).

This shows the first identity. Using this, we find by anti-linearity
∑

λ=1,2

∫
h(k, λ)Tfa

∗(k, λ)T ∗
f dk = Tfa

∗(h)T ∗
f = a∗(−Kgh)

= −
∑

λ=1,2

∫

R3

(Kgh)(λ, k)a
∗(k, λ)dk

= −
∑

λ,λ′=1,2

∫

R3

h(−k, λ′)DT
λ,λ′(k)a∗(k, λ)dk

= −
∑

λ,λ′=1,2

∫

R3

h(k, λ)DT
λ′,λ(−k)a∗(−k, λ′)dk.

Since h ∈ g is arbitrary the second identity follows for a∗(k, λ). Taking adjoints the claim

then follows also for a(k, λ).

5 Hamiltonians with Symmetries

In this section we consider Hamiltonians of non-relativistic qed, and discuss their symmetry

properties.

Theorem 5.1. Suppose U ∈ SU(2), R = π(U), V (x1, ..., xN ) = V (Rx1, ..., RxN ) for all

x1, ..., xN ∈ R3, Bext(x) = RBext(R
−1x) for all x ∈ R3, and κ(R·) = κ(·). Then

U(U)HU(U)∗ = H.

Proof. Using (3.11), properties of the cross product, a change of variables, and the sym-

metry properties of Bext we find

RAext(R
−1x) = −

∫
(x− Ry)× RBext(y)

4π|x− Ry|3 dy = Aext(x).

Thus using Proposition 4.8

U(U)HU(U)∗

=

N∑

j=1

{
1

2mj

(
R−1pj + qj(R

−1A(x̂j) + Aext(R
−1x̂j))

)2
+ µjR

−1Ŝj · (R−1B(x̂j) +Bext(R
−1x̂j))

}

+Hf + V (R−1x̂1, ..., R
−1x̂N )

= H,
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where in the last line we used the assumed properties of Bext and V .

Theorem 5.2. Suppose V (x1, ..., xN) = V (−x1, ...,−xN ) for all x1, ..., xN ∈ R3, Bext(·) =
Bext(−·), and κ(−·) = κ(·). Then

PHP∗ = H.

Proof. Using (3.11), the properties of the cross product, a change of variables, and the

symmetry properties of Bext we find

Aext(−x) = −
∫

(−(x− y))×Bext(−y)
4π|x− y|3 dy = −Aext(x).

Thus we find from Proposition 4.12

PHP∗

=

N∑

j=1

{
1

2mj
(−pj − qjA(x̂j) + qjAext(−x̂j)))2 + µjŜj · (B(x̂j) +Bext(−x̂j))

}

+Hf + V (−x̂1, ...,−x̂N )
= H,

where in the last line we used the assumed properties of Bext and V .

Theorem 5.3. Suppose Bext = 0 and κ(·) = κ(−·). Then

T HT ∗ = H.

Proof. We find from Proposition 4.16

T HT ∗ =
N∑

j=1

{
1

2mj
(−pj − qjA(x̂j))

2 + µjŜj · B(x̂j)

}
+Hf + V (x̂1, ..., x̂N ) = H.

Theorem 5.4. If V (x1, ..., xN ) = V (−x1, ...,−xN ) for all x1, ..., xN ∈ R3, Bext(·) =

−Bext(−·), and κ(·) = κ(−·) = κ(·). Then

T PH(T P)∗ = H.

Proof. Using (3.11), the properties of the cross product, a change of variables, and the

symmetry properties of Bext we find

Aext(−x) = −
∫

(−(x− y))× Bext(−y)
4π|x− y|3 dy = Aext(x).
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Thus we find from Propositions 4.12 and 4.16

T PHP∗ T ∗

= T
( N∑

j=1

{
1

2mj

(−pj − qjA(x̂j) + qjAext(−x̂j))2 + µjŜj · (B(x̂j) +Bext(−x̂j))
}

+Hf + V (−x̂1, ...,−x̂N )
)
T ∗

=

N∑

j=1

{
1

2mj
(pj + qjA(x̂j) + qjAext(x̂j)))

2 + µjŜj(B(x̂j)−Bext(−x̂j))
}

+Hf + V (−x̂1, ...,−x̂N )
= H,

where we used the assumed properties of Bext and V .

As an application of the abstract Kramer theorem, we now show the following degen-

eracy result.

Theorem 5.5. Suppose
∑N

j=1 2sj is odd, and that at least one of the following two assump-

tions hold.

(i) Bext = 0 and κ(·) = κ(−·)

(ii) V (−x1, ...,−xN ) = V (x1, ..., xN ) and Bext(−x) = −Bext(x), and κ(·) = κ(−·) = κ(·).

Then, any eigenvalue of H is at least two fold degenerate. If the multiplicity of an eigenvalue

is finite, it is even.

Proof. In case (i) the assertion follows from Kramers degeneracy theorem 2.4 for θ =

T , Proposition 4.14, and Theorem 5.3. In case (ii) the assertion follows from Kramers

degeneracy theorem 2.4 for θ = T P, Proposition 4.14, and Theorem 5.4.

Remark 5.6.

(a) We note that Theorem 5.5 for the case N = 1, s1 = 1/2, and (i) with the additional

assumption V (−x) = V (x) was shown in [20, 21]. Thus Theorem 5.5 relaxes the

unnecessary parity-symmetry assumption for the external potential V . In fact, the

proof given in [20] uses the symmetry PT , while the proof in [21] uses the symmetry

T in the so called Schrödinger representation, cf. Section 7 of this paper.

(b) Since the classical Kramer theorem uses time inversion symmetry it cannot be applied

to situations with external magnetic fields. However if one considers the anti-linear

symmetry PT one can include external magnetic fields, which satisfy a symmetry

condition. We note that the result (ii) also holds for an ordinary Schrödinger oper-

ator without any quantized electromagnetic field, as the proof also applies to such a

situation with a straight forward (trivial) modification of the proof.
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Next we consider the restriction to symmetric subspaces. To this end we introduce

notation satisfying the following hypothesis.

Hypothesis A. The set P = {p1, ...., pL}, L ∈ N ∩ {1, ..., N}, is a partition of {1, ...., N}
such that on each element p ∈ P of the partition the numbers mj, sj, qj , and µj are equal

(cf. (3.10)). The function τ maps P to {0, 1}. The potential V is symmetric with respect

to interchange of particle coordinates of particles which belong to the same element p ∈ P.

Remark 5.7. The function τ in Hypothesis A is used to specify the statistics of identical

particles. The value 0 will be used to describe bosons while the value 1 will be used

describe fermions. By physical laws, spin zero particles are bosons while spin 1/2 particles

are fermions.

For a finite set S we shall denote by SS the set of all permutations of the set S. For

a subset S ⊂ {1, ..., N} and σ ∈ SS we denote by σ its extension to {1, ..., N} by setting

it equal to the identity on {1, ...., N} \ S. Suppose the partition P satisfies Hypothesis A.

Then for any p ∈ P and σ ∈ Sp it follows that U(σ), defined in (3.1), leaves Hmat invariant,

and we can define the subspace

Hmat,P,τ = {ψ ∈ Hmat : ∀p ∈ P, ∀σ ∈ Sp,U(σ)ψ = sgn(σ)τ(p)ψ}, (5.1)

where sgn(σ) defines the signum of the permutation σ. Furthermore, it follows from the

definitions that U(σ) commutes with the symmetries Umat, Pmat, Tmat as well as the Hamil-

tonian H . In particular, Hmat,P,τ ⊗Fs(g) is an invariant subspace of H .

Theorem 5.8. Suppose that the partition P, the function τ and the potential V , satisfy

Hypothesis A. Suppose
∑N

j=1 2sj is odd, and (i) or (ii) of Theorem 5.5 holds. Then, any

eigenvalue of H|Hmat,P,τ⊗Fs(g) has even or infinite multiplicity.

Proof. Follows from the same proof as Theorem 5.5, by observing in addition that T and

P commute with U(σ) for any σ ∈ Sp and p ∈ P, and thus leave Hmat,P,τ invariant.

Remark 5.9. We note that Theorem 5.8 for the special case P = {p} with p = {1, ...., N},
sj = 1/2 for all j ∈ p, and τ(p) = 1, and with the additional assumption that V is given

by the Coulomb potential of N electrons in the presence of the electric field of a nucleus

was shown in [20].

6 Translationally invariant Hamiltonians

We write the Hamiltonian (3.10) acting in the Hilbert space Hmat ⊗Fs(g) in the following

notation

H =

N∑

j=1

Tj +Hf + V (x̂1, ..., x̂N), Tj :=
1

2mj
(pj + qjA(x̂j))

2 + µjŜj · B(x̂j),
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and we assume that there is no external magnetic field. Furthermore, we assume that the

potential V in the definition of the Hamiltonian (3.10) is translationally invariant, i.e., that

for all a ∈ R3

V (x1 + a, ..., xN + a) = V (x1, ..., xN). (6.1)

Using the unitary transformation

U = exp(ixN · (Pf +
N−1∑

j=1

pj))

and a Fourier transform in the variable xN we can write

H =

∫ ⊕

R3

H(ξ)dξ,

where

H(ξ) :=
1

2mN
(ξ −

N−1∑

j=1

pj − Pf + qNA(0))
2 + µN ŜN ·B(0) +

N−1∑

j=1

Tj +Hf + V (x̂1, ..., x̂N−1, 0)

acts in

H′
mat ⊗DsN ⊗ Fs(g), (6.2)

where

H′
mat :=

N−1⊗

j=1

L2(R3;Dsj),

cf. [10,19]. We define U ′
mat, P ′

mat, and T ′
mat on H′

mat as in Section 4. On (6.2) we define the

symmetries

U ′(U) := U ′
mat(U)⊗DsN (U)⊗ Uf(π(U)), U ∈ SU(2)

P ′ := P ′
mat ⊗ 1IDsN

⊗Pf

T ′ := T ′
mat ⊗ T ′

p,s ⊗ Tf ,

where we defined

T ′
p,s :=

{
Ks , if s = 0,

(Ksσ2) , if s = 1/2

where Ks denotes complex conjugation on Ds = C2s+1.

Lemma 6.1. Suppose V is translationally invariant, cf. (6.1).

(a) Let U ∈ SU(2), R = π(U), V (Rx1, ..., RxN , 0) = V (x1, ..., xN , 0) for all xj ∈ R3, and

κ(·) = κ(R·). Then for all ξ ∈ R3

U ′(U)H(ξ)U ′(U)∗ = H(Rξ).
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(b) Let V (x1, ..., xN−1, 0) = V (−x1, ...,−xN−1, 0) for all xj ∈ R3 and κ(·) = κ(−·). Then
for all ξ ∈ R3

P ′H(ξ)P ′∗ = H(−ξ).

(c) If κ(·) = κ(−·), then for all ξ ∈ R3

T ′H(ξ)T ′∗ = H(−ξ).

Proof. The Lemma follows as a consequence of Lemmas 4.7, 4.11, and 4.15 and Proposi-

tions 4.8, 4.12, and 4.16, respectively, and their trivial adaption to (6.2).

Theorem 6.2. Suppose V is translationally invariant and
∑N

j=1 2sj is odd. If κ(·) = κ(−·)
each eigenvalue of H(0) has even or infinite multiplicity. If in addition V (x1, ..., xN−1, 0) =

V (−x1, ...,−xN−1, 0) for all xj ∈ R3 and κ(−·) = κ(·), then for all ξ ∈ R3 each eigenvalue

of H(ξ) has even or infinite multiplicity.

Proof. The theorem follows as a consequence of Parts (c) and (b) of Lemma 6.1, The-

orem 2.4. The first statement follows using the anti-linear symmetry T ′. The second

statement follows using the anti-linear symmetry P ′T ′ and their commutativity property,

cf. Proposition 4.14 and its trivial adaption to (6.2).

Next we consider quantum systems with identical particles. For notational simplicity,

we shall assume that there is a single particle which is distinguishable from the rest. This is

satisfied for atoms, ions and many molecules. Otherwise, a further restriction to subspaces

would be necessary.

Theorem 6.3. Suppose V is translationally invariant and
∑N

j=1 2sj is odd. Suppose that

the partition P, the function τ and the potential V , satisfy Hypothesis A. Furthermore,

assume {N} ∈ P and let P′ = P \ {{N}} and τ ′ = τ |P′. If κ(·) = κ(−·) each eigenvalue

of H(0) when restricted to H′
mat,P′,τ ′ ⊗DsN ⊗ Fs(g) has even or infinite multiplicity. If in

addition V (x1, ..., xN−1, 0) = V (−x1, ...,−xN−1, 0) for all xj ∈ R3 and κ(−·) = κ(·), then
each eigenvalue of H(ξ) when restricted to H′

mat,P′,τ ′ ⊗ DsN ⊗ Fs(g) has even or infinite

multiplicity.

Proof. Follows from the same proof as Theorem 6.2, by observing in addition that T ′ and

P ′ commute with U(σ) for any σ ∈ Sp and p ∈ P′.

Remark 6.4. We note that the statement of Theorem 6.2 was proven for the special case

where N = 1 and V = 0 for small coupling in [16] and for general coupling in [17]. Clearly,

Theorem 6.3 covers the special case of N −1 electrons with spin 1/2 and a spinless nucleus

with pairwise Coulomb interactions (P = {{1, ...., N − 1}, {N}}), cf. Remark 5.2 in [20].

We note that whereas ground states of fiber Hamiltonians describing electrons do not exist

for nonzero momentum [10], they are shown to exist for atoms and small absolute values

of the momentum [19].
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7 Schrödinger Representation

In this section we define rotation, parity and time reversal symmetry in the so called

Schrödinger representation of non-relativistic qed. To this end, we recall the Schwartz

space of smooth functions of rapid decrease S(Rd;F), with F = R or F = C, which is the

set of infinitely differentiable F-valued functions f(x) on Rd for which

‖f‖α,β = sup
x∈Rd

|xα∂βf(x)| <∞ (7.1)

for all α, β ∈ Nd
0. Let S = S(R3;R)3 equipped with the product topology. The topological

dual space S ′ can be identified with the set of all T ∈ S ′(R3;R)3, with T (f) = T1(f1) +

T2(f2) + T3(f3).

On S we define the symmetric positive semi-definite form

B(v, w) =
∑

i,j

∫
1

|k| v̂i(k)Pi,j(k)ŵj(k)d
3k, (7.2)

where we recall

P (k)a,b := δab −
kakb
|k|2 , a, b = 1, 2, 3, k 6= 0. (7.3)

Let

c(f) = e−
1

4
B(f,f)

for f ∈ S.
By definition a cylinder set in S ′ is a set

{T ∈ S ′ : (T (f1), ...., T (fn)) ∈ Ω},

where f1, ..., fn are n fixed elements in S and Ω is a fixed Borel set in R
n. A cylinder

set measure on S ′ is a measure, µ, on the σ-algebra, generated by the cylinder sets, with

µ(S ′) = 1. By construction, each f ∈ S defines a measurable function ϕ(f) on S ′ by

ϕ(f)(T ) = T (f). (7.4)

In particular it follows that for all α, β ∈ R and f, g ∈ S

ϕ(αf + βg) = αϕ(f) + βϕ(g). (7.5)

We shall use the following theorem, see [5, 6, 7, 8, 9].

Theorem 7.1. There exists a unique cylinder set measure ν on S ′ such that for all f ∈ S

exp(−1

4
B(f, f)) =

∫
exp(iϕ(f))dν (7.6)

Furthermore, ν has the following properties.
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(a) For each f ∈ S the function ϕ(f) is a Gaussian random variable with mean zero and

variance 1
2
B(f, f).

(b) For f1, ...fn ∈ S the random variables ϕ(f1), ..., ϕ(fn) are jointly Gaussian random

variables.

(c) Let U = {F (ϕ(f1), ..., ϕ(fn)) : F ∈ S(Rn;C), f1, ..., fn ∈ S}. Then U is dense in

L2(S ′, dν).

(d) If f ∈ S and P f̂ = 0, then ϕ(f) = 0 almost surely, cf. (7.3). In particular, for

almost all T = (T1, T2, T3) ∈ S ′ we have ∇ · T = 0.

A proof of Theorem 7.1 will be given in Appendix B. Henceforth, we shall denote by ν

the unique measure on S ′ satisfying (7.6).

Remark 7.2. We note that part (d) of Theorem 7.1 will not be needed. Nevertheless it is

interesting in its own.

To formulate the next theorem we define

S0 := {g ∈ S : ∇ · g = 0}.

By ( · )cl we shall denote the operator closure.

Theorem 7.3. There exists a unique unitary transformation Vv : Fs(v) → L2(S ′, dν) with

the following properties

(i) VvΩ = 1,

(ii) Vv(a∗(iωf) + a(iωf))
cl
V −1
v = ϕ(f), for all f ∈ S0,

where iωf = (ω−1/2f̂)∨ and ϕ(f) is understood as a multiplication operator. Moreover, we

have VvΓ(Kv) = JVv, where J denotes complex conjugation in L2(S ′, dν).

The proof of Theorem 7.3 will be given in Appendix B. Using Lemma 4.1 we obtain

immediately the following corollary.

Corollary 7.4. Let the notation be as in in Theorem 7.3. There exists a unique unitary

transformation Vg : Fs(g) → L2(S ′, dν) with the following properties

(i) VgΩ = 1,

(ii) Vg(a∗(τ−1
ǫ iωf) + a(τ−1

ǫ iωf))
cl
V −1
g = ϕ(f), for all f ∈ S0.

Moreover, we have VgΓ(Kg) = JVg, where J denotes complex conjugation in L2(S ′, dν).
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Next we define symmetries in Schrödinger representation. We will show in Theorem 7.6,

below, that they agree by the unitary transformations of Theorem 7.3 and Corollary 7.4

with the definitions in Fock space representation. We define for U ∈ SU(2) on S the

representation

(US(U)f)(x) = Rf(R−1x), f ∈ S, x ∈ R
3,

where R = π(U). We define for f ∈ S

(PSf)(x) = −f(−x).

As a consequence of the definition P−1
S = PS . Then this defines by duality a transformation

on S ′ by

(US′(U)T )(f) = T (US(U)
−1f)

and

(PS′T )(f) = T (P−1
S f),

for all T ∈ S ′ and f ∈ S. On L2(S ′, dν) we define for any F ∈ L2(S ′, dν)

(USch(U)F )(T ) = F (US′(U)−1T ), U ∈ SU(2),

(PSchF )(T ) = F (P−1
S′ T ),

(KSchF )(T ) = F (T )

(ΘSchF )(T ) = F (−T )

for all T ∈ S ′.

Lemma 7.5. Let U ∈ SU(2). The measure ν is invariant with respect to US′(U) and

PS′. The transformations USch(U), PSch are unitary transformations on L2(S ′, dν). The

transformation KSch is an anti-unitary transformation on L2(S ′, dν), which squares to one.

The measure ν is invariant with respect to −1S′, and ΘSch is a unitary transformation on

L2(S ′, dν), which squares to one.

Proof. Let G stand for US′(U) and PS′ and g for US(U) and PS , respectively. Then G

leaves the set of cylinder sets invariant, and hence the σ-algebra generated by the cylinder

sets. Since the form B is invariant with respect to G, so is the measure ν. To see this

define νG(A) = ν(G(A)) for any measurable set A. Then for any f ∈ S we find from the

definition of the integral

exp(−1

4
B(f, f)) = exp(−1

4
B(gf, gf)) =

∫
exp(iϕ(gf))dν =

∫
exp(i(G−1T )(f))dν(T )

=

∫
exp(iT (f))dνG(T ) =

∫
exp(iϕ(f))dνG.

Thus it follows ν = νG from the uniqueness property in Theorem 7.1. Thus the unitarity

properties of USch(U) and PSch on L2(S ′, dν) now follow by the definition of the integral as

a limit of simple functions. The anti-unitarity of KSch is obvious. The last statement about

ΘSch follows analogously as above with G = −1S′ and g = −1S .
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The following theorem relates the symmetries in the Fock representation to the sym-

metries in the Schrödinger representation.

Theorem 7.6. Let Vv and Vg be the unique unitary transformations satisfying (i) and (ii)

of Theorem 7.3 and Corollary 7.4, respectively. Then the following identities hold.

(a) VgUf(U)V
−1
g = USch(U) and VvΓ(Uv(π(U))V

−1
v = USch(U), for U ∈ SU(2),

(b) VgPfV
−1
g = PSch and VvΓ(Pv)V

−1
v = PSch,

(c) VgΓ(Kg)V
−1
g = KSch and VvΓ(Kv)V

−1
v = KSch.

(d) VgΓ(−1g)V
−1
g = ΘSch and VvΓ(−1v)V

−1
v = ΘSch.

(e) VgTfV
−1
g = ΘSchKSch.

Proof. We only discuss the case for v, the case for g then follows using Lemma 4.1.

(a) Let W = USch(U)VvΓ(Uv(π(U))
−1). Then it follows from the definitions that WΩ = 1.

Furthermore, it follows for all f ∈ S0 using (3.4), the invariance of ω and Theorem 7.3 (ii)

W (a∗(iωf) + a(iωf))
clW−1 = USch(U)Vv(a∗(iωUv(U)−1f) + a(iωUv(U)−1f))clV −1

v USch(U)
−1

= USch(U)ϕ(Uv(U)
−1f)USch(U)

−1 = ϕ(f), (7.7)

where the last equality can be seen as follows. For any F ∈ L2(S ′, dν) we find with

F ′ := USch(U)
−1F using Uv(U)f = US(U)f and inserting into the definitions, e.g. (7.4),

that

(USch(U)(ϕ(Uv(U)
−1f)F ′))(T ) = (ϕ(US(U)

−1f)F ′)(US′(U)−1T )

= (US′(U)−1T )(US(U)
−1f)F ′(US′(U)−1T )

= T (f)F ′(US′(U)−1T ) = ϕ(f)F (T ).

This show the last equality in (7.7). It now follows from (7.7) that W = Vv by the

uniqueness statement of Theorem 7.3. This shows (a). Now (b) is shown similarly as (a).

(c) LetW = KSchVvΓ(Kv). Then it follows from the definitions thatWΩ = 1. Furthermore,

it follows for all f ∈ S0 using (3.4), the reality and symmetry assumptions of ω, and

Theorem 7.3 (ii) that

W (a∗(iωf) + a(iωf))
clW−1 = KSchVv(a∗(Kviωf) + a(Kviωf))

clV −1
v K−1

Sch

= KSchVv(a∗(iωKvf) + a(iωKvf))
clV −1

v K−1
Sch

= KSchϕ(Kvf)K−1
Sch = ϕ(f).

As in (a) it now follows that W = Vv by the uniqueness statement of Theorem 7.3. This

shows (c), since K−1
v = Kv. Now (d) follows analogously to (c) by considering W =
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ΘSchVvΓ(−1v) and observing that

W (a∗(iωf) + a(iωf))
clW−1 = ΘSchVv(a∗(−iωf) + a(−iωf))clV −1

v Θ−1
Sch

= ΘSchVv(a∗(iω(−f)) + a(iω(−f))clV −1
v Θ−1

Sch

= ΘSchϕ(−f)Θ−1
Sch = ϕ(f).

Again by uniqueness W = Vv. This shows (d). Finally, (e) follows from (c) and (d).

Remark 7.7. We see from Subsection 4.4 and Theorem 7.6 that USch, PSch and TSch :=

ΘSchKSch correspond to the rotation, parity and time reversal symmetries in the Schrödinger

representation. Alternatively, one could redefine the field operators in the Hamiltonian so

that KSch has the property of a time reversal symmetry, cf. [21].
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A Gaussian Random Processes

In this appendix we review notations and results about so called Gaussian random pro-

cesses. We follow [26]. The main result is Theorem A.6, which will be used in the proof of

Theorem 7.3 in Appendix B. First we introduce the following definitions.

Definition A.1. Let (M,µ) be a probability measure space. Let V be a real vector space.

A random process indexed by V is a map φ from V to the random variables on M , so

that almost everywhere

φ(v + w) = φ(v) + φ(w) ∀v, w ∈ V

φ(αv) = αφ(v) ∀α ∈ R, ∀v ∈ V.

For a random variable Y on probability measure space (M,µ) we will use the notation

〈Y 〉 :=
∫
Y dµ.

Definition A.2. Let r be a real Hilbert space with inner product 〈·, ·〉r. A Gaussian

random process indexed by r is a random process φ indexed by r so that the following

holds.
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(a) The set {F (φ(v1), ..., φ(vn)) : v1, ..., vn ∈ r, F ∈ S(Rn)} is dense in L2(M, dµ), where

(M,µ) is the probability measure space of the random process φ.

(b) Each φ(v) is a Gaussian random variable.

(c) 〈φ(v)φ(w)〉 = 1
2
〈v, w〉r.

Remark A.3.

(a) We note that in (a) of Definition A.2, we use a different assumption than in the

definition of a Gaussian random process indexed by a Hilbert space in [26]. However,

in view of [26, Lemma I.5] this is equivalent.

(b) One can show that two Gaussian random processes indexed by the same real Hilbert

space are unique up to isomorphisms of probability measure spaces, see for example

[26, Theorem I.6].

(c) For any real Hilbert space r, a Gaussian process indexed by r exists. For a proof see

Theorem I.9 in [26].

Let r be the complexification of r, i.e., rC = r⊕ r as a real Hilbert space with a complex

structure given by i(u, v) = (−v, u). We define

J : rC → rC, J(u, v) = (u,−v). (A.1)

Then J is anti-linear and satisfies J2 = 1. Without mention we shall imbed r in rC by

the map ι : u 7→ (u, 0). For the operator introduced in (3.3) we shall write for notational

convenience a#(f) = a#(ιf) for f ∈ r.

Next we introduce the notion of Wick powers and Wick product of random variables.

To this end we introduce the following multi-index notation. For k ∈ N, n ∈ Nk
0 and

α, β ∈ Ck we define

αn =

k∏

j=1

αnj , αβ =

k∑

j=1

αjβj, |n| =
k∑

j=1

nj , n! =

k∏

j=1

nj ! .

Given a formal power series in random variables f1, ..., fk with finite moments on a measure

space (M,µ), which we denote by
∑

n∈Nk
0

anf
n, where an ∈ C and

fn :=
k∏

j=1

f
nj

j ,

we define the formal derivative

∂

∂fi

∑

n∈Nk
0

anf
n =

∑

n∈Nk
0

annif
n−ei .

where ei ∈ Nk is defined such that all components vanish except the i-th, which equals 1.
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Remark A.4. As in [26] we don’t identify two series which are identical by virtue of

substituting in specific arguments (e.g. f and f 2 are distinct as formal power series even if

f = 1).

Definition A.5. Let f1, ..., fk be random variables with finite moments on a measure space

(M,µ). The Wick product : fn : is defined inductively in n = |n| by

(i) : f 0 : = 1, where 0 = (0, ...., 0),

(ii) 〈: fn :〉 = 0 if n 6= 0,

(iii) ∂
∂fi

: fn : = ni : f
n−ei : .

The following theorem is the main theorem of this section.

Theorem A.6. Let φ be a Gaussian random process indexed by a separable real Hilbert

space r on the probability measure space (M,µ), and let D be a dense subset of r. Then

there exists a unique unitary transformation V : Fs(rC) → L2(M, dµ) satisfying

(i) V Ω = 1

(ii) V (a∗(f) + a(f))clV −1 = φ(f) for all f ∈ D.

Moreover, the following holds. We have

(a) V (a∗(f) + a(f))clV −1 = φ(f) holds for all f ∈ r.

(b) J V = V Γ(J), where J is defined in (A.1) and J denotes ordinary complex conjuga-

tion in L2(M, dµ).

(c) For all fj ∈ r we have

V a∗(f1) · · ·a∗(fn)Ω = : φ(f1) · · ·φ(fn) : . (A.2)

A proof of Theorem A.6 can be found in Theorems I.6 and I.11 in [26]. For the con-

venience of the reader, we shall outline a proof below. First, we need a few lemmas.

For random variables f1, · · · , fk with finite moments we define the formal power series for

α ∈ Ck by

: exp(αf) : =

∞∑

n∈Nk
0

αn : fn :

n!
. (A.3)

Lemma A.7. Let f1, ..., fk be random variables with finite moments on a probability mea-

sure space (M,µ). Then for all α ∈ Ck the following holds

(a) 〈: exp(αf) :〉 = 1

(b) : exp(αf) := exp(αf)〈exp(αf)〉−1
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(c) If f is a Gaussian random variable, then (A.3) converges in L1(M, dµ) and

: exp(αf) := exp(αf) exp

(
−1

2

∑

i,j

αiαj〈fifj〉
)
.

Proof. (a) This follows from (i) and (ii) of Definition A.5. (b) By (iii) of Definition A.5, we

find ∂
∂fj

: exp(αf) := αj : exp(αf) :. Thus
∂
∂fj

: exp(αf) : exp(−αf) = 0 and so : exp(αf) :

exp(−αf) = C for some constant C. Thus from (a) it follows that C = 〈exp(αf)〉−1.

(c) The L1 convergence follows from dominated convergence. Using that f is Gaussian

one finds 〈exp(αf)〉 = exp(1
2

∑
i,j αiαj〈fifj〉) (e.g. by calculating the Fourier transform for

α = it, with t ∈ Rk, and then using analytic continuation). Thus (c) follows from (b).

The following Lemma is from [26, Theorem I.3, Corollary I.4].

Lemma A.8. The following holds.

(a) If f and g are Gaussian random variables, then for m,n ∈ N0

〈: fn :: gm :〉 = δn,mn!〈fg〉n.

(b) If f1, ..., fn and g1, ..., gm are Gaussian random variables and n 6= m, then

〈: f1 · · ·fn :: g1 · · · gm :〉 = 0.

(c) If f1, ..., fk are Gaussian random variables with 〈fifj〉 = δi,j, then for n,m ∈ Nk
0

〈: fn :: fm :〉 = δn,mn! .

Proof. (a). By (c) of Lemma A.7 we find

: exp(αf) :: exp(βg) : = exp(αf + βg) exp

(
−1

2

[
α2〈f 2〉+ β2〈g2〉

])

=: exp(αf + βg) : exp (αβ〈fg〉) .

Thus by (a) of Lemma A.7

〈: exp(αf) :: exp(βg) :〉 = exp (αβ〈fg〉) .

Thus (a) now follows by expanding exponentials and equating coefficients. (b,c) follow

from the multinomial theorem and (a).

Lemma A.9. Let φ be a Gaussian random process indexed by the real Hilbert space r. Let

Γn(r) = linC{: φ(f1) · · ·φ(fn) : | f1, ..., fn ∈ r}cl, n ∈ N

and Γ0(r) = C. Then the following holds.
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(a) Γn(r) ⊥ Γm(r) for n 6= m.

(b) L2(M, dµ) =
⊕∞

n=0 Γn(r).

Proof. (a) This follows from (b) of Lemma A.8. (b) For any f ∈ r, a direct computation

shows that the formal power series : eiφ(f) : converges in L2(M, dµ). We shall denote the

limit by the same symbol. Thus by definition
⊕∞

n=0 Γn(r) contains : e
iφ(f) : and so eiφ(f) in

view of (c) of Lemma A.7. In particular, for any F ∈ S(Rn) and f1, ..., fn ∈ r we find that

F (φ(f1), · · · , φ(fn)) = (2π)−n/2

∫
F̂ (t) exp(

n∑

j=1

tjφ(fj))d
nt (A.4)

is in
⊕∞

n=0 Γn(r). But the set of random variables of the form as on the left hand side of

(A.4) are dense in L2(M, dµ) by the assumptions of an indexed Gaussian random process.

Thus (b) follows.

Proof of Theorem A.6. First we show uniqueness. To this end we define for f ∈ rC the

operator φF(f) in Fs(rC) by

φF(f) = a∗(f) + a(f)
cl
. (A.5)

We claim that for any m ∈ N0 the set

{φF(f1) · · ·φF(fn)Ω : fi ∈ D, n = 0, 1, ..., m}

is dense in
⊕m

n=0 Sn(r
⊗n
C

). To show this, we use induction in m. The claim clearly holds

for m = 0. Suppose it holds for m. Then multiplying out, we find

φF(f1) · · ·φF(fm+1)Ω = a∗(f1) · · ·a∗(fm+1)Ω + h,

where h ∈
⊕m

n=0 Sn(r
⊗n
C

). Since the linear span of a∗(f1) · · ·a∗(fm+1)Ω is dense in Sm+1(r
⊗n
C

)

the claim follows for m+ 1. Since

V φF(f1) · · ·φF(fn)Ω = (V φF(f1)V
−1) · · · (V φF(fn)V

−1)V Ω,

properties (i) and (ii) determine the action of V uniquely on a dense set.

Let us now show existence. First choose an o.n.b. B of r. Define V by V Ω = 1 and

V a∗(f1) · · · a∗(fn)Ω = : φ(f1) · · ·φ(fn) :,

where fj ∈ B (this is well defined by the symmetry property of the Wick product) and

extend it by linearity. It is straight forward to see that the map V is an isometry using on the

one hand side the canonical commutation relations for creation and annihilation operators

in Fock space and on the other hand Lemma A.8. Surjectivity, and hence unitarity, follows

from Lemma A.9. Obviously, V satisfies (i) by construction. Let us now show, that it
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satisfies (a) and hence (ii). Using the definition, (A.5), and the canonical commutation

relations we find for fj ∈ B

φF(f1)a
∗(f1)

n1 · · · a∗(fk)nkΩ (A.6)

= a∗(f1)
n1+1 · · · a∗(fk)nkΩ+ n1a

∗(f1)
n1−1 · · · a∗(fk)nkΩ.

On the other hand we will show that

φ(f1) : φ(f1)
n1 · · ·φ(fk)nk : (A.7)

= : φ(f1)
n1+1 · · ·φ(fk)nk : +n1 : φ(f1)

n1−1 · · ·φ(fk)nk : .

To see (A.7), we first note that using (c) of Lemma A.7 we obtain

φ(f1) : exp(

n∑

j=1

αjφ(fj)) : =

(
∂

∂α1
+ α1

)
: exp(

n∑

j=1

αjφ(fj)) : . (A.8)

Now expanding (A.8) in a power series, calculating the derivative, and equating coefficients,

we obtain (A.7). Thus it follows in view of (A.6), (A.7), and from the definition of V that

for all f ∈ B

V (a∗(f) + a∗(f))
cl
V −1 = φ(f). (A.9)

This implies (a) (and hence (ii)) by linearity and continuity. Clearly, (c) follows from

uniqueness of the above construction and multi-linearity. To show (b) observe that from

(A.2) we find for any fj ∈ r that

J V Γ(J)a∗(f1) · · · a∗(fn)Ω = J V a∗(Jf1) · · · a∗(Jfn))Ω
= J V a∗(f1) · · · a∗(fn))Ω = J : φ(f1) · · ·φ(fn) :
= : φ(f1) · · ·φ(fn) : = V a∗(f1) · · · a∗(fn)Ω.

Thus by density and C-linearity it follows that J V Γ(J) = V . Thus (b) follows, since

J−1 = J .

B An Application of Minlos’ theorem

In this appendix we will prove Theorems 7.1 and 7.3. For this we shall introduce the

following definitions from [26]. Let us first recall the definition

c(f) = e−
1

4
B(f,f)

for f ∈ S with B defined in (7.2).

Lemma B.1. The following holds.
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(i) c(0) = 1.

(ii) f 7→ c(f) is continuous.

(iii) For any f1, ...., fn ∈ S and z1, ..., zn ∈ C we have

n∑

i,j=1

zizjc(fi − fj) ≥ 0 .

Proof. (i) This follows from B(0, 0) = 0. (ii) It is straight forward to see that f 7→ B(f, f)

is continuous on S, and hence also the function c : f 7→ exp(−1
4
B(f, f)). (iii) Let V =

linR{f1, ..., fn}. Then there exists a basis (ej)j=1,...,m of V , with dual basis (bj)
m
j=1, such

that B(ei, ej) = λiδi,j with λ1 = · · · = λp = 1 and λp+1 = · · ·λm = 0 for some 1 ≤ p ≤ m.

Using that the Fourier transform of a Gaussian is a Gaussian we find for any f ∈ V with

fj = bj(f)

c(f) = e−
1

4
B(f,f) = e−

1

4

∑p
j=1

f2

j = (π)−p/2

∫
e−i

∑p
j= yjbj(f)e−

∑p
j=1

y2j dpy.

So positivity of c(f) now follows from Bochner’s theorem [23, Theorem IX.9].

Proof of Theorem 7.1. The existence and uniqueness of the measure ν follows in view of

Lemma B.1 from Minlos theorem [9, Theorem 3.4.2] see also [1,2,3,22,28]. To this end, we

extend the seminorms (7.1) to S as follows. For f = (f1, f2, f3) ∈ S we define ‖f‖α,β :=

‖f1‖α,β + ‖f2‖α,β + ‖f3‖α,β. Then it is straight forward to see that S with these seminorms

is a nuclear space.

(a) This follows since for f ∈ S and each t ∈ R we have by (7.6)

∫
exp(itϕ(f))dν = exp(−1

4
t2B(f, f)),

and so ϕ(f) is a Gaussian random variable with mean zero, see [26]. (b) This follows from

(a) and linearity (7.5), see [26]. (c) We argue similarly as in [28]. First observe that for all

measurable sets E we have

∀ǫ > 0, ∃C a cylinder set, ν(C△E) < ǫ. (B.1)

Here, △ stands for the symmetric difference. To this end, let E be the set of all measurable

E which satisfy (B.1). It is straight forward to verify that E is a σ-algebra containing all

cylinder sets. Hence E equals the set of all measurable sets. It follows by definition of the

integral that {1Ω(ϕ(f1), ..., ϕ(fn)) : Ω ⊂ Rn Borel measurable, f1, ..., fn ∈ S} is dense in

L2(S ′, dν). Now it is well known that S(Rn;C) is dense in L1(Rn, dµC), where µC denotes

Gaussian measure with covariance C (with possibly matrix elements which are infinite).

This shows the density. (d) If f ∈ S with P f̂ = 0, then B(f, f) = 0, so ϕ(f) is by (a) a

Gaussian random variable with variance zero. Thus for all f ∈ S with P f̂ = 0 it follows
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that ϕ(f) = 0 almost everywhere. Now let h ∈ S(R3;R). Then ∇h ∈ S and for all T ∈ S ′

we have

ϕ(∇h)(T ) = 0 ⇔ T (∇h) = 0 ⇔ (∇ · T )(h) = 0.

Since P ∇̂h = 0, we find (∇ · T )(h) = 0 for almost all T ∈ S ′. Since S(R3;R) is separable,

there exists a countable dense subset Q. It follows that for almost all T ∈ S ′ we have

(∇ · T )(h) = 0 for all h ∈ Q. Since ∇ · T is continuous it follows that for almost all T ∈ S ′

we have (∇ · T )(h) = 0 for all h ∈ S(R3;R). This shows the claim.

As an immediate consequence of Theorem 7.1 we obtain the following lemma, which we

shall use for the proof of Theorem 7.3.

Lemma B.2. Let hB denote the real Hilbert space obtained by the completion of the inner

product space (S0, B(·, ·)) with the imbedding ι : S0 → hB having dense range. Let v ∈ hB,

and let (vn)n∈N be a Cauchy sequence in S0 such that ι(vn) → v. Then the following limit

exists in L2(S ′, dν)

ϕ(v) := lim
n→∞

ϕ(vn),

is independent of the Cauchy sequence. Furthermore, ϕ(v) is a Gaussian random process

indexed by hB with (S ′, ν) the probability measure space of the random process.

Proof. First observe that (S0, B(·, ·)) is indeed an inner product space, since ∇ · f = 0

implies P f̂ = f̂ . Clearly, ϕ(vn) is a Cauchy sequence in L2(S ′, dν), since
∫
|ϕ(vn) −

ϕ(vm)|2dν = 1
2
B(vn − vm, vn − vm) by Theorem 7.1 (a), and hence converges to a unique

limit. With regard to Definition A.2 the statement of the last sentence is straight forward

to show using Theorem 7.1 and the fact that limits of Gaussians are Gaussian.

Proof of Theorem 7.3. The map iω : (S0, B(·, ·)) → {v ∈ v : Imv = 0} is an isometry

of real inner product spaces, which follows directly from the definitions. Furthermore,

iω has dense range. To see this, observe that for any real v ∈ v there exists by well

known construction a real vn ∈ S such that vn → v in the L2(R3;C3) norm. Now define

wn = (ω1/2(1 − χn)P v̂n)
∨ for χ ∈ C∞

c (R3; [0, 1]) with χ = 1 on B1/2(0) and χ = 0 outside

of B1(0), and χn(x) = χ(nx). Then it is straight forward to see that wn ∈ S0 and (by

unitarity of the Fourier transform and dominated convergence)

‖iωwn − v‖ = ‖((1− χn)P v̂n)
∨ − v‖ = ‖((1− χn)P v̂n − v̂‖ = ‖((1− χn)P v̂n − P v̂‖

≤ ‖χnP v̂‖+ ‖(1− χn)P (v̂n − v̂)‖ ≤ ‖χnP v̂‖+ ‖v̂n − v̂‖ → 0,

as n → ∞, by construction. This shows that iω has dense range. So the map iω extends

to hB the closure of (S0, B(·, ·)) and yields a bijective isometry hB → {v ∈ v : Imv = 0}.
It follows using Lemma B.2 that ϕ ◦ i−1

ω is a Gaussian random process indexed by {v ∈ v :

Imv = 0} with probability measure space (S ′, ν). Thus it follows from Theorem A.6 that

there exists a unique unitary transformation Vv : Fs(v) → L2(S ′, dν) with VvΩ = 1 and
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Vv(a∗(h) + a(h))V −1
v = ϕ(h) for all h ∈ iωS0 (since {v ∈ v : Imv = 0}C = v and iωS0 is

dense in {v ∈ v : Imv = 0}). This shows the first part of the theorem. The last statement

of the theorem now follows form part (b) of Theorem A.6.
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