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Abstract

The estimation of forest parameters, such as canopy height and above-ground biomass (AGB), at large scales is of
paramount importance for forest disturbance analysis, carbon-cycle modelling, wild fire propagation simulations and
resource inventorying. In this work, we propose a fully convolutional deep learning architecture, trained with a dedicated
data set of TanDEM-X features, to generate wall-to-wall forest parameters products. We investigate the challenges im-
posed by the proposed deep learning approach for large-scale applications, concentrating in particular on the design of
an effective training dataset on the basis of theoretical requirements on single-pass InSAR theory. We test the regression
performance of our approach over the five tropical regions mapped by the ESA/NASA AfriSAR campaign in Gabon,
Africa. The obtained CHM estimation accuracies are extremely competitive with those of the state-of-the-art methods,
with the advantage to be achieved with only a single input TanDEM-X bistatic pair.

1 Introduction

Forests play a key role in the biosphere, covering approxi-
mately 31% of the Earth’s global surface [1]. For example,
forests majorly affect the local water-cycle, act as carbon
sinks and limit water runoff during extended rainfalls [2],
[3], [4]. Moreover, an estimated 80% of all known terres-
trial flora and fauna lives in forests, making them critical
for biodiversity preservation [5]. About 880 million peo-
ple have their livelihoods depending on forests [1].
The assessment and monitoring of forest parameters be-
comes therefore of paramount importance for assessing
their impact on the global environment and for supporting
effective decision-making processes. The most accurate
way to quantify forest tree parameters is to measure them
manually on-site [6]. The process can be either invasive,
when individual trees are cut down to precisely assess their
properties, or non-invasive, when a quicker and less intru-
sive approach is preferred over absolute accuracy [7]. In
general, the process is very expensive and time consuming,
especially in remote areas. Therefore in-situ measurement
campaigns are typically feasible only for small surveys [8].
As a consequence of these downsides, remote sensing (RS)
approaches to forest modelling have gained wide interest in
the last decades, as a large pool of sensors and techniques
are available for direct and indirect parameter estimation
[9][10]. In particular, Airborne LiDAR systems represent
an accurate alternative to manual measurements, especially
for the estimation of the canopy height model of a forest, its
vertical structure, and other density properties, as these can
all be directly measured [11]. Unfortunately, airborne sys-
tems remain impractical for large-scale surveys, as a trade-
off between temporal and spatial coverage must be struck.

Alternatively, spaceborne earth observation (EO) systems
can be used, as these typically offer global coverages and
short revisit times, combined with a large availability of
products [12][13]. Spaceborne LiDAR systems, such as
NASA’s GEDI instrument [14], enable measurements on
a global scale, but acquire over sparse sampling grids and
still have extremely low revisit times.
Modern optical and synthetic aperture radar (SAR) space-
borne systems overcome these limitations by offering
global coverage and revisit times in the order of a few
days [13]. With these systems the challenge consists in
modelling the relationship between the acquired imagery
and the on-ground forest parameters, as these cannot be
directly measured [15]. The definition of allometric equa-
tions is the most commonly used approach to indirectly re-
late forest parameters with RS data [6]. It typically consists
in using precise LiDAR or in-situ measurement data to fit
parametric regression models with the available datasets,
thus resulting in parameters tuned to the specific conditions
and geographic locations that have been chosen for calibra-
tion [16]. The relationship between data and forest parame-
ters is typically highly non-linear. For example, when con-
sidering radar sensors, the measured back-propagated en-
ergy is the result of multiple complex interactions between
the incident electromagnetic waves and the geometric and
dielectric properties of the target on ground [17][18]. Some
of these non-linearities are also introduced by the well doc-
umented feature saturation problems [16][10], consisting
of regions in the feature space in which very small changes
in the backscatter are associated to large changes in the pa-
rameters to be estimated. Parametric equations typically
struggle to maintain sensitivity over these regions, com-
pounding the overall estimation error. Furthermore, aver-



aging over larger resolution cells is often used to improve
the overall prediction uncertainty, resulting in a geometric
resolution which tends to be significantly worse than the
one obtained by airborne LiDAR or photogrammetric sys-
tems.
More sophisticated model-based approaches have also
been extensively studied for the regression of forest param-
eters. These tend to achieve higher precision in their esti-
mates, while maintaining better resolution. To obtain these
results, typically large amounts of acquisitions [9], ground
reference samples [15] or strong assumptions are required
to initialize the model. This represents a limit when fre-
quent updates become necessary, especially in the context
of national- or continent-wide forest disturbance analysis.
With the recent advancements in machine learning and
computer vision techniques, and the availability of large
dataset collections from EO sensors, new approaches to
forest parameter regression have started to be considered.
Of particular interest are the deep learning-based ones,
which are constantly gaining more attention in the field of
RS image analysis [19]. Much of the attention has gone
into convolutional neural network-based deep learning ar-
chitectures, as these analyze the spatial context information
to generate higher level abstractions. These features typi-
cally possess a larger descriptive and discriminative con-
tent than both the simple input imagery and specific hand-
crafted features [20].
In the field of computer vision, deep regression tech-
niques have already been used with great success, with
even general-purpose architectures achieving results close
to the state-of-the-art [21]. On the contrary, comparatively
little work still exists regarding the regression of physical
and biophysical parameters from RS data [19][22], pre-
sumably due to the limited availability of large quantities
of reference-data required for supervised training.
Aiming at providing large-scale, frequently updated for-
est parameter metrics, our research effort focuses on over-
coming the aforementioned limitations by proposing a
CNN-based regression framework, which requires a sin-
gle TanDEM-X bistatic product for inference. Building on
the knowledge gained from our first ablation study at re-
gional level [23], in this work we present and tackle the
issues that emerge when moving from the regional to the
country-level scales. We focus our efforts on the estima-
tion of forest height over challenging tropical forests in
Gabon, Africa. In particular, we investigate the require-
ments that should be satisfied by a large-scale application.
In this context, we analyze how missing or insufficient con-
textual information in the training-set affects the prediction
performance. Finally we present an end-to-end solution
to tackle these problems, that results in the generation of
a consistent, time-tagged canopy height map (CHM) over
the entire State of Gabon using single bistatic TanDEM-X
acquisitions.
The paper is structured as follows. In Section 2 we present
the proposed framework and the data-sources chosen to ad-
dress the research problem. Section 3 gives an overview of
the obtained preliminary results (which will be replaced by
an extensive analysis in the final version of the paper). Fi-
nally, Section 4 draws the conclusions and outlooks from

the results of our work.

2 Methodology

In this section we present a forest parameters estima-
tion and analysis approach for the generation of accu-
rate, high resolution, and frequently updatable geomaps at
large scale. The proposed approach takes advantage of the
knowledge of the physical mechanism of volumetric decor-
relation in InSAR products caused by multiple scattering
within forests.

2.1 Dataset
Our input measurements consist of single-pass interfero-
metric SAR (InSAR) products. Across-track SAR interfer-
ometry requires the acquisition of two SAR images over
the same area from two slightly different positions, charac-
terized by a certain distance called baseline B. The phase
difference between the received pair of SAR signals allows
for the retrieval of the mean topographic location of the
scatterers within a resolution cell on ground, according to
the sensitivity of the acquisition configuration represented
by the height of ambiguity hamb. The latter is defined as
the topographic height change corresponding to a complete
2π cycle in the interferogram and depends on geometric
acquisition parameters, among which the baseline compo-
nent perpendicular to the line of sight B⊥.
Multiple sources of noise affect the interferogram [24][18],
thus the normalized cross-correlation between the InSAR
pair, i.e. s1 and s2, is used to quantify the quality of the
resulting inteferometric phase. This feature is called inter-
ferometric coherence γVol and it is defined as:

γTot =
E [s1s

∗
2]√

E
[
|s1|2

]
E
[
|s2|2

] , (1)

where E [·] represents the expectation operator and s∗2 indi-
cates the complex conjugate of s2. Assuming the statistical
independence of individual error contributions, the inter-
ferometric coherence can be decomposed in the following
factors [18]:

γTot = γSNR ·γQuant ·γAmb ·γRg ·γAz ·γTemp ·γVol, (2)

representing the decorrelation effects due to limited signal-
to-noise ratio (γSNR), quantization errors (γQuant), ambi-
guities (γAmb), baseline decorrelation (γRg), relative shift
of the Doppler spectra (γAz), temporal difference between
the acquisitions (γTemp) and volumetric scattering effects
(γVol).
In particular, volume scattering effects arise from the fact
that corresponding resolution cells are representative of
different sets of vertically distributed scatterers, caused by
the slight satellites offset between the acquired SAR image
pair. The resulting degree of volume decorrelation depends
on the properties of the canopy, the radar frequency, as well
as the height of ambiguity: the lower the height of ambigu-
ity, the higher the volume decorrelation.



Figure 1 The five study-areas of Lopé, Mabounié,
Mondah, Pongara and Rabi. These have been subdivided
into three sub-regions, each assigned to either training,

validating or testing the proposed DL model.

Figure 2 Proposed CNN architecture for forest
parameters regression.

As source for our InSAR products we choose the bistatic
acquisitions imaged using DLR’s TanDEM-X constella-
tion. This is because the temporal decorrelation is intrinsi-
cally connected to repeat-pass interferometry applications,
meaning that for bistatic interferometry this term can be
neglected as both images are acquired simultaneously. The
resulting six input feature collection consists of the inter-
ferometric coherence γTot, the volume decorrelation factor
γVol, the backscattering coefficient σ0

HH in HH polariza-
tion, the acquisition DEM hDEM, the local incidence angle
θinc and the acquisition height of ambiguity hamb.
As reference data for our proposed method, we consider
the airborne LiDAR measurements acquired using NASA’s
LVIS instrument in the context of the NASA/ESA 2016
AfriSAR campaign [11]. These consist of discrete full-
waveform measurements, each covering a nominal foot-
print of 18 m of diameter. For this study, we use the al-
ready rasterized products with a ground-sampling distance
(GSD) of 25 m, and spanning across the five heterogeneous
test sites represented in figure 1.

2.2 Proposed CNN Architecture
The vast majority of the state-of-the-art approaches model
the relationship between RS data an forest parameters by
introducing simplifying assumptions on the boundary con-
ditions and on the electromagnetic interactions with the
vegetation, such as no ground interactions or constant ex-

tinction coefficients. While these assumptions might hold
for relatively small test areas, when the context is changed
the accuracy of the estimates drops. To overcome this limi-
tations we propose a data-driven approach to properly learn
the missing contextual information and the underlying re-
gression models from the large pool of available RS data.
The architecture of our model is depicted in figure 2, and it
was obtained by means of extensive hyperparameter tuning
using the training and the validation sets [23]. The archi-
tecture is fully convolutional and includes three types of
functional blocks: an input block, which incrementally in-
creases the feature count; a sequence of 10 hidden blocks,
which progressively extract higher level abstractions of the
input features; and an output block, which reduces the di-
mensionality of the hidden representation and generates the
final prediction. Each hidden block consists of the follow-
ing three layers:

• A two-dimensional spatial convolutional layer
(Conv2D) that uses 128 3× 3 pixel kernels.

• A batch normalization layer, which is used to alleviate
problems of exploding and vanishing gradients.

• A non-linear activation function layer that consists of
a rectified linear unit function (ReLU).

In the input and output blocks the 3× 3 kernels have been
replaced by 1×1 ones. In the final block, the batch normal-
ization layer and the ReLU activation function have been
dropped in favor of a linear operator.
To train and validate our model, we sample 15×15 pixel
patches from the respective subsets. The sampling process
is done with overlap but without repetition, by extracting a
patch centered around each vegetated pixel. We train the
model using a mini-batch gradient descent approach to op-
timize the following two-term loss function:

Loss =
1

n

n∑
i=1

(ŷi − yi)
2
+ λ ·

m∑
j=1

w2
j , (3)

where ŷi is the canopy height values estimate, yi is its
corresponding reference value, wj are the trainable model
weights, and λ weights the impact of the l2-normalization
term. Finally, we evaluate the model over the independent
test set, and measure the estimation performance compared
to the expected values by computing the mean error (ME),
the mean absolute error (MAE), the mean absolute percent-
age error (MAPE), the root mean-squared error (RMSE)
and the coefficient of determination (R2).
The most crucial aspect in the design of the training data
set is to show the network all possible variations of the in-
put features. For example, given the varying close orbit
formation of TanDEM-X, one of the most challenging as-
pects is how to make the network robust with respect to the
possible bistatic acquisition geometries, which are needed
for achieving an almost gap-free coverage when inferring
at large-scale. To tackle this issue, we use all available
TanDEM-X acquisitions acquired between 2010 and 2021
over the AfriSAR test sites to fully cover the entire range
of possible heights of ambiguity. This results in roughly 10



Figure 3 Scatterplot comparison between predicted and
reference CHM values in Gabon, Africa.

to 20 acquisitions for each of the covered regions of inter-
est. Training, validation and testing of the model are then
performed on independent sub-regions, as shown in figure
1.

3 Experimental Results

The set up proposed in section 2 defines a baseline perfor-
mance, which achieves a bias of -0.40 m, a MAE of 3.83 m,
and a R2 of 0.76. The estimation agreement with the ref-
erence values is represented in the scatterplot in figure 3,
while the performance for each experiment is reported in
table 1.

Test-Sites ME MAE MAPE RMSE R2

Unit [m] [m] [%] [m] [·]
Baseline -0.40 3.83 13.23 5.06 0.76
w/o Lopé -2.26 5.01 15.97 7.21 0.50
w/o DEM, w/o Lopé -1.38 4.50 15.75 5.88 0.67
w/o DEM -0.47 4.25 15.13 5.54 0.71

Table 1 CH estimation: test sites and overall prediction
accuracies.

To validate the generalization performance of our proposed
framework across unseen regions, we repeat the baseline
experiment by removing Lopé from the training and vali-
dation steps (w/o Lopé case in table 1). The results show
that the MAE drastically decreases to 6.40 m, and the R2 to
0.50. Analyzing the individual contributions of the regions
of interest highlights that the results are completely driven
by the poor accuracy over the Lopé test area. Further inves-
tigations suggest that this reduction in performance might
be due to missing representations of the terrain elevations
in the training data set. As one can see in figure 4, the test
site of Lopé is significantly more mountainous than the re-
maining four training sites. To test this assumption, we

Figure 4 The relative DEM sample distributions across
the training, validation, and test sets when Lopé is

assigned in its entirety to the test set.

repeat the previous experiments while completely remov-
ing the DEM from the set of input features (w/o DEM, w/o
Lopé case in table 1). From the previous work in [23], we
know that topographic information provided by the DEM
has a minor impact on overall performance, therefore we
expect a slight decrease in accuracy in favor of a poten-
tially more robust and consistent dataset. Indeed, the re-
sults confirm this intuition, as training and validating with-
out Lopé, results in a significant performance improvement
to an MAE of 4.50 m and an R2 of 0.67. As one might ex-
pect, re-introducing Lopé sees a further increase to a MAE
of 4.25 m and a R2 of 0.71, and represents the pure perfor-
mance impact of the DEM over the baseline performance
(w/o DEM case in table 1).
These results confirm a basic notion of data-driven ap-
proaches, namely that the application to unseen areas re-
quires a training set that covers the expected range of val-
ues of all input features. In this scenario, the the inclusion
of the Lopé sub-region into the training pool becomes cru-
cial for the generation of the country-scale canopy height
map. Furthermore, we conclude that dropping the DEM
feature from the input becomes a necessity, since the pres-
ence of taller elevations outside of the range covered by the
training set would affect the performance.
Moreover, the developed training strategy assured a reli-
able performance of the model for all different TanDEM-X
geometries. An example is shown in figure 5, which de-
picts the model performance with respect to the height of
ambiguity.
To generate a large-scale CHM of Gabon, we consider all
available TanDEM-X data acquired in 2010 and 2011 dur-
ing the first TanDEM-X global coverage, dropping com-
pletely overlapping acquisitions to avoid averaging our es-
timates. Finally, we individually apply our trained model
to each remaining product, and mosaic the estimates with-
out further harmonization steps to generate the large-scale
CHM map shown in figure 6. Qualitatively, the map shows
no evident strippings due to the different incidence angles
and interferometric baselines of the images, suggesting that
the model delivers robust estimates with respect to all the
different acquisition geometries. Figure 7 depicts the full-



Figure 5 Performance of the proposed model versus the
height of ambiguity (black lines identify the median error,
green boxes delimit the 25th-75th percentiles and the error
boxes the 5th-95th percentiles. The blue histogram shows
the height of ambiguity distribution of the test data set).

Figure 6 Country-scale CHM estimate for the year 2011 over
Gabon. The product is obtained by arbitratily removing

overlapping acquisitions, and simply moisacking the estimates
obtained from the remaining images. The red squares highlight

the zoom-ins shown in figure 7.

resolution details of the areas within the red boxes in fig-
ure 6. In figure 7 (a) it is possible to note the presence of
tall mangroves along the shores of the Gabon estuary, with
peak canopy heights above 45 m. The area in figure 7 (b)
is characterized by the presence of primary tropical forest,
a complex system of rivers and antropogenic activities.

4 Conclusions and Outlook

In this work, we proposed a deep learning-based approach
to the creation of operational predictions of canopy height

(a)

(b)

Figure 7 Two full-resolution zoom-in examples from the
country-scale mosaic of figure 6. (a) includes the test sites of
Mondah and Pongara, while (b) the test site of Mabounié.

models targeting the tropical forests of Gabon. As input to
our framework, we used DLR’s TanDEM-X bistatic data,
exploiting the relationship between the volumetric decor-
relation loss and the biophysical properties of the canopy
to estimate its height. We presented some of the challenges
inherent to data-driven approaches, highlighting how miss-
ing value-range representations of the input features in the
training-set can negatively affect the prediction accuracy.
In particular, we demonstrated that the missing DEM ele-
vation coverage can be successfully overcome by dropping
the related feature, without a significant performance loss.
Subsequently, we deployed the trained model to generate
a country-scale CHM of Gabon at 25 m of resolution, for
the year 2011. By arbitrarily discarding overlapping ac-
quisitions, we demonstrated that our approach can achieve
robust and consistent wall-to-wall predictions without the
need of averaging practices, and despite the challenging
variability in acquisition-geometries. Ultimately, the re-
sults we obtained in Gabon using TanDEM-X interfero-
metric SAR products are extremely compelling for large-



scale applications of forest biophysical parameters re-
trieval. While the TanDEM-X mission possesses worse
and more inconsistent revisit times than those achieved by
modern spaceborne SAR missions, its unique bistatic con-
figuration and its almost 13 year long operational time rep-
resent an unique resource for forest disturbance monitor-
ing. In our future works, we plan to extend our approach to
larger scales and different types of forest. Furthermore, we
aim at exploiting the existing database to monitor changes
in time.
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