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Abstract 
Multitask learning (MTL) aims at beneficial joint solving of multiple prediction problems by 
sharing information across different tasks. However, without adequate consideration of 
interdependencies, MTL models are prone to miss valuable information. In this paper, we 
introduce a novel deep MTL architecture that specifically encodes cross-task interdependencies 
within the setting of multiple image classification problems. Based on task-wise interim class 
label probability predictions by an intermediately supervised hard parameter sharing 
convolutional neural network, interdependencies are inferred in two ways: i) by directly 
stacking label probability sequences to the image feature vector (i.e., multitask stacking), and 
ii) by passing probability sequences to gated recurrent unit-based recurrent neural networks to 
explicitly learn cross-task interdependency representations and stacking those to the image 
feature vector (i.e., interdependency representation learning). The proposed MTL architecture 
is applied as a tool for generic multi-criteria building characterization using street-level imagery 
related to risk assessments toward multiple natural hazards. Experimental results for classifying 
buildings according to five vulnerability-related target variables (i.e., five learning tasks), 
namely height, lateral load-resisting system material, seismic building structural type, roof 
shape, and block position are obtained for the Chilean capital Santiago de Chile. Our MTL 
methods with cross-task label interdependency modeling consistently outperform single task 
learning (STL) and classical hard parameter sharing MTL alike. Even when starting already 
from high classification accuracy levels, estimated generalization capabilities can be further 
improved by considerable margins of accumulated task-specific residuals beyond +6% κ. 
Thereby, the combination of multitask stacking and interdependency representation learning 
attains the highest accuracy estimates for the addressed task and data setting (up to cross-task 
accuracy mean values of 88.43% overall accuracy and 84.49% κ). From an efficiency 
perspective, the proposed MTL methods turn out to be substantially favorable compared to STL 
in terms of training time consumption. 



Preprint version; final paper published in: 
ISPRS J. Photogramm. Remote Sens., 204, 275-290, 2023, https://doi.org/10.1016/j.isprsjprs.2023.09.001 

2 
 

1. Introduction 
Geotagged imaging sensor data are an essential source for obtaining spatial information in an 
automated fashion. This has been greatly promoted by the ever-increasing availability of data 
collection initiatives (remote and in-situ sensing) and social media as well as consecutively 
improving data analysis methods – particularly in the field of artificial intelligence (Ibrahim et 
al., 2020). Image classification, i.e., the correct labeling of images according to their content 
into predefined discrete semantic categories, is an important task in this context (Cheng et al., 
2020; Biljecki and Ito, 2021). In remote sensing, this task is widely referred to as scene 
classification and has been deployed particularly for Land Use/Land Cover analysis in very 
high-resolution data on a variety of thematic foci (Cheng et al., 2020). 

Recently, street-level images (SLI), i.e., geotagged photos taken in-situ along street courses 
have shown relevance for a plethora of geospatial applications (Biljecki and Ito, 2021). 
Capturing the streetscape profile from a human vision perspective with a high level of detail, 
SLI provide a rich and complementary counterpart to the synoptic view provided by remote 
sensing (Zhang et al., 2019a; Chen et al., 2022). SLI are widely accessible via global web 
mapping services such as Mapillary or Google Street View (GSV; Anguelov et al., 2010) but 
can also be obtained from image-hosting social media platforms such as Flickr (Hoffmann et 
al., 2023). Furthermore, SLI is collected and disseminated in the framework of local studies 
(Wieland et al., 2012; Geiß et al., 2017a; Esquivel-Salas et al., 2022). 

This study deals with the supervised classification of SLI for information extraction (here: on 
buildings). Such techniques foresee assigning a thematic label given a limited amount of 
properly encoded prior knowledge, i.e., labeled training data. The training data is deployed to 
infer a prediction model, which aims to accurately generalize for unseen, i.e., unlabeled, 
instances (Geiß et al., 2019). Due to their great advances in solving perceptual tasks in the 
image domain, recent studies on information gathering with image classification particularly 
relied on deep learning (LeCun et al., 2015; Cheng et al., 2020), which is also in the scope here. 

1.1. Application focus: Building characterization for natural hazard risk assessments 
When assessing natural hazard risk, an up-to-date model of the exposed built environment is a 
critical input (Geiß and Taubenböck, 2013). Such a model needs to cover the spatially allocated 
exposed assets each assigned with a set of attributes relevant to characterizing their 
vulnerability to the considered hazards (Taubenböck et al., 2009; Pittore et al., 2017; Gomez-
Zapata et. al, 2022). Specific taxonomies are employed for this concern, among them the 
GED4ALL multi-hazard building classification system proposed by Silva et al. (2022) covers, 
e.g.: the lateral load-resisting system (LLRS; i.e., the structural system that resists acting lateral 
forces such as seismic loads, wind loads, water pressure or earth pressure) and its material (e.g., 
masonry or wood), height, occupancy, shape of the building plan, structural irregularity, and 
roof shape among others. 

The extraction of building attributes that are relevant in this context using deep learning-based 
SLI classification methods has been the subject of several recent studies, e.g.: Kang et al. (2018) 
and Hoffmann et al. (2023) assign land-use classes to buildings, and Sun et al. (2022) derive 
building age and architectural style epoch, respectively. Centered on the topic of building 
vulnerability, e.g., Gonzalez et al. (2020) derive buildings’ LLRS, its material type, and 
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ductility, Aravena Pelizari et al. (2021) assess the potential to derive LLRS material types along 
with the building height independently as well as their combination, i.e., seismic building 
structural types; Yu et al. (2020) identify vulnerable soft-storey buildings and Rueda-Plata et 
al. (2021) classify unreinforced masonry buildings according to their roof diaphragm flexibility. 
Generalization accuracies have shown that the combined use of SLI and deep learning image 
classification techniques yields a high potential for the automated complementation of 
inventory databases, providing an alternative to costly and labor-intensive field surveys or 
manual annotation campaigns. 

The mentioned studies use an individual model for inferring a particular target variable and 
when targeting the vulnerability of buildings, they focus on a single hazard only (i.e., just 
earthquakes). Here, in contrast, we provide a methodology for a more comprehensive and thus 
more generic building characterization. This is particularly relevant in multihazard risk 
assessments, where multiple different building characteristics may determine the vulnerability 
to different natural hazards (Pittore et al., 2017; Silva et al., 2022). Thereby, employing 
multitask learning (MTL), we beneficially encode prevailing relationships among building 
attributes. Striking examples are, e.g., the interdependencies between building age and 
architectural style (Sun et al., 2022) or between construction practices and building height – 
due to statically constraints, it is very unlikely that a masonry building has more than 5 storeys 
(Santa María et al., 2017). In this paper, we propose a deep MTL framework that explicitly 
accounts for such interdependencies among multiple target variables in an adaptive way. This 
considerably improves the accuracy of building characterization with SLI. Its application is 
demonstrated and evaluated based on a comprehensive reference data set, which was annotated 
according to five vulnerability-related target variables, i.e.: building height, LLRS material type, 
SBST, roof shape, and the block position (Fig. 1). The latter refers to the position of a building 
or housing entity in relation to its neighboring buildings or housing entities. 

 

Fig. 1. Schematic exemplification of addressed building characteristics (a – c: height, LLRS material, seismic building 
structural type, roof shape; d – f: details on masonry LLRSs; g – k: block position): 
a) 1 storey, unreinforced masonry, MUR_H1, monopitch roof; b) 2 storey, confined masonry, MCF_1-2, pitched or gabled 
roof; c) 5-7 storeys,  reinforced concrete, CR_5-7; d) unreinforced masonry wall; e) confined masonry wall, i.e., masonry with 
reinforced concrete confinement; f) reinforced masonry wall, i.e., masonry with steel bar reinforcement; g) detached single-
party; h) detached multi-party; i) semi-detached; j) adjoining block development; k) adjoining terraced. 
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Regardless of the application, the presented MTL framework is generic w.r.t. input image data 
and addressed classification tasks. Thus, it is applicable under arbitrary multitask image 
classification settings, potentially allowing to improve classification performances due to the 
distillation of occurring label interdependencies (e.g., to beneficially solve multiple scene 
classification tasks in aerial or satellite remote sensing data). 

1.2. Deep multitask learning 
For many real-world problems, it is not feasible to obtain an extensive amount of representative 
training instances to fully exploit the accuracy capabilities of the deployed classification 
algorithms. Such settings can benefit from inductive knowledge transfer among multiple related 
target domains (Pan and Yang, 2010; Zhang and Yang, 2022). If the application requires the 
inference of multiple target variables MTL is a promising approach. Instead of addressing 
multiple target outputs each within an independent learning task (i.e., single task learning; 
STL), MTL algorithms learn numerous tasks jointly. Thereby, the governing paradigm is to 
leverage the intrinsic domain-specific information of several related tasks to improve the 
generalization performance of all the tasks (Caruana, 1997). In this sense, MTL can exploit 
synergies among tasks and acts as a regularizer by introducing an inductive bias that reduces 
the risk of overfitting (Pan and Yang, 2010; Ruder et al., 2017). Hence, particularly settings 
with multiple related tasks but limited training data can benefit from MTL (Long et al., 2017; 
Liu and Shi, 2020; Zheng et al., 2022). 

In deep learning, MTL involves the joint learning of shared representations from multiple 
associated supervisory signals. The sharing of layers can substantially decrease training and 
inference times compared to STL, increasing overall efficiency. This yields the potential to 
alleviate the common challenges of deep learning concerning data requirements and 
computational demands. Deep MTL methods typically employ either hard or soft parameter 
sharing of hidden layers to exploit complementary knowledge among tasks (Ruder et al., 2017). 

1.3. Knowledge transfer in deep multitask learning 
Hard parameter sharing is found on an initial common trunk of shared hidden layers from which 
task-specific heads branch out (Caruana, 1997; Long et al, 2017; Kendall et al., 2018; Liu and 
Shi, 2020). Although hard parameter sharing has proven to be beneficial when solving related 
learning tasks, without adequately inferring task relationships by propagating knowledge across 
task-specific branches such approaches are prone to under transfer, i.e., to miss beneficial 
information (Long et al., 2017; Vandenhende et al., 2022). To additionally employ cross-task 
information, Dai et al. (2016) introduce Multitask Network Cascades, where the output of a 
task-specific branch is appended to the input of the next task-specific branch following a 
predefined causal cascade. Multi-linear Relationship Networks (Long et al., 2017) were 
proposed to learn task relationships on top of hard parameter sharing using tensor normal priors 
placed on the task-specific branches. 

In contrast, soft parameter sharing involves its own set of hidden layers for each task in the 
encoder. Thereby, specifically designed modules handle information sharing adaptively to 
mitigate interferences among tasks (Misra et al., 2016; Yang and Hospedales, 2017). A 
constraint in soft parameter sharing approaches is scalability, as the size of the multitask 
network usually grows linearly with the number of tasks. Multitask Attention Networks (Liu et 
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al. 2019; Zheng et al., 2022) are based on a global encoder convolutional neural network 
(CNN). At various stages, features are passed to task-specific attention modules which 
adaptively learn their relevance for the respective task. 

An additional strategy to address interferences in MTL is the rather indirect transfer of task-
specific knowledge when adaptively balancing individual tasks as part of model optimization 
(e.g., Kendall et al., 2018; Chen et al., 2018). 

1.4. Exploitation of intermediate predictions 
A few recent MTL approaches are built upon interim task predictions based on intermediate 
supervision (Lee et al., 2015; Gülçehre and Bengio, 2016) to leverage task interactions in the 
decoder stage of the model architecture (Vandenhende et al., 2022). In PAD-Net (Xu et al., 
2018), a hard parameter sharing MTL network based on a CNN encoder is employed to derive 
initial estimations for multiple intermediate dense prediction tasks (i.e., depth prediction, 
surface normal estimation, scene parsing, and contour detection). The resulting intermediate 
predictions are re-combined and subject to a spatial attention mechanism to obtain cross-task 
information for the final predictions. Vandenhende et al. (2020) expand the PAD-Net 
architecture to consider task interactions on multiple scales. Pattern-Affinitive Propagation 
Networks (PAP-Net; Zhang et al., 2019b) introduce the learning of pixel affinity matrices based 
on intermediate predictions to propagate cross-task affinitive patterns. 

The methodological concept of utilizing initial predictions to improve generalization has also 
been employed in machine learning beyond deep learning in the past. Stacked generalization 
(Wolpert, 1992) is a meta-learning approach, that deploys the prediction outputs of models 
learned in the first stage to extend the feature space for learning a new model with improved 
generalization ability in the second stage. For classification problems, using class probabilities 
instead of the single predicted class outputs as input to the meta-learner turned out to be 
favorable in this course (Ting and Witten, 1999). In remote sensing, this multi-stage concept 
was recently leveraged for the post-classification enhancement of semantic image segmentation 
maps due to deep relearning (Zhu et al., 2021; Geiß et al., 2022a).  

The principle of using the prediction outputs of preceding models to extend the feature space 
for subsequent models within multiple stages of learning was extended to multi-label 
classification (Godbole and Sarawagi, 2004; Read et al., 2011) and multi-target regression 
(Spyromitros-Xioufis et al., 2012). Meta-models are learned for each target variable with 
feature vectors augmented by prediction results for the residual target variables. This enables, 
knowledge sharing across the target variables and label dependencies can be exploited (Geiß et 
al., 2022b). Geiß et al. (2022b) exhaustively leverage this notion for information extraction 
from remote sensing imagery with a multi-target regressor chaining scheme. 

Deep learning with intermediate prediction allows for the integration of multiple learning stages 
to exploit model outputs from preceding sub-models in a single end-to-end training realization. 
Capitalizing thereon for the multitask classification case, we consider the main contribution of 
this study as follows: 
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1) From a methodological point of view, we propose a deep MTL image classification 
framework that employs task-wise intermediately predicted class label probability 
distributions for the dynamic capturing of cross-task label interdependencies to result in 
models with enhanced accuracy properties. This is facilitated in two ways: i) interim 
class probability outputs are stacked to the final feature vector for classification (i.e., 
multitask stacking); ii) interim class probability distribution outputs are employed to 
learn features explicitly internalizing label interdependencies using recurrent neural 
networks (RNNs). Following this path, interdependencies among the sequence of 
individual class probability values and interdependencies among the individual task-
wise class label probability distributions are considered. 

2) The proposed methodology is experimentally evaluated in the context of an innovative 
application domain. We address the multicriteria characterization of buildings based on 
SLI. In particular, this study approaches the accurate and efficient joint extraction of 
multiple natural hazards vulnerability-related building characteristics (i.e., height, LLRS 
material, SBST, roof shape, and block position). However, regardless of the application 
case of this study, the presented methods are applicable and potentially gainful under 
arbitrary image classification settings where multiple classification problems can be 
tackled simultaneously. 

3) Within the addressed application and data setting, we carry out an exhaustive 
experimental evaluation of the presented multitask classification framework and its 
subcomponents including a systematic analysis of estimated generalization accuracies 
and associated training time consumptions. 

The remainder of the paper is organized as follows. Section 2 provides a description of the data 
used and the proposed methodology. The experimental setup is pointed out in Section 3, while 
results are presented and discussed in Section 4. Section 5 concludes this paper. 

2. Materials and methods 

2.1. Street-level imagery 
The employed SLI data comprises 204,030 GSV building façade views collected as part of 
Aravena Pelizari et al. (2021) within the 7 M inhabitant metropolitan area of Santiago de Chile, 
Chile: first, a spatially stratified sample of scenes with a perpendicular viewing direction w.r.t. 
the driving direction of the recording vehicle was acquired; next, the sampled imagery was 
subject to a CNN based filtering procedure to separate façade from non-façade views. Thereon, 
a reference dataset of 29,567 façade images has been labeled according to 3 multi-class target 
variables: i) the material type of the LLRS (MatLLRS), ii) building height (number of storeys) 
as well as iii) a seismic building structural type (SBST) characterizing a buildings’ main-load 
bearing structure from the seismic vulnerability perspective (Geiß et al., 2015). To provide 
objectivity, an ontology jointly elaborated by local structural engineers and experienced image 
analysts was followed to specify the labels based on predefined visually inferable indicators 
(visual-structural criteria). 

For this study, the reference data was extended by two additional attributes relevant to assess 
natural hazard risk and thus captured by designated building taxonomies (Silva et al., 2022): 
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roof shape (RoofShp) and block position (BlockPos). Fig. 2 provides an overview on all target 
variables, associated class labels as well as the criteria for assigning RoofShp and BlockPos 
(Fig. 2b; in case of ambiguity in labeling, e.g., due to an unfavorable field of view or viewing 
angle, aerial imagery was considered). For in-depth details on façade image collection, target 
variables and labeling as depicted in Fig. 2a, we refer to Aravena Pelizari et al. (2021).  

 

Fig. 2. Addressed tasks and multi-class manifestations (class numbers in brackets): a) Target variables as obtained by 
Aravena Pelizari et al. (2021); b) the target variables assigned within this study. Respective labeling criteria are given in italic 
and were defined considering Allen et al. (2023). 

Annotated façade image examples for all tasks and classes are presented in Fig. 3. Class-wise 
quantities of labeled images are visualized in Fig 7b. 

Fig. 4 shows label co-occurrences within the compiled reference data as conditional 
probabilities to intuitively illustrate prevailing interdependencies across the considered 
classification tasks (Hua et al., 2019). E.g., it is very likely that a building of Height H5-7 or 
higher has a reinforced concrete (CR) MatLLRS, a flat (FLT) RoofShp, and is a detached multi-
party (DET_MP) building considering BlockPos. Besides, it can be observed that label co-
occurrences are generally not symmetric. For instance, while �(�1|���) = 0.18, �(���|�1) 
= 0.55. It becomes apparent, that the relationships among various classes and tasks can manifest 
in complex but characteristic patterns. In this study, we model label interdependencies based 
on such patterns as encoded in intermediately predicted class-label probability distributions to 
improve prediction accuracy in multitask image classification. 

2.2. Data balancing and data partition 
The labeled reference data pool is subject to the label powerset (LP) transformation (e.g., Charte 
et al., 2015). Thereby, each distinct combination of labels (labelset) is treated as a single label. 
In our MTL setting, the LP refers to the set of all occurring label combinations across the 
considered tasks. As such, the LP histogram permits an overall perspective on label co-
occurrences and inherently provides evidence on label relationships. Thus, in order not to 
compromise the representativity of the reference data set nor the inherent information on label 
interdependencies, data balancing, and data partitioning consider the LP. 
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Fig. 3. Example façade imagery with class labels for the addressed vulnerability-related target variables Height, MatLLRS, 
SBST, RoofShp, and BlockPos. 

2.2.1. LPRUS 
Class imbalance in the reference data is attenuated by applying balancing at data level (Buda et 
al., 2018). Inspired by Charte et al. (2015), who address imbalance in multi-label classification, 
we propose a resampling strategy based on the LP histogram. Specifically, we implement LP-
based random undersampling (LPRUS) of the most populated labelset bins, given the 
percentage of the data to keep as an input parameter (Fig. 7): first, the cut-off point at which 
accumulated frequencies meet the desired percentage value is determined, then, random 
samples are drawn accordingly (i.e., sample size = cut-off point) from the identified bins (i.e., 
labelset bins with a population > cut-off point). Residual instances are dropped. 
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Fig. 4. Co-occurrence matrix of labels in the multitask annotated reference data set: y-axis labels denote the reference classes 
Cr, x-axis labels refer to potential co-occurrence classes Cp, the cells represent each class pair’s conditional probability. 

2.2.2. Data partition 
To establish training, validation, and test data in consideration of occurring cross-task label 
combinations, we also build data partition upon the labelset bins. This is done by iteratively 
drawing random samples from the labelset bins until the desired data shares are reached. It is 
ensured that training, validation, and test set are spatially disjoint to avoid overoptimistic 
estimated model generalization capabilities (Geiß et al., 2017b). For this purpose, block-level 
spatial entity data (INE, 2018) are deployed. 

2.3. Deep multitask learning with label interdependency modeling 
The multitask classification (MTC) problem can be defined as follows: � = ℝ� denoting the �-
dimensional instance space, each instance � ∈ � is associated to a label space �� consisting of 
task specific class label sets �����

���
�

;  �� ∈ �, ��� ∈ �������
���

�
.Thereby, � corresponds the 

cardinality of the total set of classification tasks |�| and � to the respective task-specific 
numbers of classes. The goal of MTC is to learn a prediction model ��(�): � → ��. 
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We propose MTC with label interdependency modeling (MTC-LIM) to jointly accomplish 
multiple image classification tasks in an end-to-end trainable framework, that exploits cross-
task label interdependencies. MTC-LIM (Fig. 5) is composed of four sub-modules: the baseline 
MTC model (BL), the class-wise label interdependency model (CLIM), the task-wise label 
interdependency model (TLIM), and a module for information fusion and classification (FC). 
Beyond the FC module, each sub-module is supervised via its individual loss respectively to 
guide learning toward reasonable label probability distributions. 

 

Fig. 5. The MTC-LIM framework is composed of 4 modules each supervised by its own loss function: in BL a hard parameter 
sharing CNN jointly learns spatial features and predicts task-wise interim class label probability distributions. Based thereon, 
CLIM and TLIM employ class-wise and task-wise label interdependency representation learning respectively. FC realizes the 
fusion of resulting representations, multitask stacking, and final prediction. 

2.3.1. The BL module 
The initial BL module serves for the joint learning of spatial features with regard to the 
considered tasks and thereon for the intermediate prediction of multitask class probability 
distributions. Specifically, hard parameter sharing MTL is deployed to simultaneously learn 
common image feature representations and a prediction model per task �����; ��, ����: � →
���. The parameters of the feature extractor �� are shared among � within a common encoder 
network {�; ��} and ��� are the parameters of the task specific decoders ����; ����. Shared 
feature extraction is realized by an arbitrary CNN architecture and completed with global 
average pooling to keep the classification stages sparse. The output vector of the shared feature 
extraction stage can be denoted as ��� = ��(�). 
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All modules within the proposed MTC-LIM framework, including the BL module, employ fully 
connected layers with the softmax activation function, to transfer feature vectors to task-specific 
class-conditional probability distributions. Given a feature vector ��, the probability 
����� = ��|��� of the �th category from the �th task is obtained by 

����� = ��|��� =
exp (����� + ���)

∑ exp (�
��� ����� + ���)

 , (1) 
 

where ��� and ��� denote the weight vector and the bias of the �th neuron of the fully connected 
layer. 

The task-specific class label probability distributions resulting from the BL module, i.e., 

�(��|���) = �����1�����, ����2�����, … , �����������, (2) 
 

constitute the foundation for label interdependency modeling. In case of interdependency 
representation learning they are input to the CLIM and TLIM modules. When multitask stacking 
is applied they are also passed forward to the FC module. 

2.3.2. Multitask stacking 
Inspired by the works where multi-stage learning is used to exploit interdependencies across 
multiple target variables (Section 1.4), we propose multitask stacking (MS) to realize this 
concept in deep MTC. To leverage the outputs of multiple learning stages within a single end-
to-end training realization MS uses intermediately supervised interim task predictions: MS 
concatenates the task-wise label probabilities predicted by the preceding modules with the 
corresponding feature vectors and uses this augmented feature vector for final classification 
(Fig. 5). In its basic case, MS is applied on top of hard parameter sharing MTL (BL module) in 
the FC module by 

������ =  ���⨁ �(��|���), (3) 
 

⨁ denoting vector concatenation. As such, MS enables the modeling of cross-task label 
interdependencies at the classification stage within the fully connected layers. 
Complementarily, when applying CLIM or TLIM, corresponding interim label probability 
distributions can be stacked to the resulting classification feature vector likewise. This can be 
interpreted as ensemble learning where each sub-model accounts for a different representation 
modality of the input (i.e., image features and two types of label interdependency 
representations). 

2.3.3. Label interdependency modeling with RNNs 
The explicit modeling of interdependencies within the intermediately predicted class 
probability distributions is done with recurrent neural networks (RNNs; Chung et al., 2014), 
namely, gated recurrent units (GRUs; Cho et al, 2014). These receive the output class 
probability distributions from the BL module as properly arranged numerical sequences as input 
(Section 2.3.4.). 
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GRU is a modification of basic RNN proposed to adaptively capture dependencies in sequence 
data while avoiding defects of gradient vanishing and gradient explosion (Cho et al, 2014). 
They have shown powerful capabilities for modeling long-term dependencies (Chung et al., 
2014; Jozefowicz et al., 2015; Mou et al., 2017). For this study, GRU was particularly chosen 
because of its sparsity, e.g., compared to its alternative long short-term memory units 
(Hochreiter and Schmidhuber, 1997; Chung et al., 2014). Fewer parameters may be beneficial 
for the addressed application domain, which goes along with limited training data. In addition, 
it results in faster training and inference. 

Generally, RNNs handle sequential input by having a recurrent hidden state whose activation 
at each time step is dependent on that of the previous time. Given a sequence data � =
(��, ��, … , ��), where ��, � ∈ {1,2, … , �} is the data at time step � an RNN updates its recurrent 
hidden state ℎ� by 

ℎ� = � 0,                  � = 0 
�(ℎ���, ��), ��ℎ������ , (4) 

 
  

where � denotes a nonlinear transformation function. As such, an RNN allows to model a 
probability distribution over the next element of the sequence data given its current state ℎ� 
being able to capture a time-dependent probability distribution over sequences of variable 
length (Chung et al., 2014). 

A GRU (Fig. 6a) employs a transformation function, that incorporates two gating units: an 
update gate �� and a reset gate ��. The first controls how much the unit updates its activation or 
content. The latter controls how much the previously computed state is discarded. ℎ�� represents 
the current candidate activation. Thereon, the output activation of the hidden layer ℎ� is 
determined. 

 

Fig. 6. a) GRU architecture and b) bidirectional GRU. 

The recurrent transition of a GRU is calculated as follows: 

�� = �(����� + ���ℎ���), 
�� = �(����� + ���ℎ���), 
ℎ�� = tanh������ + ���(�� × ℎ���)�, 
ℎ� = (1 − ��) × ℎ��� + �� × ℎ��, 

(5) 
(6) 
(7) 
(8) 

 

where �(∙) denotes the logistic sigmoid function, tanh (∙) the hyperbolic tangent function, × 
element-wise multiplication, and � respective weight matrices. 

As can be seen from Eq. 4-8, the recurrent connection allows for the dynamic modeling of 
contextual relationships along an input sequence. Ideally, the last hidden state ℎ� captures most 
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of the encoded information and thus can be employed to obtain the output for inference tasks 
such as multi-class classification (Mou et al., 2017; Hang et al., 2019). 

In this study, we establish a stacked RNN composed of a bidirectional GRU followed by a 
unidirectional GRU (subsequently simply denoted as RNN) to comprehensively capture label 
interdependencies. The bidirectional GRU (Fig. 6b), consists of two identical GRUs that 
process the input data sequence in opposite direction and can be expressed as: 

ℎ����⃗ = ���������, ℎ�����������⃗ �, 
ℎ��⃖�� = ���������, ℎ����⃖��������, 
ℎ� = ℎ����⃗ ⨁ℎ��⃖�� , 

(9) 
(10) 
(11) 

 

where ℎ����⃗  and ℎ��⃖�� are the hidden states of the forward GRU and backward GRU respectively, 
and ⨁ denotes vector concatenation. This enables the exploitation of both, signals from 
previous information and signals from subsequent information (Schuster and Paliwal, 1997), 
which has already been shown beneficial for modeling class relationships in multilabel data 
(Hua et al., 2019). 

2.3.4. The CLIM and TLIM modules 
The label interdependency modeling modules in the first step perform a restructuring of the 
probability distributions obtained from the BL module (Fig. 5: Sequence structuring) to 
properly address their specific aim when being passed to the RNN in the following (Fig. 5: 
Interdependency representation learning). 

CLIM aims at capturing the cross-task dependencies encoded among the sequence of all 
individual class label probabilities. Consequently, the class probability distributions for all tasks 
are concatenated to obtain the input sequence for the RNN: 

����� = ���������, … , ��������, ��������, … , ��������, … , ���������. (12) 
 

As such, the RNN receives each item of the sequence as individual time step with its probability 
value as input feature. Correspondingly, the number of time steps is ����� = ∑ ���

�
��� . 

TLIM in contrast is employed to extract inter-task dependencies among the task-wise class 
probability distributions. To this end, the BL output probability distributions are structured as 
an � × ���� two-dimensional array: 

����� = �
��������, … , ��������

⋮ ⋱ ⋮
�����������, … , �����������

�, (13) 

 

where ���� refers to the highest number of class manifestations occurring among the 
considered classification tasks. Residuals between a considered task-specific class number ��� 
and ���� are zero-padded. 
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In this manner, it is enabled, that the RNN receives each task as an individual time-step with its 
class probability distribution as input features. 

����� and ����� are input to a proper RNN per task to model label interdependencies task-
specifically. The hidden layer states of the last time step are respectively considered as label 
interdependency representations and passed forward to fully connected layers with softmax 
activation. This facilitates obtaining label interdependency-based interim prediction outputs 
and thereon intermediate supervision. Resulting label interdependency representations and 
interim predictions are input to the FC module. The fact that label interdependency is modeled 
at the level of estimated output probability sequences rather than at the image feature level 
keeps the number of additional trainable parameters due to CLIM and TLIM relatively low 
(Table 1). 

2.3.5. The FC module 
The FC module is responsible for feature fusion, MS, and final prediction. Herein, the features 
and interim class label probability distribution outputs from the preceding modules can be 
concatenated to a final feature vector. This feature vector is passed to a fully connected layer 
with softmax activation for each task to lastly obtain the classification output. In this manner, 
the FC module aims at exploiting the resulting multi-view perspective on the image data 
(Aravena Pelizari et al., 2018) considering the complementary feature sub-spaces image 
features, label probability distributions (MS) as well as inter-class and inter-task label 
interdependency representations. 

2.3.6. Optimization and inference 

During training, given a labeled example (�, �����), the MTC model learns by updating the 
shared and task-specific parameters to jointly minimize categorical cross entropy for each task. 
Thereby, MTC loss is defined as the sum of all task-specific losses: 

�� = ∑ ���
�
��� . (14) 

Thereon, the overall optimization objective is calculated as the sum of all considered sub-model 
specific losses, e.g., �������� = ∑ ��

�
��� . 

During inference the categorical labels are obtained from the probabilistic outputs by 
������ ����� = ������. 

3. Experimental setup 
The percentage of the data to be kept in the LPRUS balancing of the reference data is set to 
85%. Training, validation, and test data shares in the labelset-based data partition are set to 
65%, 17.5%, and 17.5%, respectively. 

To integrate different CNN architectures and design concepts (architecture engineering vs. 
neural architecture search), we implement DenseNet121 (Huang et. al., 2017) and 
EfficientNetV2-B3 (Tan and Le, 2021) as feature extractors within the BL module. Both 
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networks focus on parameter efficiency, i.e., a favorable trade-off between parameter sparsity 
and accuracy properties (ibid.; Table 1). 

Table 1. Deployed frontend CNN-Architectures, input image sizes, ImageNet top-1 accuracies, and trainable 
parameternumbers when addressing all 5 tasks 

Feature extractor 
Input 
size 

[Pixels] 

ImageNet 
acc. [%] 

# param. to train (5 tasks) [M] 

STC MTC-BL MTC-LIM 
DenseNet121 2242 75.00 34.81 6.99 7.14 

EfficientNetV2-B3 3002 82.00 64.16 12.88 13.04 
 

For training, frontend CNNs are initialized with ImageNet (Russakovsky et al., 2015) pretrained 
parametrization. Fully connected layers are initialized with He normal initialization (He et al., 
2015) and subject to L2 kernel weights regularization (�2 =  0.0001). The GRUs are 
initialized with a Glorot uniform initializer (Glorot and Bengio, 2010). The number of neurons 
is set identical for both, the bidirectional and the unidirectional GRU, to 32 in the CLIM module 
and 12 in the TLIM module. All models are trained uniformly using Adaptive Moment 
Estimation optimization (Kingma and Ba, 2014) with an initial learning rate of 0.0001. For 
exhaustive but efficient training, the learning rate is reduced by a factor of 0.5 at validation 
accuracy plateaus. Early stopping is applied, to mitigate overfitting. Considering the 
computational resources of the Nvidia Quadro RTX 4000 GPU with 8 GB memory all networks 
are trained with a batch size of 24. 

The performed experiments are intended to provide reliable evidence on the accuracy properties 
of the different feature vector configurations available depending on the modules connected. 
Estimated generalization capabilities are reported as overall accuracy (OA), Cohen’s kappa 
statistic (κ), and class-wise F1-scores obtained from 11 independent realizations. 

Additionally, we provide the MTC performance of method � as the accumulated residuals in 
accuracy per task w.r.t. its single task classification (STC) counterparts � (i.e., the STC models 
with the same feature extractor): 

Δ� = ∑ (�
��� ��,�� − ��,��)/��,��, (15) 

���  referring to the performance measure of task ��. 

Starting from the base benchmark STC, we employ hard parameter sharing MTC (BL) followed 
by multitask stacking (MS), label interdependency representation learning (CLIM and TLIM), 
and their combinations. Table 2 provides an overview on all experiments listing employed 
modules, feature vectors for classification, and supervised losses respectively. 
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Table 2. Conducted experiments, involved modules, feature vector composition, and supervision (see Fig.5). STC refers to 
single task classification. Classification feature vectors for MTC are indicated by the learned representations (������� ) and 
interim cross-task class probability distributions �(��|�������) used. 

Experiment Modules Classification feature vector Supervision 
STC - [����] ���� 
BL BL [���] �� 
BL-MS BL, FC [���, �(��|���)] ��, �� 
CLIM BL, CLIM, FC [���, �����] ��, ��, �� 
CLIM-MSBL BL, CLIM, FC [���, �����, �(��|���)] ��, ��, �� 
CLIM-MSALL BL, CLIM, FC [���, �����, �(��|���), �(��|�����)] ��, ��, �� 
TLIM BL, TLIM, FC [���, �����] ��, ��, �� 
TLIM-MSBL BL, TLIM, FC [���, �����, �(��|���)] ��, ��, �� 
TLIM-MSALL BL, TLIM, FC [���, �����, �(��|���), �(��|�����)] ��, ��, �� 
LIM BL, CLIM, TLIM, FC [���, �����, �����] ��, ��, ��, �� 
LIM-MSBL BL, CLIM, TLIM, FC [���, �����, �����, �(��|���)] ��, ��, ��, �� 
LIM-MSALL BL, CLIM, TLIM, FC [���, �����, �����, �(��|���), �(��|�����), �(��|�����)] ��, ��, ��, �� 

4. Results and discussion 

4.1. Data balancing and partition 
As first step, the multitask labeled dataset was subject to the LPRUS undersampling strategy 
(Section 2.2.1) to mitigate class imbalance without losing information on label 
interdependencies. Fig. 7a shows the top 25 labelset bins as well as the identified cut-off point. 
The resulting amounts of samples to be kept and dropped are indicated in orange and blue. Fig. 
7b highlights the effect of LPRUS on the task-wise class histograms. It can be observed, that 
LPRUS leads to an undersampling of the majority bins in particular and therefore allows for 
attenuating class imbalance in multitask annotated data. 

 

Fig. 7. LPRUS. a) Top 25 labelset bins with highest frequencies arranged in descending order, determined cut-off point, kept 
samples, and dropped instances. b) Effect on task-wise class histograms. 

The outcome of LPRUS was split up into training, test, and validation data sets (Fig. 8) 
containing 16,191, 4,469, and 4,473 images respectively. 

4.2. Comparative model accuracies 
Insights on the impact of the different employed methodological components, i.e., the parameter 
sharing within the BL module, MS, the learning of label interdependency representations with 
CLIM and TLIM as well as their combinations are revealed by evaluating 12 different model 
configurations (Table 2) for the two frontend CNN architectures each. The mean test set 
accuracies of the employed model configurations in terms of OA, �, and Δ� are provided in 
Table 3. 
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Fig. 8. Class frequency distributions across training, test, and validation data for the 5 considered tasks. 

In addition, to obtain a more comprehensive view on the comparative generalization capabilities 
of the employed models, we depict all results as boxplots of the accumulated residuals in 
accuracy w.r.t. the STC run with the median of cross-task mean κ statistics (Δ�(������); Fig. 
9). Each boxplot highlights median values, interquartile ranges, whiskers, and potential outliers. 
Concerning STC, all possible combinations of the individual task-wise outputs are considered. 

In consideration of the results for all tasks, it can be generally stated that with the presented 
data setup and methods viable accuracy levels beyond a mean OA = 79.90% and a mean κ = 
77.94% (Table 3, STC with DenseNet121 frontend on SBST task) can be achieved. Thereby, 
estimated classification accuracies of the models with EfficientNetV2-B3 frontend are higher 
than their DenseNet121 counterparts. This is in line with their accuracy scores for the ImageNet 
data set (Table 1), although the superiority of EfficientNetV2-B3 is not similarly pronounced 
here. Regardless of the frontend CNN architecture it can be seen, that hard parameter sharing 
alone (BL) already increases accuracy compared to the STC results. The proposed MS allows 
for further gains in accuracy (BL-MS). Subsequently, models containing label interdependency 
representation learning via the CLIM module, the TLIM module, or both modules outperform 
BL-MS predictions. This reflects their ability to better capture beneficial information encoded 
within the intermediately predicted label probability sequences. Correspondingly, the employed 
RNNs are revealed as appropriate to dynamically account for label interdependencies within 
the proposed framework. 

Looking at the results obtained with the DenseNet121 frontend (Table 3; Fig 9a), MS on top of 
label interdependency representation learning with either CLIM or TLIM (as in CLIM-MSBL 

and CLIM-MSALL as well as TLIM-MSBL and TLIM-MSALL) does not further increase 
accuracy. The results of the LIM models, which combine CLIM and TLIM, in contrast, show 
consecutive accuracy gains when MS is employed (LIM-MSBL and LIM-MSALL). With a mean 
OA = 87.13%, a mean κ = 82.79% as well as corresponding Δ�(����) values of +5.34% and 
+7.27% respectively, the LIM-MSALL configuration performs best when building upon the 
DenseNet121 frontend.  

The results with the EfficientNetV2-B3 frontend (Table 3; Fig 9b), show a different accuracy 
pattern at this point. Here, MS on top of label interdependency representation learning by 
either CLIM or TLIM allows for a further increase in accuracy. This accounts for the model 
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configurations CLIM-MSBL as well as TLIM-MSBL and TLIM-MSALL. For the latter two, this 
becomes obvious when considering the corresponding boxplots. Augmenting the initial 
feature space with CLIM label interdependency representations and BL probability MS 
(CLIM-MSBL) is revealed as the most accurate of all model configurations, resulting in a 
mean OA = 88.03%, a mean κ = 83.69% as well as respective Δ�(����) values of +4.80% 
and +6.37%. 

Table 3. Mean accuracy values [%] obtained from 11 independent trials. 

 

 

Fig. 9. Comparative accuracies of multitask classifications as accumulated residuals w.r.t. the STC median [%]: 
a) with Densenet121 frontend, b) with EfficientNetV2-B3 frontend. 
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Considering the task-wise accuracy means, it can be stated that the proposed methods allow 
for obtaining accuracy gains across all individual tasks. 

The boxplots reveal, that due to the stochastic processes occurring in the course of model 
training accuracy value ranges can spread considerably. Nonetheless, median values, 
interquartile ranges, and whiskers, mostly follow the accuracy hierarchy indicated by the mean 
accuracy values (Table 3). It is confirmed that with both frontends DenseNet121 (Fig. 9a) and 
EfficientNetV2-B3 (Fig. 9b), a combination of interdependency representation learning and MS 
performs best in terms of estimated generalization accuracies, i.e., LIM-MSALL with median 
values of +5.44% OA and +7.27% κ and CLIM-MSBL with median values of +4.25% OA and 
+5.49% κ. A closer look at the boxplots also indicates that individual model configurations 
allow for higher accuracy gains than reflected by mean and median values. E.g., the difference 
between the DenseNet121 TLIM upper whisker and the corresponding STC whisker is +5.12% 
OA and +6.98% κ. The difference between the upper whisker of EfficientNetV2-B3 CLIM-
MSBL and the corresponding STC whisker is +5.01% OA and +6.76% κ. Analogously, CLIM-
MSBL surpasses BL by +5.04% OA and +6.71% κ. Overall, CLIM-MSBL with EfficientNetV2-
B3 frontend achieves the best estimated generalization ability among all performed realizations 
resulting in a cross-task mean accuracy value of 88.43% OA, and 84.49% κ (confusion matrices 
are show in Fig. 11, task- and class-wise accuracy values in Fig. 13). 

Concerning the presented methods, we can conclude at this point: i) the inclusion of MS (BL-
MS) outperforms hard parameter sharing MTL (BL) alone, ii) label interdependency 
representation learning via CLIM and/or TLIM (CLIM, TLIM and LIM) outperforms MS (BL-
MS), indicating that it allows for an enhanced capturing of cross-task label interdependencies 
iii) the combination of MS and label interdependency representation learning allows for 
synergies and results in the highest mean and median accuracy values, e.g., DenseNet121 LIM-
MSALL and EfficientNetV2-B3 CLIM-MSBL. 

Fig. 10 shows the class-wise mean F1-scores of the obtained results. In agreement with the 
presented aggregated evaluations, also on class-level, the highest accuracy values are obtained 
by MTL model configurations considering label interactions due to MS, label interdependency 
representation learning, or, as in most of the cases, a combination of both. 

For multiple classes deteriorations can be observed when comparing the accuracies of BL MTL 
with STC (negative transfer), these include H1, H2, H3-4, H5-7, CR_H8-12, COM3_H8+, 
FLT, PIT_GAB and SDET for the DenseNet121 frontend runs (Fig. 10a) as well as H1, H2, 
H3-4, H5-7, H8-12, MR_H3-4, CR_H5-7, CR_H8-12, PIT_GAB, DET_SP, SDET and 
ADJ_TR for the EfficientNetV2-B3 frontend runs (Fig. 10b). The barplots indicate, that 
interdependency modeling counteracts such deteriorations. 

The figures further indicate, that particularly the MTC prediction accuracies of classes less 
represented in the training data (Fig. 8) can be improved by explicitly accounting for label 
interdependencies, e.g.: H5-7, H8-12, H13+ for Height; MUR, MR, W,UNK, COM1,2,IND, 
COM3 for MatLLRS; MUR_H1, MUR_H2-3, CR_1-2, MR_H3-4, CR_H3-4, CR_H5-7, 
CR_H8-12, CR13+, COM1,2,IND_H1+ for SBST; PIT_MON for RoofShp and DET_SP for 
BlockPos. 
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Fig. 10. Class-wise mean F1-scores for the addressed classification tasks and employed model configurations. 
a) With Densenet121 frontend, b) with EfficientNetV2-B3 frontend. 
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4.3. Insights on class-wise accuracy levels 
To provide background insights on the general accuracy levels of the individual classes as well 
as associated prediction errors Fig. 11 depicts the confusion matrices resulting from the best 
performing MTC model. 

 

Fig. 11. Confusion matrices of best performing MTC model for the five tasks (y-axis: reference labels, x-axis: predicted labels). 

For the Height predictions estimated commission and omission errors occur exclusively among 
adjoining classes (i.e., classes one height class above or below; Fig. 11a). H5-7 is revealed to 
be particularly error prone with comparatively high errors of omission. MatLLRS 
classifications, in contrast, exhibit errors across several classes (Fig. 11b). This applies, e.g., for 
the widespread MCF which has been built for a relatively long time and thus comprises a large 
within class variance. When buildings are plastered or painted, the visual characteristics to 
differentiate MCF from other LLRS materials can be subtle (Aravena Pelizari et. al, 2021). 
Moreover, there are errors of omissions for COM1,2,IND due to misclassification as CR. This 
is reasonable, COM1,2,IND is a residual class for commercial and industrial buildings not 
unambiguously assignable to the other MatLLRS classes or whose occurrence is too low to be 
adequately represented in an appropriate additional LLRS material category. Such buildings 
can feature high commonalities in their visual characteristics with CR buildings, which could 
hinder their distinction. The error patterns of Height and MatLLRS classification are reflected 
by the SBST predictions: errors predominantly occur among buildings with same height but 
different LLRS material or among adjoining height manifestations (Fig. 11c). Here also the 
SBST of height H5-7 (CR_H5-7) shows the highest estimated error rates. Regarding RoofShp 
prediction, PIT_MON is challenging (Fig. 11d). PIT_MON roofs often refer to MUR or MCF 
buildings where the roof slopes backward away from the street (Fig. 1a). This is not directly 
visible in a frontal façade view and needs to be inferred indirectly from other façade 
characteristics. Concerning BlockPos, DET_SP, and ADJ_TR are especially affected by errors 
of omission, i.e., images wrongly predicted as SDET and ADJ_TR (Fig. 11e). 
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The identified error prone classes are in many cases also minority classes in the training data. 
Looking back at the comparative accuracies (Fig. 10) it can be observed that these more 
challenging classes can particularly benefit from the modeling of label interdependencies (e.g., 
Height class H5-7, MatLLRS class COM1,2,IND, SBST class CR_H5-7, RoofShp PIT_MON, 
and BlockPos DET_SP). 

4.4. Consideration of training times 
A comparative overview on the mean training time for the employed model configurations is 
given in Fig. 12. 

 

Fig. 12. Mean training time per model configuration required to address all tasks. 

It can be noticed, that for the addressed data setting and application scenario the training time 
consumption of STC can be substantially reduced by using MTL models while the estimated 
generalization accuracies simultaneously improve (Table 3). Looking at the models with 
DenseNet121 frontend the configuration with the highest accuracy values (LIM-MSALL) allows 
for mean training time reduction of 1.52h (19.02%) with a Δ�(����) = +5.34% OA and 
Δ�(����) = +7.27% κ. The remaining DenseNet121 frontend model configurations allow for 
a more pronounced reduction in training time, however, with lower accuracy gains. E.g., TLIM 
reduces mean training time compared to STC by 3.78h (47.31%) with only minor accuracy 
degradations attaining a Δ�(����) = +4.70% OA and Δ�(����) = +6.27% κ. 

For the models with EfficientNetV2-B3 front end, the gain in terms of accuracy/training time-
efficiency is even more distinct. Here, the model configuration with the highest estimated 
accuracy values (CLIM-MSBL) already results in a mean training time reduction of 7.18h 
(50.71%), while obtaining Δ�(����) values of +5.01% OA and +6.76% κ. 

The presented experimental evaluations demonstrate that the presented methods allow for 
considerable gains in generalization capability estimates compared to STC but also compared 
to hard parameter sharing MTL (BL) alone. The highest accuracy values are achieved by 
combing MS and label interdependency representation learning. Simultaneously, training time 
consumption is substantially reduced compared to STL. 
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4.5. Application: Spatially distributed building characteristics 
To illustrate the application of the proposed MTL framework, i.e., large-area building 
characterization for multihazard risk assessments (Section 1.1), we employ the best performing 
MTC-model (EfficientNetV2-B3 CLIM-MSBL configuration) to classify all 204,030 façade 
views. Fig. 13 depicts the spatial distributions of each of the predicted classes for the five 
addressed tasks. Furthermore, resulting class frequency distributions as well as corresponding 
class-wise F1-scores, OA, and κ values are presented. The maps reveal the distinct patterns for 
each class of the addressed building characteristics across the Santiago de Chile area. The 
individual patterns are the result of the urban growth history, past earthquakes, the associated 
evolvement of building codes as well as the impact of socioeconomic factors (e.g., demography, 
income, economy) on construction (Aravena Pelizari et. al, 2021). 

In synopsis, the maps to a certain degree also reflect the spatial manifestations of co-
occurrences (i.e., interdependencies) among the addressed classes (see also Fig. 4). For 
instance, buildings assigned to the Height class 5-7 storeys (H5-7) or a higher class, almost all 
refer to detached multiparty (DET_MP), reinforced concrete (CR), or office (COM3) 
constructions with a flat roof (FLT). Such buildings predominantly occur in the residential areas 
of medium to high socioeconomic status and the business and financial districts, which 
particularly expand northeastwards from the center. The locations of COM3 buildings are 
exclusively limited to such sectors (for spatial consideration of Greater Santiago from a socio-
economic perspective we refer to Garreton, 2017). Reinforced masonry (MR) as well as wooden 
and non-engineered (W_UNK) constructions in contrast mainly cover low to medium 
socioeconomic status residential buildings and extend radially from the city center and the high 
economic status sectors in the northeast. Such buildings predominantly cover constructions of 
1-2 storeys height (H1, H2) with pitched or gabled (PIT_GAB) roofs. Thereof, the MR 
buildings mainly refer to semi-detached (SDET) buildings, while the dominant BlockPos class 
for W_UNK buildings is adjoining block development (ADJ_BD) followed by detached single-
party (DET_SP). As a further example, unreinforced masonry (MUR) buildings particularly 
concentrate within municipalities in the core of Santiago and its direct surroundings. These 
sectors cover the historic extent, from which the city began to expand. Thereby, the higher 
MUR buildings with 2-3 storeys (MUR_H2-3) are primarily situated in the historic city center. 
The core of Santiago de Chile has been highly densified and MUR buildings most frequently 
belong to adjoined block developments. With regard to their roof shapes, MUR buildings most 
frequently comprise monopitch (PIT_MON) followed by PIT_GAB roofs. 

The outlined examples are intended to once more illustrate occurring interdependencies among 
the class manifestations of the addressed building characteristics. From an application point of 
view, it becomes apparent that their quantities such as their spatial distributions are highly 
heterogeneous and each follows a very distinct spatial pattern. Accordingly, also the 
vulnerability of the classified buildings to natural hazards comprises distinct spatial 
variabilities, making such information highly valuable for the spatial modeling of risk (Gomez-
Zapata et. al, 2021; Geiß et. al, 2022c). Such details are a decisive component when it comes to 
tailored measures in the context of pre- and post-event emergency management. 
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Fig. 13. Spatial distribution, class frequencies, and accuracy measures [%] of classification output from best performing MTC 
model. Built-up area as given by the Global Urban Footprint (Esch et al., 2017) and the administrative boundaries of the covered 
municipalities (comunas) are used as backdrop. 
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5. Summary and conclusion 
This paper introduced a methodological framework to dynamically leverage cross-task label 
interdependencies in end-to-end deep MTL image classification. Interdependencies are 
modeled based on task-specific interim class label probability distribution estimates by a 
classical hard parameter sharing CNN frontend in two ways: i) interim class probability outputs 
are stacked to the final feature vector for classification (i.e., multitask stacking); ii) interim class 
probability distribution outputs are employed to learn features explicitly internalizing label 
interdependencies using an RNN (i.e., interdependency representation learning). The latter 
foresees both, the consideration of interdependencies among the sequence of individual class 
probability values (CLIM) as well as of interdependencies among the individual task-wise class 
label probability distributions (TLIM). 

Looking at computational costs, building on label probability sequences keeps interdependency 
modeling sparse, and training time consumption remains favorable compared to STL. At the 
same time, it facilitates the proposed MTL framework genericity for the expansion toward 
additional classification tasks. 

The experimental evaluations showed that the presented MTL models consistently outperform 
their STL and hard parameter sharing MTL counterparts. Thereby, they allow for obtaining 
accuracy gains across all individual tasks. Comparing multitask stacking and label 
interdependency representation learning the results indicate, that the latter allows for an 
enhanced capturing of cross-task label interdependencies. Resulting accuracy measures further 
revealed that the two label interdependency modeling strategies multitask stacking and 
interdependency representation learning allow for synergies. Hence, for both frontend CNN 
architectures, DenseNet121 and EfficientNetV2-B3 a combination of both attained the highest 
accuracy estimates. EfficientNetV2-B3 CLIM-MSBL with Δ�(����) values of +4.80% OA 
and +6.73% κ resulted in the highest generalization capability estimates overall and allowed for 
the joint predictions of the five tasks (i.e., height, LLRS material, SBST, roof shape, and block 
position classification) with mean cross-task accuracy values of 88.03% OA and 83.96% κ. 

In parallel, it is confirmed that training time consumption compared to STL can be substantially 
reduced. Hence, given our addressed application and data – multicriteria building 
characterization with street-level imagery – the proposed MTL architectural framework allows 
to exploit the full potential of MTL, i.e., improved generalization capabilities coupled with 
reduced training time consumption, for a considerable number of classification tasks. 

To provide a comprehensive picture on the vulnerability of buildings exposed to multiple 
natural hazards using street-level imagery in a generic and efficient fashion, we suggest to 
explore the potential of the proposed MTL framework to consider further target variables in the 
future. 
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