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1 Introduction

Epidemiology is the study of infectious diseases, including their origin,
spread and prevention. A useful tool to predict the spread of such diseases
or assess preventative measures, are mathematical models. Current state-
of-the-art models that arose due to the COVID-19 pandemic include agent-
based models [1, 2], metapopulation models [3, 4, 5, 6, 7] as well as equation-
based models [8, 9].

The different types of models each have their own drawbacks and ben-
efits. For example, while agent-based models tend to reflect reality better
than metapopulation or equation-based models by describing the population
on a microscale, the computational cost is relatively high and scales poorly
with larger populations. This is alleviated by using metapopulations, that is
considering the population at a mesoscale level instead. On the other hand,
Equation-based models using systems of ordinary differential equations are
purely deterministic, by assuming the population is homogeneously mixed,
but the cost for solving the equations is low and independent of the popu-
lation size, making it ideal for parameter studies.

In this thesis, we present the infectious disease models introduced by [10],
starting with a general formulation for an agent-based model, which will be
successively reduced to a metapopulation model and a piecewise equation-
based model. The agent-based model allows precise predictions by a bottom-
up approach, that is by modelling the population as individuals. This is the
finest granularity model, followed by the metapopulation model grouping
agents together. Finally, the piecewise equation-based model approximates
the size of agent groups by deterministic equations, which is the coarsest
granularity and allows for top-down modelling.

Figure 1: Model overview, with 1) individual agents, 2) agents grouped into
metapopulations and 3) a deterministic representation of each metapopula-
tion. The infected population is marked in red.

Since all three models approximate the same total population at different
scales, we can couple them together to get a multiscale, hybrid model, so
that we can combine the benefits of each approach.

Before describing the models, we introduce the algorithms used for nu-
merical simulations of each model as well as the stochastics required by both
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the models and algorithms. Lastly, we present the hybridization approach
and some numerical results, that show the viability of the hybrid models.

2 Epidemiological Modelling

Infectious diseases can have a significant impact on our daily lives. While
many diseases like the common cold or the flu are treatable, both they
and newly arising diseases like Covid-19 can still erupt in a pandemic and
threaten the lives or livelihood of many. In this extreme case, the impact
could be seen worldwide in both the health sectors and economic sectors.

A disease is called infectious, if the cause of the disease (e.g. a virus or
bacterium) can be transmitted from one host to another [11]. Depending on
the disease, the transmission can take place over several media like direct
contact, water and food or even airborne droplets. Many infectious diseases
stay in circulation by spreading among the population at a certain rate.
Diagnosed infections are called a disease case, and an unusually high number
of cases is called a disease outbreak [11]. If the disease further spreads to
affect a disproportionately large part of a population, we call the outbreak
an epidemic [11].

To better understand such infectious diseases, we use models for disease
dynamics, by describing the population and their interactions [12]. There
are different methods on how to model these complex interactions within
a population. Two commonly used approaches are equation-based models
EBMs, also referred to as compartmental models, and agent-based models
ABMs.

An EBM describes the population, or a group within it, as a homo-
geneous whole, that is, there is no distinction between individuals. This
requires a group-based analysis of the target population, but no data on
individual behavior is necessary. Hence, it is a useful model for the overall
spread of a disease. However, it is only suited for large groups, like a city
or country. For smaller groups, like a single class of students, an ABM is
preferable, since it describes the behavior of each person in the given popu-
lation, by modelling their possible actions and interactions with each other.
This requires an individual-based analysis of the target population.

Strictly speaking, both models use compartments, since the infection
states of a disease are mostly described in discrete states, where any indi-
vidual can only be in exactly one state at any given time. These states are
what we call compartments [12]. However, the term compartmental model
is mostly used for EBMs.

The models also require rules for transitioning between compartments. A
very simple example of this is given by the so-called SIR model, where we use
the compartments Susceptible, Infectious and Recovered, and transitions are
only possible in that order. The term Recovered here is used in the sense that
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any recovered person can not be reinfected, i.e. they are neither infectious
nor susceptible to infection anymore. That is why in some formulations, R
stands for ”removed” (from the model).

This kind of model is well suited for visualization by a directed graph,
with compartments as vertices and possible transitions as edges, often an-
notated with their associated transition rates. In case of an SIR model, this
graph can look like

S I R,
ϕρS I

N

1
TI

I

where the product ϕρ is the infection rate, consisting of the average
number of contacts per day of an individual ϕ and the probability of infection
per contact ρ. The term 1

TI
is the average rate of recovery from an infection,

and N is the population size.
While this is a strong simplification of an infectious disease, it can lead

to useful short term estimations. For example, a SIR model was used in [13]
as part of the Public Health Emergency COVID-19 Initiative.

2.1 A Simple Equation-Based Model

The example above uses an EBM, which is formulated using a system of
ordinary differential equations. The total population is considered to be
a constant number N , split between the compartments such that N =
S(t) + I(t) + R(t) at any time t. The model does not make use of spa-
tial resolution (i.e. distance between individuals), which means contacts
can occur throughout the whole population, with ϕ contacts every day. The
system is

d

dt
S(t) = −ϕρ

I(t)

N
S(t) ,

d

dt
I(t) = ϕρ

I(t)

N
S(t)− 1

TI
I(t) ,

d

dt
R(t) =

1

TI
I(t) .

(1)

To fit this model to a real world infectious disease, we need real world
numbers. For example, the distribution of the population to infection states
can be derived from case reporting. The rates can be based on current
case reporting or estimates for the current disease. In absence of such data,
accounts for diseases from the same family or with similar characteristics
can be used instead.

A huge benefit of this kind of model is that it is deterministic and com-
putationally inexpensive, since we can use standard integration methods like
Runge-Kutta [12]. This allows for long time simulations, or parameter stud-
ies of parameters which have a range of possible values, like the transmission
probability on contact at the start of an outbreak.
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One drawback, as alluded to earlier, is that the modelled population
needs to be large and well mixed, since we only work with averages and
have no notion of spatiality. Furthermore, if we want to add more details
to the model, we can only do that in the form of stratification, that is by
adding more groups (e.g. age group, income group, or other demographics)
[12]. But, if taken as percentages of the total population, the results of an
EBM do not change with the population size. This allows for models with
arbitrarily large populations, without an increase in computational cost.

2.2 A Simple Agent-Based Model

An ABM models the target population by small, pairwise disjoint units,
which we refer to as agents. A common choice in epidemiology is to model
one person by one agent, but larger units like a household could be used in-
stead. In general, the model consists of an environment for the agents, their
properties and their behavior described by an agent’s interactions with its
environment or other agents. It can be similar to a state machine, in the
sense that the (infection) state of the agent often determines which interac-
tions are possible, and the interactions can cause changes in the agents state.
In contrast to state machines, these state changes are usually stochastic, and
are often defined using a stochastic process.

To describe a SIR model, an agent needs an infection state and a position,
for example in a domain on R2. In that case, its movement could be given by
a random walk, and a radius can be used to determine whether another agent
counts as a contact. The transitions between infection states are determined
in regular time steps for each agent, and are given as follows, without going
into mathematical detail:

� S → I: If the agent has infection state S, it has a chance to adopt
state I proportionate to the rate ρ I

N and the number of contacts

� I → R: If the agent has infection state I, it has a chance to adopt
state R proportionate to the rate 1

TI

Note that the infection rate only uses ρ, since the contacts per day is depen-
dent on the agents positions and the contact radius. Also, when compared
to the EBM, the source compartment is missing from the rate (e.g. 1

TI

vs. 1
TI
I). This is because transition rates in an EBM consider the whole

compartment, instead of a single agent in that compartment.
The main benefit of an ABM is that they can be almost arbitrarily

extended by adding more agent properties or interactions with their envi-
ronment and each other.

However, simulating these models is a lot more computationally expen-
sive than EBMs, especially since interactions between agents cause their
cost to scale up to quadratically with the number of agents. The stochastic
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nature of ABMs makes its results somewhat unreliable, as the same model
setup can potentially have wildly different results. Taking several results
into account can alleviate this issue, but can again be expensive.

3 Basics for Stochastic Modelling

In section 2 we talked about transition rates for an ABM without speci-
fying what these rates mean mathematically. If we only consider a single
transition, e.g. from compartment S to I, we can use a random variable
X to model the number of transitions at each time t, such that X(0) = 0
and X(t) is the total number of transitions from S to I that occurred in
[0, t]. The family (X(t)|t ≥ 0) is a stochastic process, and assuming that
transitions are instantaneous, (X(t)|t ≥ 0) is also a counting process, i.e. it
is monotonous with discrete increments of 1.

To incorporate a rate λ, a common assumption [14, 15] is that the prob-
ability of a transition occurring in (t, t + δt] for a small time step δt, given
the state of X(t), is essentially λδt, that is

P[X(t+ δt) > X(t)|FX
t ] ≈ λδt, (2)

where FX
· is the filtration generated by (X(t)|t ≥ 0). For a definition

of a generated filtration, see [16, Remark 9.11], but for our purposes it is
sufficient to know that FX

t contains the information on the state of X(s)
for all s ≤ t. We will assume that the rate P depends only on t and the
state of the model at time t, so that it fulfills the Markov property. We will
see in the following chapter that an inhomogeneous Poisson process can be
used to model X.

Note, however, that the assumptions onX are not sufficient to prove that
X is a Poisson process. Thus, in theory, other more complicated processes
could be used instead. An example of a sufficient condition is given in the
assumptions of [16, Theorem 5.36], that is instead of equation (2) we would
require that the waiting times τ between two consecutive transitions are
independent and exponentially distributed, that is

P[τ > x] = e−λx .

We will show in Lemma 3, that a certain Poisson process suffices equa-
tion (2), and can therefore be used to model systems like X.

Afterwards, we introduce the diffusion process used to model the move-
ment of an agent in the ABM described in section 5, and define metastability
for this process, which is needed for the model reduction of this ABM.

To keep the notation with regard to stochastic processes more readable,
we write X to represent the process (X(t))t, and may write Xt for a random
variable in the process instead of X(t). When we consider discrete times ti,
we further shorten to Xi = Xti . In this setting we define ∆t := tn+1 − tn, if
the index n is obvious from context.
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3.1 Poisson Processes

Poisson processes are, for example, commonly used to model the number
of particles in a radioactive material decaying over a certain time [16]. The
main features are that the decays are independent of each other, and the rate
of decay is independent of time, which is close to the requirements of process
X above. To see that X can indeed be described by a Poisson process, we
first consider the following definition from [17]:

Definition 1 (Poisson process). A Poisson processes is a continuous-
time counting process (P(t), t ≥ 0), i.e. a stochastic process with increments
of 1, with an intensity λ ∈ [0,∞) and the following properties:

i) P(t) is a N0-valued random variable, with P(0) = 0

ii) Its increments are independent and stationary, i.e. for any choice of
times 0 = t0 < t1 < · · · < tn, n ∈ N, the family (P(ti)−P(ti−1))i=1,...,n

is independent.

iii) P[P(t+ δt)− P(t) = 1] = λδt+ O(δt) as δt → 0

iv) P[P(t+ δt)− P(t) > 1] = O(δt) as δt → 0

We can directly follow from the definition that P[P(t+ δt)−P(t) = 0] =
1− λδt+ O(δt) for δt → 0, and also

P[P(t)− P(s) = k] =
(λ(t− s))k

k!
e−λ(t−s) for all k ∈ N0, (3)

that is the increment P(t)− P(s) is a Poisson distributed random variable
with intensity λ(t − s), see [16, Theorem 5.34] for a proof. In particular,
the theorem also shows that replacing item iii) and iv) by (3) results in an
equivalent definition of a Poisson process.

If λ ≡ 1, that is we have a unit rate, we call P a unit Poisson process or
unit-rate Poisson process, denoted by P1. An interesting property of Poisson
processes is that either time or rate can be used as unit. To understand what
that means, consider for a given intensity λ a stochastic process N defined
via a unit Poisson process as

N(t) := P1(λt), (4)

then N is a non-unit Poisson process with intensity λ, since for small δt → 0
we have

P[N(t+ δt)−N(t) > 0|FN
t ] = P[N(t+ δt)−N(t) > 0]
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using the independence property, and by (3) we obtain

P[N(t+ δt)−N(t) > 0|FN
t ] = 1− P[N(t+ δt)−N(t) = 0]

= 1− e−λδt = λδt+ O(δt)

where in the last step we used the linear approximation for 1− e−x near 0.
This result implies that for any λ and t, we have

Pλ(t) = P1(λt), (5)

which means the same process can be considered either in the usual unit
time t, or with unit rate, which causes us to distort the time parameter.

We now want to generalize this time distortion using time dependent
rates λ̂ : [0,∞) → [0,∞), and define an inhomogeneous Poisson process as

Pλ̂(t) := P1

(∫ t

0
λ̂(s)ds

)
. (6)

If λ̂ is constant we call the process homogeneous, as we have
∫ t
0 λ̂ds = λ̂t,

hence the process simplifies to the Poisson process as defined above. In
general, we call ιt(t) :=

∫ t
0 λ̂(s)ds the internal time of the process Pλ̂, which

is the time used by the equivalent unit rate process P1(ι
t(t)). In contrast, t

itself may be called external time.
Again we can show that increments are Poisson distributed. From this

we can follow, after replacing λ by λ(t) in item iii), that Definition 1 holds
also for inhomogeneous processes.

Theorem 2. For an inhomogeneous Poisson process P with time dependent
rate λ : [0,∞) → [0,∞), it holds

P[P(t)− P(s) = k] =

(∫ t
s λ(r)dr

)k
k!

e−
∫ t
s λ(r)dr . (7)

Proof. We start with a small time step δt and use dependent probability to
write

P[P(t+ δt) = k] =
∞∑
i=0

P[P(t+ δt) = k|P(t) = i]P[P(t) = i] .

First, we know that P is non-decreasing. Therefore, all summands with
i > k are zero. The sum can then be simplified to

P[P(t+ δt) = k] =
∞∑
i=0

P[P(t+ δt)− P(t) = k − i]P[P(t) = i] .

8



Second, by item iv) from Definition 1, all terms with k− i > 1 are in O(δt).
This leaves us with

P[P(t+ δt) = k] = P[P(t+ δt)− P(t) = 1]P[P(t) = k − 1]

+ P[P(t+ δt)− P(t) = 0]P[P(t) = k] + O(δt)

= (λ(t)δt+ O(δt))P[P(t) = k − 1]

+ (1− λ(t)δt+ O(δt))P[P(t) = k] + O(δt) .

Using the abbreviation Pk(t) := P[P(t) = k], this can be rewritten as

Pk(t+ δt)− Pk(t)

δt
= −λ(t)Pk(t) + λ(t)Pk−1 + O(δt) . (8)

Taking the limit δt → 0, we get a system of equations for k ≥ 1

d

dt
Pk(t) = −λ(t)Pk(t) + λ(t)Pk−1(t) ,

d

dt
P0(t) = −λ(t)P0(t) ,

(9)

with initial conditions P0(0) = 1 and Pk(0) = 0. First, we find the integrat-

ing factor [18, Theorem 2.61] φ(t) := e
∫ t
0 λ(s)ds and notice that

d

dt
(φ(t)Pk(t)) =

dφ(t)

dt
Pk(t) + φ(t)

dPk(t)

dt
= φ(t)λ(t)Pk(t) + φ(t) (−λ(t)Pk(t) + λ(t)Pk−1(t))

= φ(t)λ(t)Pk−1(t) ,

for k > 0, and similarly for k = 0, we obtain

d

dt
(φ(t)P0(t)) = 0 .

We then substitute uk(t) := φ(t)P0(t) to get the much simpler system

d

dt
uk(t) =

{
0 if k = 0

λ(t)uk−1(t) else
(10)

with initial conditions u0(0) = 1, uk(0) = 0, which implies u0 ≡ 1. We now
want to show that

uk(t) =
1

k!

(∫ t

0
λ(s)ds

)k

, (11)

which is true for k = 0. Assume equation (11) holds for a fixed k ≥ 0, and
note that

d

dt

1

(k + 1)!

(∫ t

0
λ(s)ds

)k+1

=
k + 1

(k + 1)!

(∫ t

0
λ(s)ds

)k

λ(t) = uk(t)λ(t) .
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From equation (10), we then follow that uk+1 also suffices equation (11). By
induction, we get a solution for all k ∈ N0. Using that

Pk(t) = φ(t)−1uk(t) = e−
∫ t
0 λ(s)dsuk(t) ,

we can finally get the solution to equation (9)

Pk(t) =
e−

∫ t
0 λ(s)ds

k!

(∫ t

0
λ(s)ds

)k

. (12)

To get the desired result, we can apply the same reasoning to the Poisson
process N(r) := P(r + s)− P(s) for fixed s < t and r ∈ [0, t− s].

This result also allows us to show that the sum of two independent
Poisson processes is a Poisson process, which has the sum of both rates as
its rate:

P[(Pλ + Pµ)(t)− (Pλ + Pµ)(s) = k]

=

k∑
i=0

P[Pλ(t)− Pλ(s) = k − i]P[Pµ(t)− Pµ(s) = i]

=

k∑
i=0

(∫ t
s λ(r)dr

)(k−i)

(k − i)!
e−

∫ t
s λ(r)dr

(∫ t
s µ(r)dr

)i
i!

e−
∫ t
s µ(r)dr

= e−
∫ t
s λ(r)+µ(r)dr

k∑
i=0

1

k!

k!

(k − i)! · i!

(∫ t

s
λ(r)dr

)k−i(∫ t

s
µ(r)dr

)i

= e−
∫ t
s λ(r)+µ(r)dr

(∫ t
s λ(r) + µ(r)dr

)k
k!

Finally, we can show that an inhomogeneous Poisson process can model
the process T as described at the start of this chapter:

Lemma 3. Let X be a continuous time counting process with

P[X(t+ δt) > X(t)]|FX
t ] ≈ λ(t)δt, (13)

then we can model X as an inhomogeneous Poisson process

X(t) = P1

(∫ t

0
λ(s)ds

)
. (14)
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Figure 2: Example of agents in a Brownian motion, without and with a
potential given by a parabola F (x, y) = x2 + y2, evaluated at regular time
steps with ∆t = 1. The black points mark the starting position of each
agent.

Proof. It follows from the ansatz X(t) = P1(
∫ t
0 λ(s)ds) that

P[X(t+ δt) > X(t)|FX
t ] = P[Pλ(t+ δt) > Pλ(t)|FPλ

t ]

= 1− P[Pλ(t+ δt) = Pλ(t)|FPλ
t ]

= 1− P[Pλ(t+ δt)− Pλ(t) = 0|FPλ
t ]

= 1− (1− λ(t)δt+ O(δt)) ,

(15)

which shows the desired property.

3.2 Brownian Motion and Diffusion Processes

To model the movement of an agent in an ABM, a stochastic process can be
used. If the only requirement is random movement, then Brownian motion
is a good option, since every new step is independent of previous ones. It
is widely used outside epidemiology, for example in physics or biochemistry
to model molecule movement. A big selling point of this kind of process
in numerics, is that it can be easily generated over time, as its increments
only depend on the length of time steps, which can be seen in the following
definition from [19].

Definition 4 (Brownian motion). A real-valued stochastic process
W : R+ → R is called a Brownian motion (or Wiener process), if the
following holds:

1. W (0) = 0,

2. W has independent increments, i.e. for any sequence t0 < t1 < · · · <
tn the variables W (ti+1)−W (ti) for all 0 ≤ i < n are independent,

3. For all t > s ≥ 0, the increment W (t)−W (s) ∼ N (0, t− s),
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4. W has almost surely continuous paths, i.e. W (t) is almost surely con-
tinuous in t.

A d-dimensional standard Brownian motion W : R+ → Rd is a vector of d
independent one-dimensional Brownian motions.

Note that an agent using a Brownian motion is not restricted to start-
ing at t = 0, as we can simply translate the whole process to the desired
starting position. In practice, that means in each time step of size ∆t of the
simulation, we only have to add a normal distributed random vector v ∈ Rd

with vi ∼ N (0,∆t) for i = 1, . . . , d to each agent’s current position.
However, we often want a certain behavior of agents, instead of letting

them run around chaotically. Also, if we want to use a bounded domain
in the model, the randomness of Brownian motion becomes a problem, as
the process can run off in any given direction (given enough time), see sec-
tion 3.2. One solution to both problems is to combine a Brownian motion
and a potential on the chosen domain, to gain some control over agent move-
ment.

We will use this approach in form of a diffusion process in section 5.1.
Since we will be only interested in a path of this diffusion process, we for-
mulate the process on the level of paths, i.e. we use a stochastic differential
equation (SDE) on a time interval [0, T ] of the form

dX(t)

dt
= b(t,X(t)) + σ(t,X(t))ξ(t) . (16)

Here b : [0, T ]× Rd → Rd is a potential on the domain, also called drift
coefficient, and σ : [0, T ]×Rd → Rd×m is called diffusion coefficient or noise.
The potential can also be given as a function F : [0, T ]× Rd → R, in which
case b := −∇F . Both b and F are assumed to be deterministic, so that all
random behavior is solely caused by the noise. The magnitude of the noise
determines the influence of the so-called white noise process ξ : [0, T ] → Rm

over the diffusion. Formally, it is defined as ξ = dW
dt , the derivative of the

Brownian motion in Rm. The noise can also be considered to give a scale to
the random movement relative to the strength (or height) of the potential.

More importantly, we have to be careful when dealing with the white
noise, since Brownian motion has almost surely no derivative [20, chapter
6.1]. Therefore, we cannot use Riemann or Lebesgue integration to solve
the SDE. However, in an Ito- or Stratonovich-integral, the expression ξ is
mathematically meaningful and may be used to formulate the SDE.

An adapted stochastic process X that can be expressed as such an SDE
is called Ito process [20]. A diffusion process has some further requirements
on the transition function, which can be found in [19, Definition 2.2], but
they are not directly used in the following chapters.
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A common simplification of X is to use the same dimension m = d for
the Brownian motion as for Xt, or to use a scalar valued noise term σ ∈ R.

We can show that there can exist a solution to these SDEs [19, Chapter
3.3], but in general, similar to deterministic differential equations, such a
solution does not have a closed form.

Since our goal is to simulate an ABM, we only need a numerical solu-
tion. The Euler method is a simple tool to get a numerical solution for an
ODE, and as it turns out, the idea behind it can also be applied to SDEs.
The specific method we use is called Euler-Maruyama method, which we
summarize here.

The basic idea of the explicit Euler method is to use the forward finite
difference f ′(tn) ≈ f(tn+1)−f(tn)

∆t and solve for f(tn+1), to obtain

f(tn+1) ≈ ∆t · f ′(tn) + f(tn) , (17)

which is an iterative approximate solution of the ODE. But, if we were
to apply equation (17) to equation (16), the term ξ(tn) would remain un-
changed on the right-hand side of the resulting equation, such that it cannot
be meaningfully evaluated. We can, however, express this (formal) derivate
as another finite difference, to get the approximation

ξ(tn) =
dW (tn)

dt
≈ W (tn+1)−W (tn)

∆t
. (18)

We know from the third property of Definition 4, that W (tn+1)−W (tn) is
a normal distributed random variable with mean zero and variance ∆t =
tn+1 − tn. This results in the following definition [20, chapter 9.1]:

Definition 5 (Euler-Maruyama approximation). Let 0 = t0 < t1 <
· · · < tN = T , then the Euler-Maruyama approximation to the process X is
a process Y := (Yt)t∈[0,T ] satisfying

Yn+1 = Yn + b(tn, Yn)(tn+1 − tn) + σ(tn, Yn)(Wn+1 −Wn) (19)

for all 0 ≤ n < N and initial value Y0 = X0.

We denote the random increments by ∆Wn := Wn+1−Wn. Using properties
of the normal distribution, we get an equivalent process

Yn+1 = Yn + b(tn, Yn)(tn+1 − tn) + σ(tn, Yn)
√
tn+1 − tnξn (20)

where ξn = ∆Wn√
tn+1−tn

∼ N (0, 1).
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3.3 Metastability
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Figure 3: Double well potential F . If an agent in Brownian motion can
barely overcome the potential barrier with height h, his position within one
well appears stable for some time.

In some models we may want to restrict or at least impede possible
movements. On a small scale, such a restriction could be the walls of a
room or building, on a larger scale we could impede travel between cities or
countries, causing agents to mostly stay within one region. Using a diffusion
process like (16), the potential b = −∇F is responsible for this.

In the case of travel between cities or countries, we can choose a limited
time frame such that an agent does not travel at all, i.e. its position appears
stable in a certain sense. Due to the noise term, this stability is different
from the notion of stability for continuously differentiable functions, as the
agent may eventually travel to another region outside the chosen time frame.
Instead, we introduce the concept of metastability.

First, consider the potential F as from figure 3, where two wells are
separated by a potential barrier with height h. If we have a scalar noise
that is a lot smaller than this height, i.e. σ ≪ h, then an agent will spend
most of the time close to the bottom of a well, which is a minimum of F .
Crossing the potential barrier is relatively rare, or in other words, the time
until an agent starting near one metastable state reaches the other is large
with respect to the timescale of the diffusion process.

This motivates the following notion of metastability from [19, page 236]:

Definition 6 (metastable states). Given an SDE of the form

dX(t)

dt
= −∇F (t,X(t)) + σ(t,X(t))ξ(t) , (21)

with potential F and σ ≪ h, we call the local minima of F metastable states.
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Since the agents still move around each metastable state, it makes sense
to call a certain area around it a metastable region. For the double well,
it is intuitive to call each well a metastable region, however, it is difficult
to generalize this notion to arbitrary diffusion processes. As [21, chapter
8.1] points out, it is difficult to find a concise definition of metastability for
a Markov process with an infinite state space, which the diffusion process,
using positions in Rd, definitely has.

Therefore, we define a metastable region in the context of agent move-
ment only conceptually: For a given timescale and noise, the metastable
regions of a diffusion process are disjoint subsets of Ω, such that moving
from one set to another is sufficiently rare.

4 Stochastic Simulations

To study a stochastic model, we have to solve or approximate the stochastic
process that describes it. We could use a Monte-Carlo method like rejec-
tion sampling, however, this potentially requires us to sample and discard
system states, which can be costly to compute if we consider an ABM. The
Stochastic Simulation Algorithm (in short SSA) proposed by Gillespie re-
sults in a stochastically exact solution like rejection sampling, but does not
require sampling. However, the SSA is less general, as it assumes the model
is described by a system of independent processes, that occur with some
given intensity.

Consider a system with nC ≥ 2 compartments Ci (e.g. chemical species,
infection states, ...) and ne ∈ N1 events Eµ, such that the current state
Y = (C1, . . . , CnC ) of the system is given by the populations Ci ∈ N0, and
the events that change this state are given by a change vector ηµ ∈ ZnC .
The time between start and end of an event is assumed to be negligible.
While formulations without this assumption do exist [15, Section VI], we
will treat all events as instantaneous changes to the model state.

In the original formulation of the method, these events are chemical reac-
tions. A possible reaction for a system with compartments (Na,Cl,NaCl)
would be Na+Cl → NaCl with the change vector (−1,−1,+1). A general
reaction can be written as

Eµ : sµ,1C1 + · · ·+ sµ,nCCnC → rµ,1C1 + · · ·+ rµ,nCCnC , (22)

with the corresponding change vector (ηµ)k := rµ,k − sµ,k, k = 1, . . . , nC .
For our purposes, we consider the status or spatial transitions of agents as
events. To that end, the change vector from status or location i to j is given
by ηi→j = ej − ei, where ei is the i-th unit vector of NnC

0 .
We describe the evolution of the system over time by a continuous-time

Markov process Y (t) = (C1(t), . . . , CnC (t)) ∈ NnC
0 , where Ci(t) is the size of

the population Ci at time t. If we assume the system changes only whenever
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an event occurs, then given some initial state Y (0), we have that

Y (t) = Y (0) +

ne∑
µ=1

Nµ(t)ηµ (23)

where Nµ(t) is the number of occurrences of event Eµ in the time interval
[0, t]. We want events to occur at a certain rate, which as motivated in
section 3, we explicitly realize using Poisson processes.

Thus, if we find a way to calculate Nµ(t) for all events µ, we can evaluate
the system state Y (t). This is the basis of the first simulation algorithm,
which we will describe in detail in the following section. After that, we
consider several modifications of this scheme, which can be used to simulate
the different models in section 5.

4.1 Gillespie’s Direct Method

In this section we present Gillespie’s Direct Method, in short GDM, follow-
ing [22]. For that, we require that the state Y (t) of the model only changes
whenever an event occurs. The basic idea of this algorithm is then to de-
termine at which time the next event occurs, then jump to that time and
perform the event. While other stopping criteria may be used, we will iterate
over time until a given time tmax is reached.

To formulate the algorithm, we assume that for each event Eµ the num-
ber of occurrences is modelled by independent, inhomogeneous Poisson pro-
cess P(µ) with rate λµ(Y (t), t), depending on the current time and state of
the system. This rate is also called a propensity function. Since the corre-
sponding processes only increase at discrete time points, there is a period
of time between events where the process Y is constant. These so-called
waiting times will be denoted by a time span τ , while t is used for time
points. In the next section, we will also use internal (waiting) times, for
which we use ιτ and ιt.

With the assumptions above, the process Y (t) can be written as the
continuous-time Markov jump process

Y (t) = Y (0) +

ne∑
j=1

P(j)(t)ηj

= Y (0) +

ne∑
j=1

P1

(∫ t

0
λj(Y (s), s)ds

)
ηj .

(24)

Now, to determine both event µ and the waiting time τ , consider the
time dependent probability density function p(τ, µ|Y ; t), defined such that

p(τ, µ|Y ; t)δt := probability, that the next event occurs in [t+ τ, t+ τ + ∂t)

and that this event is Eµ, given Y (t) = Y,

16



for a small time step δt > 0. This is equivalent to the probability, given
Y (t) = Y , that in [t + τ, t + τ + ∂t) event Eµ occurs exactly once, and no
reaction occurs before in [t, t+ τ). We can write this as

p(τ, µ|Y ; t)δt = P
[
P(µ)(t+ τ + δt)− P(µ)(t+ τ) = 1|FY

t

]
∗ P
[
P(t+ τ)− P(t) = 0|FY

t

]
,

where P := (P(1), . . . ,P(ne)) is an ne-dimensional Poisson process. The
second factor can be rewritten as a product in terms of the Poisson processes
P(i), using their independence:

p(τ, µ|Y ; t)δt = P
[
P(µ)(t+ τ + δt)− P(µ)(t+ τ) = 1|FY

t

]
∗

ne∏
j=1

P[P(j)(t+ τ)− P(j)(t) = 0|FY
t ]

Now we can use item iii) from Definition 1 and Theorem 2 to get

p(τ, µ|Y ; t)δt = (λµ(Y (t), t)δt+ O(δt))

ne∏
j=1

e−
∫ t+τ
t λj(Y (s),s)ds (25)

= (λµ(Y (t), t)δt+ O(δt)) e−τ
∑ne

j=1 λj(Y (t),t) .

Here we used the assumption that the system only changes when an event
occurs, hence the rates are constant during [t, t+τ). For the last step, divide
both sides by δt and take the limit δt → 0. We obtain

p(τ, µ|Y ; t) = λµ(Y (t), t) e−τΛc(t) , (26)

where we defined Λc :=
∑ne

j=1 λj , which is the cumulative rate of all pro-
cesses.

With this density function we are now able to iteratively compute the
process Y by sampling the waiting times τ and events µ. As mentioned
above, we could use any Monte-Carlo method to do so, but instead we want
to compute the samples directly and without sampling the system state Y (t).
This is the part that is called the direct method, which we now describe in
detail.

We want to separate the joined density p(τ, µ|Y ; t) depending on both
τ and µ into probabilities depending only on one variable. First, for small
δt > 0, we examine the probability p(τ |Y ; t)δt for the next event happening
during [t+ τ, t+ τ + δt). This is an equal probability to at least one of the
events Ej occurring during that time. Note that, while it is possible for two
events to occur simultaneously, the chance of that happening is zero, since
by definition

P[PΛc(t+ δt)− PΛc(t) > 1] = O(δt) .
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Hence, all events are mutually exclusive, that is p(τ, j ∧ i|Y ; t)δt = 0 for
all i ̸= j. Thus, we can express the probability p(τ |Y ; t)δt for any event to
occur as a sum over the probabilities p(τ, j|Y ; t)δt of Ej to occur. We have

p(τ |Y ; t) =

ne∑
j=1

p(τ, j|Y ; t)

=

ne∑
j=1

λµ(Y (t), t)︸ ︷︷ ︸
=Λc(t)

e−τΛc(t) ,
(27)

where we first factored out δt, and then used the result from equation (26).
Next, assuming we have determined the waiting time using the equation

above (and thereby know p(τ |Y ; t) > 0), we can state the probability density
p(µ|τ, Y ; t), that the event occurring at t + τ is µ, using the conditional
probability density

p(µ|τ, Y ; t) =
p(τ, µ|Y ; t)

p(τ |Y ; t)
=

λµ(Y (t), t)e−τΛc(t)

Λc(t)e−τΛc(t)
=

λµ(Y (t), t)

Λc(t)
. (28)

In case p(τ |Y ; t) = 0, all rates λj have to be zero as well, so no event can
occur, and the process will stay at the current state Y .

To determine values for the variables τ and µ, we use the inversion
generating method from Monte-Carlo theory (see chapter 1.8 from [23]),
which means instead of drawing from the probabilities above, we calculate
them using uniform random variables. This is based on the fact that we can
invert the cumulative density function (CDF) of a random variable to get a
uniform random variable:

Lemma 7. Let X be a continuous random variable with values in the in-
terval S ⊂ R and let the CDF F : S → [0, 1] defined by F (x) := P[X ≤ x]
be strictly increasing. Then F (X) ∼ U([0, 1]).

Proof. Let u ∈ [0, 1], and define F−1(v) := inf{x ∈ S|F (x) ≥ v} for v ∈
[0, 1]. Since F is strictly increasing, F−1 is the right inverse to F , i.e. F ◦F−1

is the identity function on [0, 1]. It holds that

P[F (X) ≤ u] = P[X ≤ F−1(u)] = F (F−1(u)) = u, (29)

which implies that F (X) is a uniform random variable on [0, 1].

18



An analogous result for random variables with discrete values can be
shown as well. Therefore, we look at the CDFs

Fp(τ |Y ;t)(τ) =

∫ τ

0
Λc(t)e

−xΛc(t)dx = 1− e−τΛc(t) ,

Fp(µ|τ,Y ;t)(µ) =

µ∑
k=0

λk(Y (t), t)

Λc(t)
,

where we used the densities equation (27) and equation (28) respectively.
Then, following the inversion generating method, we set each equal to a
uniform random variable rτ , rµ ∼ U((0, 1)) and solve for τ and µ, which
results in the equations

τ =
1

Λc
log

(
1

rτ

)
, (30)

µ = min

{
j

∣∣∣∣∣
j∑

k=1

λk(Y (t), t)

Λc
> rµ

}
. (31)

We may drop the 1− · when computing τ , since 1− rτ ∼ U((0, 1)) as well.
With these two equations we can iteratively compute equation (24). For

some initial state Y0 we formulate the following procedure:

Algorithm 1: Stochastic Simulation Algorithm (or Gillespie’s Al-
gorithm)

Data: Y = Y0, t = 0, tmax > 0
1 while t < tmax do
2 for j = 1, . . . , ne compute λj(Y );
3 set Λc :=

∑ne
i=1 λi(Y );

4 draw rτ , rµ ∼ U((0, 1));
5 calculate τ and µ as in equations (30) and (31);
6 update Y := Y + ηµ;
7 set t := t+ τ ;

Note that the solution this algorithm computes is stochastically exact,
i.e. the solution consists of discrete time samples of a valid realization for
the stochastic process Y . However, that is still only one realization, and to
approximate the statistics of Y , a significant number of realizations should
be used. While we introduce a faster method in the next chapter, the com-
putational cost of both methods heavily depend on how the rates λ(Y (t))
are calculated, as these have to be updated in every time step.

4.2 Next Reaction Method

The Next Reaction Method (NRM) is a variation of GDM that is mathe-
matically equivalent, but reformulates the method for a faster computation.

19



This is achieved by using not only the (external) time t, but also the in-
ternal times ιt of all counting processes, effectively halving the amount of
random numbers drawn while iterating. The description of the method and
algorithm in this section is based on [15].

The NRM is often significantly faster than the GDM [14], especially
when using a large, fixed number of events Eµ. But, if for example the
number of events depends on the number of agents in an ABM, it can scale
significantly worse than the GDM. Also, since it is harder to generalize as
well as more difficult to read and implement, the following section 4.3 will
use the notation from the usual GDM, but can be implemented using the
NRM (see [15, section V] and [24]).

We start again with the system described by equation (24), but this
time we consider not only the time with respect to Y , but also the internal
times ιtµ(t) =

∫ t
0 λ̂µ(Y (s))ds of each Poisson process P(µ). Then, instead of

determining the waiting time τ for the process Y directly, we compute the
waiting times τµ for the process P(µ), with the assumption that Y (t) does
not change during [t, t+ τµ) for every µ = 1, . . . , ne. Using this assumption,
we can compute

τµ =
1

λµ(Y (s))
log

(
1

rτµ

)
(32)

similar to equation (30) above, with rτµ ∼ U((0, 1)). We can also transform
this into the internal waiting time ιτµ = τµ ·λµ(Y (t), t), or equivalently, draw
the internal waiting time as an exponentially distributed random variable
with parameter 1. Note that the internal waiting time as computed above is
actually independent of µ and t, which makes sense since the internal time
ιt is defined via the relation 6, which in particular means that the internal
waiting time ιτµ is the time between events of a unit rate Poisson process.

This allows us to draw the internal waiting times independent of µ and
Y (t). They are, however, useless without this context, hence we convert
them to the external waiting times. For that, we have to look again at our
assumption that Y (t) is constant on [t, t+ τj), which will be true for exactly
one process, namely the one with the minimal waiting time.

But, we can fix the other waiting times once we know the new rates for
Y (t+ τµ), where Eµ is the event with

µ = argmin
j=1,...,ne

{τj} .

Since we took the minimal waiting time, we computed the waiting times τj
with j ̸= µ with the correct rate for the time interval [t, t + τµ), but made
an error afterwards on [t + τµ, t+ τj). As the internal times are unaffected
by the rates, we can use them to correct the rate used during [t+ τµ, t+ τj).
The correct waiting time τ̄j relative to time t is then given by

τ̄j = τµ +
τj − τµ

λµ(Y (t), t)
λj(Y (t+ τµ)) . (33)
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To advance to the next time t + τµ, we can simply use τ ′j := τ̄j − τµ for all
j ̸= µ and draw a new value τ ′µ like in equation (32). Once again, only the
minimum τ ′j for j = 1, . . . , ne is computed correctly this way, and all others
have to be updated once again. The internal times ιtj(t) can be advanced
by adding τµλj(Y (t), t), i.e.

ιtj(t+ τµ) = ιtj(t) + τµλj(Y (t), t) .

This procedure is summarized below in algorithm 2 for an initial system
state Y0. Although the initialization is more costly than in the SSA, due to
drawing every waiting time, the updates in each time step only require us
to draw a single random variable instead of two.

That algorithms 1 and 2 are mathematically equivalent can be seen by
again looking at the process Y from equation (24), which is determined
solely by the firing times of all Poisson processes, or equally, the waiting
times between firings. As both algorithms are based on the same density
equation (26), which is evaluated using the stochastically exact inversion
method, each computes a path to the same stochastic process. However,
this does not imply that both algorithms will calculate the same result (but
it is possible).

Algorithm 2: Next Reaction Method

Data: Y = Y0, t = 0, tmax > 0
1 forall j = 1, . . . , ne do
2 set ιtj := 0;

3 draw ιτj ∼ Exp(1);

4 compute λj := λj(Y );

5 set τj :=
ιtj
λj
;

6 set µ := argminj=1,...,ne
{τj};

7 while t+ τµ < tmax do
8 set t := t+ τµ;
9 update Y := Y + ηµ;

10 forall j = 1, . . . , ne do
11 set ιtj := ιtj + τµλj ;

12 compute λj := λj(Y );

13 set τj :=
ιtj
λj
;

14 redraw ιτµ ∼ Exp(1);

15 forall j ̸= µ do
16 update ιτj = ιτj − τµλj ;

17 set µ := argminj=1,...,ne
{τj};

The NRM can also be used with a priority queue to speed up taking the
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minimum over all internal waiting times, and a dependency graph for the
rates, so that after any event only rates influenced by the change from the
event are updated, which for a sparse model graph (e.g. figure 4) can save
a lot of calculations. Both techniques are described in [25].

4.3 Temporal Gillespie

So far we assumed that the system state Y (t) only changes whenever an
event occurs. This, however, is not true for two out of the three models
we will introduce in the next section, thus we want to generalize Gillespie’s
algorithm for systems whose state may change at any time. Also, we allow
for Y (t) ∈ RnC instead of using populations in N0.

This generalization will no longer allow us to evaluate an exact solution
in all cases, since the arising integrals may only be numerically solvable.
However, if the change of Y (t) is computed numerically anyway, this gen-
eralization is not a big drawback. In the following, we assume that this
computation is done using a time discretization, and use the fact that in the
computation the system state changes only at discrete times.

To do this, we first have to go back to equation (25), where in the next
step we used that the rates are constant during [t, t + τ). Omitting this
simplification, the joint density becomes

p(τ, µ|Y ; t) = λµ(Y (t), t) · e−
∫ t+τ
t λµ(Y (s),s)ds . (34)

We can continue in complete analogy to the GDM in section 4.1 to get

p(τ |Y ; t) = Λc(t)e
−

∫ t+τ
t Λc(s)ds ,

p(µ|τ, Y ; t) =
λµ(Y (t), t)

Λc(t)
.

The density for µ is unchanged, so we can deal with it exactly as before
in equation (31). Calculating τ is a lot more involved, as we need to solve

rτ = e−
∫ t+τ
t

∑ne
j=1 λj(Y (s),s)ds (35)

for τ . Because we do not know how exactly Y (t) changes outside events,
there is no general method to solve the integral over the rates. Instead,
similar to section 4.2, we make use of internal times, in particular the internal
waiting time ιτc after event time t of the Poisson process PΛc with cumulative
rate. The internal waiting time is given by the integral

ιτc =

∫ t+τ

t

ne∑
j=1

λj(Y (s), s)ds , (36)

hence we obtain rτ = e−ιτc , which allows us to determine ιτc by drawing from
an exponential distribution.
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The last piece missing, before we can formulate an algorithm, is the so-
lution to equation (36). This can be done numerically, where the applicable
method depends on how Y is updated outside events. In practice, most often
iterative methods are used to calculate the updates, for which two examples
will be given later.

For now, let us assume that the Y only changes at discrete time points
tk for k ∈ N (e.g. given by a numerical solver), as well as at event firings.
To simplify notation, we use equidistant time steps, but the generalization
to arbitrary time steps is simple. Define N∗

s := max{k ∈ N0|tk < s} and

L(x, y) :=
∫ y

x
Λc(s)ds , (37)

such that ιτc = L(t, t+ τ). Using the assumption, this function simplifies to
a sum

L(x, y) = (tN∗
x+1 − x)Λc(tN∗

x+1) +

N∗
y∑

k=N∗
x+1

∆tΛc(tk) + (y − tN∗
y
)Λc(tN∗

y
) ,

if no events fire in the time interval (x, y). Note that if y = tn, we have
L(x, y) = (tN∗

x+1 − x)Λc(tN∗
x+1) +

∑n
k=N∗

x+1∆tΛc(tk).
This expression can be used to iteratively approximate τ , since L(t, tk) ≤

ιτc for all tk ≤ t + τ . Thus, m := N∗
t+τ is the largest index such that

L(t, tm) ≤ ιτc . Thereby we know tm ≤ t + τ ≤ tm+1, and we can compute
the exact time the event occurs, by solving

ιτc = L(t, t+ τ) = L(t, tm) + (t+ τ − tm)Λc(tm)

for t+ τ . We get

t+ τ = tm +
ιτc − L(t, tm)

Λc(tm)
. (38)

Hence, we can determine how long exactly it takes before the next event
occurs (ignoring the error made by discretizing time), and which event that
is. This leads to the following algorithm.
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Algorithm 3: Temporal Gillespie

Data: Y = Y0, t = 0,∆t, tmax > 0
1 draw ιτc ∼ Exp(1);
2 while t < tmax do
3 set ζ := min{∆t, tmax − t};
4 compute λ(Y, t),Λc(t);
5 if ιτc < ζΛc(t) then
6 do
7 [*update Y to t];
8 draw event µ according to 31;
9 set Y := Y + ηµ;

10 set ζ := ζ − ιτc
Λc(t)

;

11 set t := t+ ιτc
Λc(t)

;

12 compute λ(Y, t),Λc(t);
13 draw ιτc ∼ Exp(1);

14 while ιτc < ζΛc;

15 else
16 ιτc := ιτc − ζΛc(t);

17 t = t+ ζ;
18 *update Y to t;

There are a couple noteworthy lines here, starting with the do=while
loop from line 6 to 14. This inner loop is there to deal with cases where two
or more events happen in the same interval [t, t+∆t]. The variable ζ keeps
track of the remaining time after each event within this interval.

Further, the update in line 7 is optional, in the sense that it does stem
from the argumentation above. However, if the numerical solver behind
the updates uses large or adaptive time steps, the intermediate update can
drastically improve the quality of the results. Using these optional updates
effectively ensures that between two time steps tn we used for discretization
at most one event may occur.

In general, the update steps from lines 7 and 18 can take several forms.
Assuming that, apart from events, the system state is determined by a
diffusion process, we can implement the Euler-Maruyama method. The
update line(s) then become

Y := Y + b(t, Y )ζ + σ(t, Y )
√
ζξ , (39)

where ξ ∼ N (0, 1), and b as well as σ are determined by the model. Note
that in this case, ∆t must be chosen small enough such that the method
converges, and the optional updates in line 7 may be skipped.

Another example is that changes could be given by a deterministic sys-
tem of ODEs, which can be solved on the interval [t, t+ ζ] by any numerical
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integration, e.g. a Runge-Kutta method. Here, adaptive time steps can
significantly increase the speed of the overall simulation, if events are rel-
atively rare. However, this also causes a large approximation error by the
time discretization used for equation (36), hence the optional updates should
be used to dampen this error.

5 Multiscale Models

In this section we present three models based on [10]. We start by describing
an ABM, which we first reduce to a stochastic metapopulation model (SMM)
and then to a piecewise deterministic metapopulation model (PDMM). That
way, we obtain three models with different granularity describing the same
infectious disease dynamics, which we want to use to perform hybrid simu-
lations.

The principal idea for the reduction is that, if we have enough agents
that are fairly well-mixed, i.e. the spatial dynamics are significantly faster
than the adoption dynamics, we can approximate to the overall system state
by reducing the information carried by the agents. In particular, we first
reduce the spatial resolution of agent positions for the SMM, and then use a
deterministic approximation of their statuses for the PDMM. The technical
details will be explained in the following sections.

Intuitively, we increase the demands on how well-mixed the population
needs to be for each reduction. While we make no assumptions on the ABM,
the SMM requires that, locally, the agents are sufficiently well-mixed such
that we no longer have to differentiate between their exact positions. The
PDMM goes further, and does not differentiate between individual agents
and, instead, uses averages. An EBM would then be a ”perfect mixture”,
as it no longer uses any agent specific information.

ABM SMM PDMM EBM
Model overview, with reductions indicated by arrows.
The EBM is obtained from the PDMM by restriction

to one metapopulation, rather than a reduction.

These stronger requirements on the mixing behavior can also be seen
as coarsening the scale of the model, as the effective resolution of informa-
tion each model uses decreases with each reduction. This is the motivation
behind the hybridization in the later section.

5.1 The General Agent-Based Model

In this section we will introduce a general form for an ABM. We will rep-
resent the agents as a tuple (x, c) ∈ Ω × Γ, where Ω ⊂ R2 is a com-
pact domain and Γ = (c1, c2, . . . cnC ) contains all nC compartments of
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the model. Given a number of agents na, we define the system state as
Y := (X,C) ∈ Ωna × Γna =: Y. In the following, an agent α will mostly
be used as index for the system state, i.e. for 1 ≤ α ≤ na we will write
α = (xα, cα) = (X,C)α = Yα, where Yα is the α-th component (xα, cα) of
Y .

We model the evolution of the system state over time (Y (t), t ≥ 0) as
a continuous-time Markov process, so the current state of the model only
depends on the previous state. The process consists of a coupling of the
agent’s movement, given by independent diffusion processes (16) for each
status, and their status changes, which follow a continuous-time Poisson
process, as motivated in section 3.

The probability measure used for these processes is given via a time
dependent density, defined by the so-called master equation

∂tp(X,C; t) = Lp(X,C; t) +Gp(X,C; t) (40)

on the domain of all system states Y. This equation is inspired by the
chemical master equation (CME). The operators L and G correspond to the
diffusion and jump processes mentioned above, and only operate on locations
and statuses respectively.

Before we have a closer look at these operators, consider the following
example for an infectious disease model:

S E I R

D

Figure 4: Example graph for an infectious disease model, indicating adop-
tions by edges, and influences on adoption rates by dashed arrows. The
compartment S contains all susceptible, E (exposed) all infectious asymp-
tomatic, I all infectious symptomatic, R all recovered and D all deceased
agents.

We will not go into more detail on this specific model graph, as this
example is only given to illustrate what kind of models we can formulate with
the generic approach. We allow for any directed graph without loops, where
the vertices are the compartments Γ and the edges show all possible status
transitions, which are also called adoptions. Additionally, we use dashed
arrows in the graph to visualize which compartments have an influence on
the rate of the adoption they point to.

We use these influences to differentiate between two types of adoptions:

1. First-order adoption: adoption events that do not require interactions
with other agents, i.e. spontaneous status changes, like recovery from
the disease. Its adoption rate only depends on the compartment the
agent is currently in.
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2. Second-order adoption: adoptions based on pairwise interactions, i.e.
infection via a contact with an infectious agent. The rate depends on
the compartment of origin of an agent as well as all influences.

Therefore, if there are no influences, the adoption event is of first-order,
and of second-order if there are any. The compartment of origin is not
counted towards these influences - the ”influence” it has on an agent in
this compartment should be modelled by the adoption rate or movement
respectively (maybe infected agents could travel less). Additionally, this
convention works better for the reduced models, which will always use the
number of agents in the compartment of origin as a factor to compute adop-
tion rates.

Definition 8. We define the influences of a transition i → j, with i, j ∈ Γ
as a non-empty index set σij ⊂ Γ \ {i}.

In the simplest case, the only influence is the target compartment, i.e.
σij = {j}. For the adoption S→E in the example above we have the ad-
ditional influence of compartment I, therefore σS,E = {E, I}. The rate for
this adoption for a single agent could then look something like γ I+E

N .
Formally, the adoption rate from compartment i ∈ Γ to j ∈ Γ will be

given by the adoption rate functions fij : Y → [0,∞)na , which in general
depend on the whole system state. For each agent α, the α-th component of

fij is given by a function f
(α)
ij : Y → [0,∞), which depending on the order

of the adoption i → j is defined as

f
(α)
ij (X,C) = δi(sα)γij(xα) (41)

for first-order adoption events, or

f
(α)
ij (X,C) = δi(sα)

∑
τ∈σij

na∑
β=1

δτ (sβ)γijτ (xα, xβ) (42)

for second-order adoptions. Here we use the Kronecker-delta, defined as

δi(j) :=

{
1 if i = j

0 else
(43)

Note that the agent α is only used as an index, and f
(α)
ij does not depend

on it directly. Hence, two agents with the same position and status would
have the same adoption rate function. The functions γij : Ω → [0,∞) and
γijτ : Ω2 → [0,∞) give the magnitude of the adoption rate, only depending
on an agent’s position. For example, we can choose

γij(x) = cij and γijτ (x, y) = cijτ1∥x−y∥Ω<r , (44)
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with a cutoff for adoptions beyond the interaction radius r > 0. The radius
determines how close two agents have to be for being considered contacts,
and we use rate constants cij ≥ 0, cijτ ≥ 0. Since no loops are allowed, we
always set cii = ciiτ = 0.

For a general choice of γij and γijτ , we require γ· ≥ 0 and γii = γiiτ =
0. Furthermore, the mean of the Poisson process counting the number of
adoptions i → j has to stay finite in finite time. This is true for the example
above, as the process is bounded by the homogeneous Poisson process Pnacij ,
which has mean E[Pnacij (t)] = nacijt.

One more condition on the adoption rates is needed so we can perform
the model reduction in the following section, see equation (58).

Now we can define the operators for the master equation (40). First, the
status change operator G is given by

Gp(X,C; t) :=−
nC∑

i,j=1

nα∑
α=1

f
(α)
ij (X,C)p(X,C; t)

+

nC∑
i,j=1

nα∑
α=1

f
(α)
ij (X,C + jeα − ieα)p(X,C + jeα − ieα; t).

(45)

The first term describes the change from the current state by a status tran-
sition, hence the negative sign, while the second expresses the change to the
current state, using the previous status vector C+ ieα− jeα. In some cases,
it holds (X,C+ ieα− jeα) /∈ Y, so we extend the probability density outside
Y by 0.

For the spatial changes, we first define for status i ∈ Γ the α-th compo-
nent

Li,α[f(x, t)] := f(y(t), t) (46)

where y is the solution to the diffusion process describing the movement of
an agent with status i with initial value x. Further, define Lα for X such
that it acts as Li,α, but only on xα, the α-th component of X. Lastly, we
define the space change operator L as

Lp(X,C, t) :=

na∑
α=1

Lαp(X,C, t). (47)

The resulting master equation is in practice rarely evaluated, and in
most cases it has no analytic solution. Instead, the Stochastic Simulation
Algorithm is used, specifically the version presented in section 4.3 with up-
dates as described in equation (39). There, the SDE to be solved is given
component wise by Lsα depending on the agents current status sα, and
the adoption rates can be computed evaluating the adoption rate functions.
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Note that, if there are forks or leaves in the model graph, e.g. status I or R
in figure 4, the total number of adoption rates may change over time.

The benefit of using this version of SSA is that we do not need rejection
sampling or a Monte Carlo simulation, so we can avoid having to evaluate
neighborhoods of the current model state. The drawback is that the in-
tegration scheme may require small time steps for a good approximation,
which increases the cost of the simulation dramatically for a large num-
ber of agents. Furthermore, the pairwise interactions found in second-order
adoptions cause the computational cost to scale more than linearly with na.

One way of dealing with large computational costs is by model reduc-
tion. The first reduction of this ABM aims to reduce the effort needed for
calculating the movement of agents by discretizing the domain and using
jump dynamics to approximate the diffusion processes.

5.2 The Stochastic Metapopulation Model

The Stochastic Metapopulation Model (SMM) is an agent-based model, too.
But in contrast to the precise locations used in the ABM, all agents are
grouped to mostly stable subpopulations, in which every agent is considered
to have the exact same location. This significantly reduces the granularity
for modelling interactions, but it will allow us to reduce the computational
cost as well. Therefore, the movement of an agent can only consist of jump-
ing between these subpopulations, and adoption rates depend only on status
and subpopulation.

Assuming we have m different subpopulations Ak, the system state of

an SMM is defined as the matrix N = (N
(k)
i )i∈Γ,k=1,...,m ∈ NnC×m

0 , where

N
(k)
i is the number of agents in both region Ak and compartment i. The

space of all possible system states is given by

Mna =

{
N

∣∣∣∣∣
nC∑
i=1

m∑
k=1

N
(k)
i = na

}
, (48)

where na is again the total number of agents in the model. Status transitions

from i to j are of the form N → N + e
(k)
j − e

(k)
i , where k indicates the

subpopulation in which the transition takes place. Here, we use the matrix

e
(k)
i ∈ NnC×m

0 , which has value one at index (i, k) and zero everywhere else.
Similarly, spatial transitions from subpopulation k to l may depend on the

transitioning agent’s status i and are of the form N → N + e
(l)
i − e

(k)
i . The

changes both of these transitions contribute to the system state N(t) over
time is described by a continuous-time Markov jump process, as we assume
that both spatial and status changes are effectively instantaneous.

The propensity of all possible transitions is defined by the operator L for
spatial or G for status transitions, both acting on Mna . All propensities only
depend on time and the current system state. Since we usually do not want
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all transitions to be possible (see figure 4 for an example), the unwanted
transitions should be assigned a propensity of 0. As motivated in section 3,
we model the number of occurrences for each transition as independent
Poisson processes, which we will also make use of in the reduction to the
PDMM later.

In general, since the space of all possible system states is finite, we can
write L,G as matrices in R|Mna |×|Mna |, such that for N ̸= M in Mna the rate
of the transition M → N is given by either LM,N or GM,N . This way, we can
frame the SMM as a Markov State Model, with transition operator L + G
and its discrete approximation L+ G, see [26, chapter 3]. We will cover the
discretization below, where we show how to derive the SMM from an ABM.

Note that only the matrix of the corresponding type of transition has
a non-zero entry, given that the transition has a positive rate. This is due
to the fact that if LM,N is non-zero for N ̸= M , then M is of the form

N + e
(k)
i − e

(k)
j with i ̸= j, and if GM,N is non-zero for N ̸= M , then M is

of the form N + e
(k)
i − e

(l)
i with k ̸= l. All other forms of M would imply

that in an infinitesimal time step two or more transitions take place, which
is possible, but, due to the fundamental properties of a Poisson process, has
probability 0 (see item iii) from Definition 1).

Unfortunately, this does not necessarily imply that either matrix is sparse.
Moreover, their size scales rapidly with both the number of agents and the
number of subpopulations, as the cardinality of the system state space is
given by

|Mna | =
(
na + nC ·m− 1

na

)
=

(
na + nC ·m− 1

nC ·m− 1

)
. (49)

Thus, it is inadvisable to compute them explicitly. Instead, the different
transition rates, i.e. the matrix entries, could be used directly in the NRM
algorithm 2.

We have yet to define the diagonal entries of L and G, which we set to

LN,N := −
∑

N ̸=M∈Mna

LN,M , GN,N := −
∑

N ̸=M∈Mna

GN,M .

The unsigned sum can be thought of as the total propensity to change from
the system state N , while the non-diagonal entries describe the propensity
to change to the current state N .

We use the negative sign for diagonal entries to formulate the underlying
probability of the process N , which is given by a master equation of the form

d

dt
P (N ; t) = Lc[P (N ; t)] + Gc[P (N ; t)] , (50)
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where we define Lc and Gc by

Lc[P (N ; t)] :=
∑

M∈Mna

LM,N · P (M ; t)

Gc[P (N ; t)] :=
∑

M∈Mna

GM,N · P (M ; t) .

This can be rewritten by omitting known zero elements of L and G to

d

dt
P (N ; t) =−

m∑
k,l=1

k ̸=l

nC∑
i=1

LN,NP (N ; t)

+

m∑
k,l=1

k ̸=l

nC∑
i=1

L
N+e

(k)
i −e

(l)
i ,N

P (N + e
(k)
i − e

(l)
i ; t)

−
m∑
k=1

nC∑
i,j=1

i ̸=j

GN,NP (N ; t)

+

m∑
k=1

nC∑
i,j=1

i ̸=j

G
N+e

(k)
i −e

(k)
j ,N

P (N + e
(k)
i − e

(k)
j ; t) .

(51)

These remaining propensities are sufficient to simulate an SMM using algo-
rithm 2. Below, we demonstrate how to compute the rates given an ABM.

Derivation From ABM

First, we define the name giving metapopulations. The term ”mostly stable”
at the start of this section can refer to metastability, with respect to the
diffusion process used by our ABM. The subpopulations then coincide with
metastable regions in the diffusion process described by L. To that end,
we assume that all diffusion processes Li share finitely many metastable
regions A1, . . . , Am ⊂ Ω, such that these regions form a disjoint partition
Ω =

⋃̇m

k=1Ak of the spatial domain.
For some ABMs, identifying the metastable regions is trivial, like for

a double well potential (figure 3). But, especially if L cannot be written
in a closed form, it might be easier to sample agent movement, so that
the metastable regions can be heuristically determined by the average time
spent in certain areas.

Having selected the metastable regions, we want to use that any diffusion
process Li spends most of its time within one metastable subpopulation
(or metapopulation), and only rarely moves to another. By increasing the
timescale to the point where jumping between metapopulations becomes
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frequent, the diffusion dynamics become fast enough so that we can consider
each agent to be in constant contact with any other agent in the same
metapopulation. Hence, the exact positions of agents within a metastable
region becomes negligible, so that we only need to consider jumps between
them.

A (sub-)population in which positions are irrelevant for a certain process
are called well-mixed. Before we move to the coarse timescale, we also need
to assume that the diffusion process is much faster compared to adoptions.
This way, we do not affect the dynamics of the model outside the diffusion.

Projecting each agent onto the metastable regions leads to the system

state N = (N
(k)
i )i∈Γ,k=1,...,m introduced above. We can explicitly give this

projection using
π(x) := argmin

i=1,...,m
{dist(x,Ai)} (52)

such that an agent (x, c) will be projected onto N
(π(x))
c . This is well-defined,

as the regions Ai are pairwise disjoint. We want to use π to formulate
a Galerkin projection Q, mapping the generator [bowman(2014) chap 3.2]
L+G to the discrete space Mna .

The basics of the Galerkin method can be found for example in [27].
Consider the following bilinear form

⟨f, g⟩ := 1

(nC · µ(Ω))na

∑
C∈Γna

∫
Ωna

f(X,C)g(X,C)dX (53)

where µ(Ω) is the Lebesgue-measure of the domain. This defines an inner
product on the dual space Y∗, i.e. functions Y → R. Next, we choose as
ansatz functions for the Galerkin method the indicator functions

ΦN (X,C) :=
m∏
k=1

nC∏
i=1

φ
N

(k)
i

(X,C) (54)

for N ∈ Mna , where φ defined as

φ
N

(k)
i

(X,C) := δ
N

(k)
i

(
na∑
α=1

δk(π(xα)) δi(cα)

)
(55)

indicates, whether exactly N
(k)
i agents with status i from (X,C) are pro-

jected onto the k-th metapopulation. Then, ΦN (X,C) is one if and only
if the correct number of agents is projected for all entries of N , and zero
otherwise. Hence, for fixed (X,C) ∈ Y there is a unique N ∈ Mna such that
ΦN (X,C) = 1, and thus

∑
M∈Mna

ΦM (X,C) = 1.
The ansatz functions thereby form a partition of unity on Y, and since

we have

ΦN (X,C)ΦM (X,C) =

{
0 if N ̸= M

1 if N = M
, (56)

32



they are orthogonal with respect to the inner product, i.e. ⟨ΦN ,ΦM ⟩ = 0
for N ̸= M and ⟨ΦN ,ΦN ⟩ = ⟨ΦN ,1⟩ = 1.

We can now define the projection Q : L2 → D to the ansatz space D
generated by the orthonormal basis { 1

⟨ΦN ,1⟩ΦN |N ∈ Mna} by

Qv :=
∑

M∈Mna

⟨ΦM , v⟩
⟨ΦM ,1⟩

ΦM for all v ∈ D . (57)

This now allows us to project the operators L and G as defined in equa-
tions (45) and (47) to the ansatz space, since for a given linear operator H :
L2(Y) → L2(Y) we get the projected operator QHQ : L2(Y) → D, which
restricted to D can be represented as a matrix (QHQ)|D ∈ R|Mna |×|Mna |.

The results of projecting L and G can be found in the following theorems:

Theorem 9. Given L as defined in equation (47) and Q from equation (57),
we can define L = QLQ|D. In particular, we have

LM,N =


λ
(kl)
i M

(k)
i M = N + e

(l)
i − e

(k)
i , k ̸= l ,

−
∑

K ̸=N LK,M M = N ,

0 else,

where λ
(kl)
i is the transition rate per agent between metapopulations, given

by

λ
(kl)
i :=

∫
Ω 1Al

(x)Li[1Ak
(x)]dx∫

Ω 1Ak
(x)dx

.

Theorem 10. Given G as defined in equation (45) and Q from equation (57),
we can define G = QGQ|D. Further, let the status transition rate be given
by γ̂ defined as

γ̂
(k)
ij :=

∫
Ω 1Ak

(x)γij(x)dx∫
Ω 1Ak

(x)dx

γ̂
(kl)
ijτ :=

∫
Ω2 1Ak

(x)γijτ (x, y)1Al
(y)dxdy∫

Ω2 1Ak
(x)1Al

(y)dxdy

(58)

using the functions γ from section 5.1. The adoption rate functions for the
SMM can then be defined as

f̂
(k)
ij (N) :=

N
(k)
i γ̂

(k)
ij if i → j is first-order,

N
(k)
i

∑
τ∈σij

γ̂
(kk)
ijτ N

(k)
τ + ε

(k)
ij if i → j is second-order.

Here ε
(k)
ij :=

∑
l ̸=k N

(k)
i

∑
τ∈σij

γ̂
(kl)
ijτ N

(l)
τ . Then, we have

GM,N =


f̂
(k)
ij (M) M = N + e

(k)
j − e

(k)
i , i ̸= j ,

−
∑

K ̸=N GK,M M = N ,

0 else.
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Proofs for both theorems can be found in the appendix of [10]. The

values for all γ̂
(k)
ij , γ̂

(kl)
ijτ and λ

(kl)
i may be very difficult or even impossible to

solve explicitly, depending on the choice of adoption rates γ and movement
operators Li. In that case, they can be sampled by running simulations of
the ABM and observing spatial and status transitions in each metastable
region, so that we can determine an average value for all transition rates.

Note that the term ε
(k)
ij consisting of adoption rates γ̂

(kl)
ijτ for k ̸= l will

not be considered when computing f̂
(k)
ij for the SMM, and instead only

the rate γ̂
(kk)
ijτ is used. The rates with dissimilar indices k ̸= l correspond

to adoptions caused by cross-over interactions between agents in different
metapopulations. By our assumptions on agent movement, very few will
remain long enough near the border between regions for adoption events to
be likely, as most agents will be near a metastable state at any given time.

This can be quantified, if we use γ from the example 44. Then we have

γ̂
(kl)
ijτ = cijτ bkl, with

bkl :=

∫
Ω2 1∥x−y∥Ω<r(x, y)1Ak

(x)1Al
(y)dxdy∫

Ω2 1Ak
(x)1Al

(y)dxdy
. (59)

This constant can be used as a measure of how likely cross-over interactions
are between two uniformly placed agents in Ak and Al, respectively. If
the interaction radius r is small compared to the radius of the metastable
regions, this constant will be tiny. Additionally, if the placement of agents
is not uniform, but tends to metastable states with a distance of at least r

from the region boundaries, the actual impact of cross-over interactions ε
(k)
ij

will be negligible small.
Using both theorems, we can write the master equation (51) as

d

dt
P (N ; t) =−

m∑
k,l=1

k ̸=l

nC∑
i=1

λ
(kl)
i N

(k)
i P (N ; t)

+

m∑
k,l=1

k ̸=l

nC∑
i=1

λ
(kl)
i (N

(k)
i + 1)P (N + e

(k)
i − e

(l)
i ; t)

−
m∑
k=1

nC∑
i,j=1

f̂
(k)
ij (N)P (N ; t)

+
m∑
k=1

nC∑
i,j=1

f̂
(k)
ij (N + e

(k)
i − e

(k)
j )P (N + e

(k)
i − e

(k)
j ; t) ,

(60)

where the term N
(k)
i + 1 comes from substituting M by N . The first two

lines describe the jumps between metapopulations, while the second two
describe adoptions within these groups.
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5.3 The Piecewise Deterministic Metapopulation Model

The Piecewise Deterministic Metapopulation Model, in short PDMM, arises
from the SMM by again increasing the timescale, and approximating the
status adoption process by a deterministic system of equations. The PDMM
assumes that the populations are large, such that adoptions are rapid, and
spatial transitions are comparatively rare.

In general, the PDMM uses almost the same system state N as an SMM,

except that the number of agents is generalized to values N
(k)
i ∈ R≥0, while

we still maintain that
∑nC

i=1

∑m
k=1N

(k)
i = na. The Markov jump process

describing movement is the same used by the SMM, i.e. spatial transitions

are of the form N → N + e
(l)
i − e

(k)
i . Using adoption rate functions f̃

(k)
ij :

N 7→ c ∈ R, the adoption dynamics are given by ODEs of the form

d

dt
N

(k)
i (t) =

∑
i ̸=j

f̃
(k)
ij (N)− f̃

(k)
ji (N) , (61)

without accounting for spatial transitions. This can be simulated using the
Temporal Gillespie from algorithm 3, where we use the spatial transitions
as events and a numerical integrator for the system state updates given by
equation (61).

Derivation From SMM

To derive the PDMM, we consider the system state process (N(t))t≥0 of a
SMM. Similar to equation (24), we can write this process as a path, explicitly
using the Poisson processes corresponding to each transition rate. We get

N(t) = N(0) +
m∑

k,l=1

k ̸=l

nC∑
i=1

P(kl)
i

(∫ t

0
λ
(kl)
i N

(k)
i (s)ds

)
(e

(l)
i − e

(k)
i )

+
m∑
k=1

nC∑
i,j=1

R(k)
ij

(∫ t

0
f̂
(k)
ij (N(s))ds

)
(e

(k)
j − e

(k)
i ) ,

(62)

where P(kl)
i and R(k)

ij are unit Poisson processes.
Now, we replace each stochastic status transition process in the second

line of equation (62) by its deterministic mean, such that the process sim-
plifies to

N̂(t) = N̂(0) +

m∑
k,l=1

k ̸=l

nC∑
i=1

P(kl)
i

(∫ t

0
λ
(kl)
i N̂

(k)
i (s)ds

)
(e

(l)
i − e

(k)
i )

+

m∑
k=1

nC∑
i,j=1

∫ t

0
f̂
(k)
ij (N̂(s))ds(e

(k)
j − e

(k)
i ) .

(63)
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It can be shown [17] that equation (62) converges to equation (63), using
the strong law of large numbers for Poisson processes, i.e.

Theorem 11 (SLLN, [15, thm 1.2]). Let P1 a unit Poisson process and
u0 > 0, then

lim
t→∞

sup
u≤u0

∣∣∣∣P1(ut)

t
− u

∣∣∣∣ = 0 a.s.

Thus, with a big enough timescale, we can approximate a unit Poisson
process by its internal time, which is the same as the expected value of the
process at the given time, with an arbitrarily small error ε > 0. What allows
us to increase the timescale are the rare spatial transitions combined with
the large population. We want that, on a unit time step, the combined
change made on the system state caused by stochastic spatial transitions,
that each have a fixed magnitude of 1, cause a change smaller than ε on
the status transition rates, and thus on the internal times. How exactly the
error depends on size of the population and frequency of transitions depends
on how the status transition rates are calculated.

According to [10], the relative approximation error generally decreases
with an increasingly large population. In practice, the PDMM can also be
used with frequent spatial transitions, but the computational speedup will
be lost due to the interuptions of the integrator by transition events. The
τ -leaping method, which can be found in [22], can be used as a mitigation,
but introduces a further approximation error by doing multiple transitions
in a single computation step (or leap).

Note that if only a single metapopulation is used, i.e. m = 1, we have
L ≡ 0 and thus equation (63) reduces to a standard EBM. In particular,
choosing the states Γ = (S, I,R) and appropriate rates, we can represent
the SIR model from section 2.1 using the PDMM.

6 Hybridization

In this chapter we describe our approaches to hybridization of the multiscale
model we introduced in section 5. The main motivation comes from the
high cost of running an ABM, especially for large populations. Let us first
investigate the runtime costs of the ABM, SMM and PDMM.

Let the ABM be given as in section 5.1, with Li defined by a diffusion
process and γ defined by equation (44). Let SMM and PDMM be given
by subsequent model reductions from this ABM. We first break down the
computational costs for each algorithm from section 4, with respect to the
number of agents na. Technically, the number of compartments, metapopu-
lations and transitions are also a factor, but their effect is relatively minor,
and almost the same for all algorithms.
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Note that the computational cost of all algorithms is proportionate to
the magnitude of the transition rates, since larger rates imply more frequent
events, hence all algorithms make more and smaller time steps. However,
this effect is mostly only relevant for the SMM, since it depends on which
transitions are used for events and the way their rates are calculated. In par-
ticular, the SMM uses all transitions as events, and the rates are a constant
multiplied by a compartment (see equation (60)), and hence scale linearly
with na. The transition rates for the ABM are computed for each agent,
hence their magnitude does not scale with na, and the PDMM only uses
spatial transitions as events, which in its derivation we assumed to be rare
compared to adoption rates. We will now have a closer look on the cost of
each time step iteration.

For the ABM, we use algorithm 3 with an Euler-Maruyama step. If we
assume that the potential from the diffusion process can be evaluated in
constant time, the cost for spatial transitions lies in O(na). Additionally,
we have to update the adoption rates in each iteration. If there is any
second-order transition, these calculations have a superlinear complexity, as
they are determined using pairs of agents. In the worst case, this causes the
computational cost of an iteration to be in O(na

2).
The NRM (algorithm 2) used for the SMM only draws a single random

number and performs simple arithmetic, as the rates are computed by mul-
tiplication, hence the computational cost of the iteration is constant with
respect to na.

Similarly, an iteration of algorithm 3 for the PDMM has constant com-
plexity, and the cost for integration step is independent of the number of
agents as well.

We summarize these results in the following table 1.

model ABM SMM PDMM

algorithm Temp. Gillespie NRM Temp. Gillespie
#iterations O(1) O(na)

∗ +O(na) O(na)
∗

iteration cost up to O(na
2) O(1) O(1)

spatial domain continuous discrete discrete
status changes stochastic stochastic deterministic

Table 1: Modelling characteristics and computational cost w.r.t. the number
of agents na for each model. The terms O(na)

∗ describe the scaling due to
transition rates, and under the assumptions from section 5.3, they can be
replaced by O(1).

Therefore, we can choose the model depending on whether accuracy or
computational cost are more important. We would like to have the best of
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both worlds, hence we combine models for a hybrid approach. Consider the
following two scenarios.

1. Consider a domain with several metapopulations, where we are mostly
interested in the infection spread in a single subpopulation. As an
example, take the federal states of Germany, assuming that the borders
to neighboring countries are closed, and pick a single state as a focus
region. We now could only simulate the chosen state, but infection
spreading in the other states can influence the result via travel between
states. Instead, we can use an ABM on the chosen state, and an SMM
for all others. This way, we get highly resolved results for the focus
region, and approximations for the rest of Germany without a large
increase in computational cost.

2. Assume we have a model with a high infection rate, but an initially low
number of infected, for example in a hospital. In that case, the exact
position and contacts of the infected agents can strongly influence the
outcome of the simulation. But, if a large outbreak occurs and a
significant part of the population gets infected, individual behavior
gets less influential on the overall situation. In that case, we could
save computational cost by switching to a coarser model.

In the first scenario we use spatial resolution to hybridize the model,
allowing us to effectively compute boundary conditions for a focus region,
while in the second scenario we use temporal resolution, switching between
models for a high resolution at critical times and high simulation speeds
otherwise. For the spatial hybridization, we have to convert only agents
transitioning between metapopulations to or from another model, but for
the temporal hybridization, the whole population has to be converted. By
the definition of the derived models, it is easy to transfer the population
from one model to a reduced model (52). However, if we want to go back
to a finer granularity model, it is not so obvious what to do.

While there are other multiscale and even hybrid models [28, 29, 30],
there is little to no rigorous theory on how to combine models and transfer
information between them. Therefore, we generate the missing information
through random sampling, like the exact position of an agent moving from
an SMM to an ABM.

We will now describe a simple implementation for each hybridization
approach, that can be expanded upon with more sophisticated heuristics,
for example. First, set up two models with different granularity, where the
coarse model is obtained from the reduction steps described in section 5.
The next step depends on the hybridization approach.

For the spatial hybridization, we make use of the metapopulations to
link the simulations together. Pick one metapopulation as the focus region.
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The starting population is then distributed, such that agents in the focus
region are assigned to the fine model, and all other agents are assigned to
the coarse model. Afterwards, restrict all transition processes of the fine
model to this metapopulation, such that agents that leave it can no longer
change their status or move any further. Moreover, we restrict the coarse
model such that no adoption or spatial transition can occur for agents inside
the focus region. During the simulation, we interrupt regularly to exchange
agents. All agents that are assigned to the fine model and have left the focus
region, will be sent to the coarse model. Correspondingly, agents which are
assigned to the coarse model and have moved into the focus region, will be
sent to the fine model. This constitutes a slightly delayed transition between
models with very little overhead.

The temporal hybridization is easier in concept, but can be more difficult
to implement. First, determine the criterion for switching between models,
and choose from which model to start. During the simulation, regularly
check the criterion. When appropriate, convert the current system state to
the other model, then continue the simulation.

The result of both implementations can be seen in section 7.

As a sidenote, we can use a ”hybrid” approach to fitting model parame-
ters, especially for the adoption rates. That is, we could perform parameter
studies with a PDMM, and then convert the rate γ̂ back to γ using equa-
tion (58).

7 Results

Model Setup and Parameter Choices

For the evaluation of the model, we use an SIR model with four subpopula-
tions, hence Γ = (S, I,R) with the following model graph.

S I R.

We call the population in S susceptible, in I infectious and in R recovered.
Furthermore, we choose Ω = R2 as spatial domain for the ABM, and let

each Li be given by the process

dX(t)

dt
= −∇F (X(t)) + σξ(t) , (64)

with F defined as the quad well potential from figure 5 and with the constant
noise term σ ≡ 0.5. The spatial transition rates for both SMM and PDMM
are set to λ ≡ 0.001, independently of the status and wells. Based on prior
sampling, agents from the ABM essentially never travel diagonally through
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Figure 5: The potential F (x, y) = (x2 − 1)2 + (y2 − 1)2 used for the ABM
results. The metapopulations corresponding to the four wells are separated
by the axes x = 0 and y = 0.

the center of the domain, hence we will only model horizontal or vertical
transitions for the reduced models.

We label the wells from the top left to the bottom right in reading order
by first through fourth. Initially, we assign each well the same number of
agents. Only the first well will start with one fifteenth of its population as
infectious, none are recovered, and the remaining agents are susceptible.

For most simulations, we will use a population of na = 1200. Hence, the
population is distributed such that

{S1 = 280, I1 = 20, R1 = 0} {S2 = 300, I2 = 0, R2 = 0}
{S3 = 300, I3 = 0, R3 = 0} {S4 = 300, I4 = 0, R4 = 0}

Let the adoption rates be defined separately for each well, similarly to
equation (44), by

γIR(x) = cIR and γSII(x, y) = cSII1∥x−y∥<r ,

where we use cSII := 1.0 and cIR := 0.08 if the position x lies within the
fourth well, and otherwise cSII := 0.3 and cIR := 0.1. Furthermore, we
choose the radius r = 0.2, and define the adoption rate for the derived
models, such that

γ̂SII = 0.95 ∗ γSII , γ̂IR = γIR ,

where the factor 0.95 is the average contact rate, i.e. the average number of
contact an agent has relative to the total subpopulation.
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Hence, the infection rate on the fourth well is slightly increased, while
the recovery rate is decreased. This causes a rapid increase in the number of
infectious agents, once at least one infectious agent reaches the fourth well,
as can be seen in figure 7.

Lastly, all simulations will be run from t = 0 to tmax = 100, with fixed
time steps ∆t = 0.5 for the ABM and adaptive time steps for the PDMM.
Remember, the time steps for the SMM only depend on event times.

Comparison of Models

Let us first inspect the computational cost for the ABM, SMM and PDMM
we defined in section 5. We immediately see in figure 6, that the runtime
of both reduced models are at least two orders of magnitude faster than
the ABM, even for a small number of agents. For larger numbers, the
computational cost of the ABM rapidly increases, while the cost for both
SMM and PDMM stay relatively small.

Moreover, the SMM clearly scales linearly with the number of agents,
which matches the considerations we made in section 6. However, we also
expected the runtime cost for the PDMM to be constant, but it does show
linear scaling as well, even if at a much smaller rate. Presumably, this is
due to the implementation or model setup we used, as [10] managed to show
a constant computational cost for their version of the PDMM. Still, our
PDMM is consistently about three times faster than the SMM.

Next, let us look into some simulation results. First, we view some
sample results taken from a single simulation. However, we should not
expect these results to be very insightful with respect to the overall quality
of the models, due to the stochastic nature of the models.
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Figure 6: Computational cost of model simulations, measured by their run-
time in seconds. The left plot for the ABM uses a log-log scale in contrast
to the linear scale used by the plots for SMM and PDMM. The runtimes are
taken as averages of 1000 simulations, except for the largest two values for
the ABM, for which only ten simulations were used.
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In figure 7, we see the result of a single simulation for each model. There
is one plot for each metapopulation corresponding to a well. They are or-
dered the same as the wells in figure 5. While the plots for the first well
look mostly similar, all other wells vary drastically. This is caused by the
particular model setup, which strongly depends on when an infectious agent
leaves the first well, since all other wells start without any infectious. There-
fore, we call the first transition of an infectious agent to an uninfected well a
critical transition. Furthermore, the times at which these critical transitions
take place allow us to quantify, whether the reduced models are accurate
with respect to spatial transitions.

Taking the average of 100 critical transition times, we get the following
result for na = 1200:

transition into second well third well fourth well

ABM 13.057 13.090 34.961
SMM 14.320 14.070 35.539
PDMM 13.548 13.828 36.300

With a perfect model reduction, we would assume that all models share the
same critical transition times for each well. The discrepancies between the
models probably come from an insufficient number of samples, or disturbed
parameters in the model setup. Overall, the critical transition times are sim-
ilar enough to say that the models describe the same dynamics. Moreover,
we see that it takes roughly twice as long to reach the fourth well.

The average results depicted in figure 8 and figure 9 can be obtained by
first linearly interpolating each result, such that all results have the same
time points at which they can be added together, and then dividing by the
number of samples. In the following, we will always use 100 samples for each
averaged result.

In figure 8 we see that the average of multiple simulations converge to
very similar results. This kind of plot is well suited to visualize the spread of
a disease amongst a population, but it is difficult to compare them in detail.
To that end, we reduce the plot to only show the number of infectious agents
over time. The result is figure 9, where we see that all models share their
overall behavior with respect to infection spreading. We show only the first
and fourth well here, since the second and third behave very similar to the
forth, with slightly less deviation from the ABM, and different timings.

We will use the graph for the ABM from figure 9 as a reference for the
hybrid methods.

Spatial Hybridization Results

Starting with the spatial hybridization approach, observe that in figure 10
the runtime of the hybrid model is dominated by the computational cost for
the ABM, while scaling significantly slower with the number of agents. At
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1) Sample result for an ABM Simulation

2) Sample result for an SMM Simulation

3) Sample result for a PDMM Simulation

Figure 7: A single simulation result for each model with 1200 agents, plotted
as the distribution of the population over time. The discrepancies between
each models’ result, especially in the second through fourth well, are in-
tended by the model setup.
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Figure 8: Averaged results for the first well, using 100 simulations with
1200 agents. The results are from the 1) ABM, 2) SMM and 3) PDMM,
respectively. There are barely any visible differences between these plots,
despite the obvious differences between the first wells of figure 7.

Figure 9: Averaged results with na = 1200 for the 1) first well 2) fourth well,
showing only the number of infectious over time. On the left, the graphs
for SMM and PDMM overlap almost completely, while the ABM deviates
slightly after t = 30. On the right, there is much less overlap, but the graphs
are still very similar.
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Figure 10: Computational cost as runtime in seconds of the spatial hy-
bridization, as described in section 6. The values for the pure ABM are
taken from figure 6, except for the two largest measurements, so that the
results are more readable.

4800 agents, the ABM/SMM hybrid is still barely faster than the ABM at
only 1200 agents, and the ABM/PDMM hybrid is even faster.

However, the hybrid model is less fitted to the ABM than the SMM
or PDMM, as can be seen when comparing figure 9 to figure 11. Presum-
ably, this is caused by the delays from transitioning between models. Since
the hybrid ABM/SMM and ABM/PDMM are very close together, we can
probably choose other parameters to better fit the ABM.

Still, the spatial hybrid models are sufficiently close to the original ABM,
and can be used with significantly larger population sizes for the same cost.
Moreover, we gain the benefit over the pure SMM or PDMM of having
discrete agents. That means a far more detailed analysis of the model is
possible, for example by contact tracing.

Temporal Hybridization Results

Finally, we will look at the results of the temporal hybridization approach.
The model is set up as described in section 6. We start with the ABM,
and switch to the SMM or PDMM once all metapopulations have at least
20 infectious agents. If the number of infectious in any compartment falls
below 20 again, the model is converted back into an ABM.

The conversion is relatively expensive, especially to the ABM, since we
have to generate new agents from the current distribution of the population.
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Figure 11: Averaged results for the spatial hybridization approach with
na = 1200. The plots show only the number of infectious over time in the
1) first well and 2) fourth well. The graph for the ABM is the same as in
figure 9.

But, while gathering the results, at most four conversions in total occurred
during any single run.

In figure 12 we see that the graphs of both temporal hybrid models fit
very closely to the reference graph from the ABM. However, both temporal
hybrid models are also closer to the computational cost of the ABM, when
compared to the spatial hybrid models. Still, they are at least twice as fast,
without losing much accuracy with respect to the model dynamics.

Figure 12: Averaged results of the temporal hybrid model with a population
of 1200. The plots show only the number of infectious over time in the 1)
first well and 2) fourth well. The graph for the ABM is the same as in
figure 9.

The implementation of the Temporal Gillespie Algorithm 3 used for these
results is currently being implemented for a future version of MEmilio [31].
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8 Conclusion

In this thesis we covered some basics needed to formulate stochastic infec-
tious disease models, as well as three different algorithms that can be used to
simulate these models. Moreover, we introduced a multiscale modelling ap-
proach based on pairwise agent interactions on a continuous domain, where
we obtain the next coarser level using a Galerkin projection of the transition
dynamics. Hence, the continuous space is projected onto a discrete space
defined by the metastable regions of the spatial transition dynamics. Fur-
thermore, the coarsest level can be obtained by approximating the stochastic
adoption dynamics by a deterministic system of ordinary differential equa-
tions for each metapopulation.

Using this hierarchy of models, we showed that either model reduction
leads to significantly lower computation times, even at small population
sizes. Additionally, both reduced models scale much less strongly with the
number of agents, while still giving convincing approximations of the base
model.

Because we anticipated such a result, by taking into account the proper-
ties of existing agent- or equation-based models, we introduced two different
hybridization approaches. The first approach uses a spatial coupling be-
tween two models of different scale, by distributing the metapopulations
and converting an agent to the other model, if they transition to one of its
metapopulations. The second hybridization approach combines the mod-
els on a temporal scale, converting the whole system state at certain time
points.

Both hybridization approaches produce promising results, increasing the
simulation speed of an ABM without a significant loss in accuracy of the
overall infectious disease dynamics.

Furthermore, the use of agents at critical places or time points make a
highly detailed analysis of the simulation results possible, without spending
the time to simulate an ABM.

Going forward, we could investigate methods to regain agent information
from the reduced models, and potentially gain rigorous error estimates for
the conversions. Moreover, the hybridization approaches could be used to
explore more complicated or larger scenarios, and possibly even find their
way into the epidemic simulation software MEmilio [31].

48



49



References

[1] Cliff C. Kerr, Robyn M. Stuart, Dina Mistry, Romesh G. Abeysuriya,
Katherine Rosenfeld, Gregory R. Hart, Rafael C. Núñez, Jamie A. Co-
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[2] Petrônio C.L. Silva, Paulo V.C. Batista, Hélder S. Lima, Marcos A.
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